小學(xué)數(shù)學(xué)總復(fù)習(xí)專題
小學(xué)的時候我們該怎么對數(shù)學(xué)進行復(fù)習(xí)和學(xué)習(xí)呢?下面一起來看看小學(xué)數(shù)學(xué)總復(fù)習(xí)專題的內(nèi)容吧!
小學(xué)數(shù)學(xué)總復(fù)習(xí)專題講解及訓(xùn)練(一)
教學(xué)內(nèi)容:
、诶}:在一幅某鄉(xiāng)農(nóng)作物布局圖上,20厘米表示實際距離16千米。
求這幅圖的比例尺。
因為 = 每小時造紙噸數(shù)(一定),所以每小時造紙噸數(shù)一定時,造紙噸數(shù)與造紙時間成正比例。
例題:一個圓柱形蓄水池,底面周長是25.12米,高是4米,將這個蓄水池四周及底部 抹上水泥。
如果每平方米要用水泥20千克,一共要用多少千克水泥?
。3)圓錐的體積
例題:下圖是某市旅游1號車行駛的線路圖,請根據(jù)線路圖填空。
二、選擇。
四、畫一畫。
。5分)
五、解決實際問題(25分)
2厘米
5厘米 比例尺:
5000 ×5.22% × 3 × (1 - 5%) = 743.85(元)
2、一個圓柱形的無蓋水桶,底面半徑4分米,高6分米,至少需要用多少平方分米的鐵皮?(用進一法取近似值,得數(shù)保留整數(shù));如果用來裝水,可以裝多少千克水?(每升水重1千克)
3.14 ×4 + 3.14 ×4 × 2 × 6 = 200.96(平方分米)≈ 201(平方分米)
3.14 × 4 × 6 = 301.44立方分米 = 301.44升 = 301.44千克
3、一條公路已經(jīng)修了它的 ,再修300米,就修好這條公路的一半。
這條公路長多少米?
解:設(shè)這條公路長X米 50%X - X = 300 X = 3000
4.有一個近似的圓錐形砂堆重3.6噸,測得高是1.2米,如果每噸砂的體積是0.6立方米。
這堆砂的底面積是多少平方米?
解:設(shè)這堆砂的底面積是X平方米 × X × 1.2 = 0.6 × 3.6 X = 5.4
5、用塑料繩捆扎一個圓柱形的蛋糕盒(如下圖),打結(jié)處正好是底面圓心,打
結(jié)用去繩長25厘米。
(1)、扎這個盒子至少用去塑料繩多少厘米?
。ǎ玻、在它的整個側(cè)面貼上商標(biāo)和說明,這部分的面積至少多少平方厘米?
。ǎ保、(50 + 15)× 2 × 2 + 25 = 285厘米
。ǎ玻3.14 × 50 × 15 = 2355平方厘米
小學(xué)數(shù)學(xué)總復(fù)習(xí)專題(二)
專題一:計算
我一直強調(diào)計算,扎實的算功是學(xué)好數(shù)學(xué)的必要條件。
聰明在于勤奮,知識在于積累。
積累一些常見數(shù)是必要的。
如1/8,1/4,3/8,1/2,5/8,3/4,7/8的分?jǐn)?shù),小數(shù),百分?jǐn)?shù),比的互化要脫口而出。
100以內(nèi)的質(zhì)數(shù)要信手拈來。
1-30的平方,1-10的立方的結(jié)果要能提筆就寫。
對于整除的判定僅僅積累2,3,5的是不夠的。
9的整除判定和3的方法是一樣的。
還有就是2和5的n次方整除的判定只要看末n位。
如4和25的整除都是看末2位,末2位能被4或25整除則這個數(shù)可以被4或25整除。
8和125就看末3位。
7,11,13的整除判定就是割開三位。
前面部分減去末三位就可以了如果能整除7或11或13,這個數(shù)就是7或11或13的倍數(shù)。
這其實是判定1001的方法。
此外還有一種方法是割個位法,望同學(xué)們至少掌握20以內(nèi)整除的判定方法。
接下來講下數(shù)論的積累。
1搞清楚什么是完全平方數(shù),完全平方數(shù)個位只能是0,1,4,5,6,9.奇數(shù)的平方除以8余1,偶數(shù)的.平方是4的倍數(shù)。
要掌握如何求一個數(shù)的約數(shù)個數(shù),所有約數(shù)的和,小于這個數(shù)且和這個數(shù)互質(zhì)數(shù)的個數(shù)如何求。
如何估計一個數(shù)是否為質(zhì)數(shù)。
計算分為一般計算和技巧計算。
到底用哪個呢?首先基本的運算法則必須很熟悉。
不要被簡便運算假象迷惑。
