亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

數(shù)學(xué) 百文網(wǎng)手機站

數(shù)學(xué)知識點

時間:2022-03-02 08:34:21 數(shù)學(xué) 我要投稿

數(shù)學(xué)知識點

  在年少學(xué)習(xí)的日子里,大家最熟悉的就是知識點吧?知識點也可以理解為考試時會涉及到的知識,也就是大綱的分支。掌握知識點是我們提高成績的關(guān)鍵!下面是小編為大家收集的數(shù)學(xué)知識點,僅供參考,大家一起來看看吧。

數(shù)學(xué)知識點

  數(shù)學(xué)知識點1

  知識點

 。1)單次相遇問題

  1、概念:兩個運動的物體同時由兩地出發(fā)相向而行,在途中相遇,這類應(yīng)用題叫做相遇問題;

  2、特征:①兩個運動的物體一般同時不同地(或不同時不同地)出發(fā)作相向運動;

 、谠谝欢〞r間內(nèi),兩個運動物體相遇;

  3、解題公式:相遇時間=總路程÷速度和

  總路程=速度和×相遇時間

  (2)單次追及問題

  1、概念:兩個運動的物體在不同地點同時出發(fā)(或者在同一地點而不是同時出發(fā),或者在不同地點又不是同時出發(fā))作同向運動,在后面的行進速度要快些,在前面的行進速度要慢些,在一定時間之內(nèi),后面的追上前面的,這類應(yīng)用題就叫做追及問題;

  2、特征:①兩個運動的物體一般同地不同時(或同時不同地)出發(fā)作同向運動;

 、谠诤竺娴男羞M速度快些,前面的行進速度慢些;

  ③在一定時間內(nèi),后面的追上前面的;

  3、解題公式:追及時間=追及路程÷速度差

  追及路程=速度差×追及時間

  (3)多次相遇問題

  在這里,我們只講直線型兩地往返的相遇問題,以后我們會專門開辟一個專題來講環(huán)形相遇、追擊問題--環(huán)形跑道,這里牽涉到的多次追擊問題比較多。

  我們把第一次相遇走的路程和看成是一個全程,那么到第二次相遇時的路程和就是3個全程,第三次相遇時的路程和就是5個全程,……,第n次相遇時的路程和就是2n-1個全程。而由于運動物體的速度是不變的,所以每個全程花的時間一樣,抓住這兩點,我們就可以解決所有的多次相遇問題!

  數(shù)學(xué)知識點2

  (一)比的基本概念

  1.兩個數(shù)相除又叫做兩個數(shù)的比。比的前項除以后項所得的商,叫做比值。

  2.比值通常用分數(shù)、小數(shù)和整數(shù)表示。

  3.比的后項不能為0。

  4.同除法比較,比的前項相當(dāng)于被除數(shù),后項相當(dāng)于除數(shù),比值相當(dāng)于商;

  5.根據(jù)分數(shù)與除法的關(guān)系,比的前項相當(dāng)于分子,比的后項相當(dāng)于分母,比值相當(dāng)于分數(shù)的值。

  6.比的基本性質(zhì):比的前項和后項同時乘上或者同時除以相同的數(shù)(0除外),比值不變。

  (二)求比值

  求比值:用比的前項除以比的后項

  (三)化簡比

  化簡比:用比的前項除以比的后項求出分數(shù)的比值后,在把分數(shù)比值改成比。

  (四)比的應(yīng)用

  1.比的第一種應(yīng)用:已知兩個或幾個數(shù)量的和,這兩個或幾個數(shù)量的比,求這兩個或這幾個數(shù)量是多少?

  例如:六年級有60人,男女生的人數(shù)比是5:7,男