這里重點說下技巧計算。
首先要熟練乘法和除法的分配律,其次要熟練a-b-c=a-(b+c)a-(b-c)=a-b+c
還有連除就是除以所有除數(shù)的積等。
再者對于結(jié)合交換律都應(yīng)該很熟悉。
分配律有直接提公因數(shù),和移動小數(shù)點或擴大縮小倍數(shù)來湊出公因數(shù)。
甚至有時候要強行創(chuàng)造公因數(shù)。
再單獨算尾巴。
分?jǐn)?shù)的裂項:裂和與裂差 等差數(shù)列求和,平方差,配對,換元,拆項約分,等比定理的轉(zhuǎn)化等都要很熟悉。
還有就是放縮與估計都要熟練。
在計算中到底運用小數(shù)還是分?jǐn)?shù)要看情況。
如果既有分?jǐn)?shù)又有小數(shù)的題,如果不能化成有限小數(shù)的分?jǐn)?shù)出現(xiàn)的話整個計算應(yīng)該用分?jǐn)?shù)。
當(dāng)小數(shù)位數(shù)不超過2位且分?jǐn)?shù)可以化為3位以內(nèi)的小數(shù)時候可以用小數(shù)。
計算時候?qū)W會湊整。
看到25找4,看到125找8,看到2找5這些要形成條件反射。
如7992乘以25
很多孩子用豎式算很久,而實際上只要7992除以4再乘以100=(8000-8)除以4再乘以100=199800運用下除法分配律。
這些簡便的方法不要要求簡便的時候才用,平時就要多用才熟能生巧。
最后講下公比是1/2的等比數(shù)列。
很多孩子做1/2+1/4+...+1/64能很快1-1/64=63/64,但如果是1/4+1/8+1/16+..+1/256就不會了。
實際上一樣的裂項,為1/2-1/4+1/4-1/8+...+1/128-1/256=1/2-1/256=127/256.所以要學(xué)活總結(jié)裂項的幾種形式。
最后一般化。
專題二:解方程
解方程一般是運用等式性質(zhì),由于小學(xué)生沒學(xué)過移項。
所以稍復(fù)雜的方程容易錯符號。
如37-2x=39-3x
解這樣方程建議先把兩邊加3x 得到37+x=39 x=2 有的直接做容易搞成5x=2,所以做完后要檢驗。
解含有分母的方程建議首先把分子的多項式加括號。
然后左右兩邊每個加數(shù)或減數(shù)都乘以最小公倍數(shù)。
注意凡是整體加上括號,最后用分配律和加減的簡便運算方法去掉括號。
這樣不會錯符號和漏乘調(diào)理也清楚。
還有注意訓(xùn)練整體意識如解60(100-x)=72(97-x)就應(yīng)該兩邊首先約去12計算更好。
對于機構(gòu)復(fù)雜出現(xiàn)重復(fù)部分的方程還要注意換元。
平時還可以多解一些稍微復(fù)雜的百分?jǐn)?shù)方程。
專題三:分?jǐn)?shù),比,百分?jǐn)?shù)應(yīng)用題
解決這類題關(guān)鍵在于搞清楚標(biāo)準(zhǔn)。
明白1倍是什么,比的一份是什么。
如60比---多1/5,60比----少1/5,60是---的1/5,---是60的1/5,---比60多1/5,----比60少1/5.這個準(zhǔn)備題能全對說明標(biāo)準(zhǔn)吃透了否則還要在找標(biāo)準(zhǔn)量上加強訓(xùn)練。
注意分?jǐn)?shù)帶單位表示具體數(shù)量,不帶單位表示的實際上是倍數(shù)。
只是同學(xué)們習(xí)慣看整數(shù)和小數(shù)倍不習(xí)慣看分?jǐn)?shù)倍數(shù)。
百分?jǐn)?shù)就只能表示倍數(shù),不能表示數(shù)量是不可以帶單位的。
如果用比解決問題就務(wù)必吃透1份是多少。
其實分?jǐn)?shù)應(yīng)用題都可以轉(zhuǎn)化為A是B的多少倍?已知1倍求多倍乘法,已知多倍求1倍除法。
比如A比B多1/3,這時候標(biāo)準(zhǔn)是B A比1倍多1/3倍就是A是B的4/3倍。
馬上有A:B=4:3,對于應(yīng)用題中分?jǐn)?shù)和比的轉(zhuǎn)化要清晰。
很多題我們用分?jǐn)?shù)抽象但用比很好理解。
因為孩子熟悉整數(shù),不喜歡分?jǐn)?shù)這時事實。
對于百分?jǐn)?shù)應(yīng)用題我們可以化為比轉(zhuǎn)化為孩子喜歡的東西。
其實很多有不變數(shù)量的題就是找到不變量,統(tǒng)一不變量對應(yīng)份數(shù),求出1份是多少,按比例分配這4步曲一般分?jǐn)?shù),百分?jǐn)?shù)比的應(yīng)用題就搞定了。
對于濃度問題和商品利潤問題我講了十字交叉法。
對于有些孩子可能難理解,考試在大題中也不適宜用。
其實濃度問題列方程就從溶質(zhì)入手就可以了。
就是各個溶液的溶質(zhì)和=混合溶液溶質(zhì)。
左右兩邊都濃度乘以對應(yīng)溶液質(zhì)量就可以了
至于加水和加鹽的問題就看成加濃度為0和百分之百的溶液。
商品題抓住成本(1+利潤率)=售價 標(biāo)價乘以打折數(shù)=售價就可以了。
多件商品總成本,利潤,銷售額問題乘以件數(shù)就可以了。
但這方面的方程計算往往比較麻煩,需要多訓(xùn)練。
很多孩子方程列的出,解不對這時要注意的一個問題。
專題四:工程問題
解答一般問題只要明確 效率時間總量關(guān)系就可以了。
然后注意干活的人完成總量為1,或列算式或列方程均可。
難些的題可能要用到替換結(jié)合正反比,設(shè)而不求等。
還有就是單位1和具體數(shù)量結(jié)合的題,就是找到數(shù)量對應(yīng)總量的倍數(shù)用數(shù)量除以對應(yīng)倍數(shù)解決問題。
對于多項工程問題要會抓不變量。
有的是時間不變,有的是余下工作量不變。
還有的題是工作總量不變具體情況具體分析。
專題五:行程問題
一般小升初行程問題不是特別難。
解決行程問題有如下幾種方法:1公式法2列方程法3比例法4圖表法5枚舉法
行程問題題型很多我們也不必分那么細致。
不管什么方法總的一條是很重要的以靜制動。
就是抓不變量。
比如牛吃草問題的原有草追及路程和速度慢的也就是日長量不變。
多人行程的相遇或追及路程不變。
電車發(fā)車的車間距不變。
同時出發(fā)問題的時間不變,路程比等于速度比等。
任何難題都是一系列簡單知識點構(gòu)成的。
對于相遇和追及的基本模型一定要吃透。
行程問題最難的就是比例法解題以及多次相遇和追及。
往往多次相遇問題都會涉及到比。
不管運用正比還是反比都要抓住不變量。
那種速度不變同時出發(fā)的問題只要找2個狀態(tài)的各自路程利用路程比等于速度比很容易就可以列出方程了。
那些沒有具體數(shù)量的題一般要用比,關(guān)鍵在于抓不變量要不時間不變。
要不路程不變。
不外就是這2種不變量。
抓住了不變量一般一個方程也就解決了。
圖表法是通過線段圖幫助理順?biāo)悸贰?/p>
但超過2次的相遇畫圖還是很難畫清楚。
所以還是要明確那個加一周期。
直線加2全程,環(huán)形加1個。
要注意直線型的端點不能是迎面相遇點。
什么樣的題需要枚舉法呢?那種走走停停,變速問題。
我們一般先舉出一個周期的情況再看整個過程有多少個周期,余下部分一次次枚舉就可以了。
枚舉法其實思路清晰但要耐煩。
這是培養(yǎng)意志品質(zhì)的絕佳機會不要浪費。
專題六:面積,體積周長問題
周長注意是封閉圖形外部線條長度的總和,內(nèi)部的線段長度不要管。
這個概念要明確。
還有就是掌握替換法求周長。
體積問題關(guān)鍵明確長方體,正方體,圓柱體體積和表面積的求法。
會求圓柱側(cè)面積。
還有就是會用替換思想求出體積和表面積的變化,能想象出增加幾個面和減少幾個面!。
注意放水模型的正放和倒放要注意規(guī)則圖形放的高度是多少,從倒放往往知道不規(guī)則高度最后化不規(guī)則為規(guī)則求體積。
這里重點講下面積問題。
面積分為直線型的以及直線圓扇形結(jié)合的。
直線型的有割補求組合圖形面積。
就是把復(fù)雜圖形轉(zhuǎn)化為基本的圖形解決問題。
還有就是甲比乙大多少那類題一般都加上空白部分面積把兩塊陌生圖形化歸為熟悉的圖形。
再有就是不同底邊高的問題抓住面積不變解題。
還有的題是利用整體面積等于各個局部面積和解決。
另外注意三角形底和高和平行四邊形底和高相等的話面積是一半的模型解題,通過面積的一半算兩次。
還有注意抓住平行線間距離相等解題,轉(zhuǎn)化三角形的高。
注意梯形對角線分出三對面積相等的三角形。
有種難點的題要用到旋轉(zhuǎn)把問題轉(zhuǎn)化為熟悉的圖。
如直角三角形內(nèi)接正方形把斜邊分為20和24求這個直角三角形除去正方形后的面積?
學(xué)面積同樣要學(xué)好比。
很多題是高相等面積比就是底邊比。
或底相等高的比是面積比。
這里需要熟練掌握共邊,燕尾,蝴蝶,平行線分線段成比例這幾個定理。
最好掌握梅捏勞斯和塞瓦定理。
很多沒具體數(shù)量的幾何題就是化線段比為面積比解決的。
吃透這個對于今后初中解決平面幾何時候思路的廣度和深度很有好處。
在考試中往往是直線和圓扇形半圓結(jié)合的。
解決這樣的題和做應(yīng)用題樣可以從結(jié)論到條件分析。
首先找出基本圖形有哪些。
然后就是看不規(guī)則圖形需要求哪些部分的面積然后往那些基本圖形去靠攏就可以了。
我們解題要注意個小技巧設(shè)而不求。
比如正方形對角線是2厘米求面積。
我們求邊長。
我們利用對角線的平方除以2就得到結(jié)果了為2,但多少的平方是2小學(xué)并不會。
很多題當(dāng)我們知道半徑的平方或邊長的平方的時候就可以不去求半徑和邊長了。
繞開堅固的堡壘奇襲敵后這時取勝的方略。
總之就是陌生問題熟悉化
專題七:雜題
我們要會求簡單不定方程的整數(shù)解說白了就是用枚舉法套答案。
還有要掌握基本的分類與分步會運用加法和乘法原理解題。
會根據(jù)周期找規(guī)律解題。
最后在學(xué)習(xí)中還要會簡單的抽屜原理。
掌握上樓梯的斐波切那模型。
以下七大專題就是小升初奧數(shù)部分的主流。
需要的積累和常用的方法我都做了概述。
實際上當(dāng)您學(xué)透的時候那種因數(shù)乘以因數(shù)=積的問題都可以化到一類。
行程,工程,濃度,利潤等問題都可以看成一個問題。
我們學(xué)數(shù)學(xué)最好的效果不是某類題和某個題用某種方法。
而是某種思想方法能解決多少問題。
這就是大局觀。
從提升能力的角度來說還是希望孩子們一題多解
比如流水行船問題還可以看成工程問題把不變量當(dāng)成單位1來處理,大家可以思考。
換個角度看問題你的數(shù)學(xué)思維品質(zhì)會更好。
我準(zhǔn)備寒假后針對那些考上名校的孩子進行數(shù)學(xué)思想篇的專題講座。
目前說的還是局限在應(yīng)付考試和提升數(shù)學(xué)實力有不同的。
對于奧數(shù)高手我準(zhǔn)備專門講下?lián)Q元,整體與局部,抓不變量將不變量看為單位1,以靜制動的策略算兩次幾種思想進行專題講解實現(xiàn)全方位提升。
【小學(xué)數(shù)學(xué)總復(fù)習(xí)專題】相關(guān)文章:
小學(xué)數(shù)學(xué)總復(fù)習(xí)專題講解及訓(xùn)練05-12
小學(xué)數(shù)學(xué)總復(fù)習(xí)專題的講解及訓(xùn)練05-10
小學(xué)數(shù)學(xué)的總復(fù)習(xí)05-12
小學(xué)數(shù)學(xué)總復(fù)習(xí)大全05-13
初中物理總復(fù)習(xí)《力學(xué)專題》11-15
小學(xué)數(shù)學(xué)總復(fù)習(xí)資料精選06-14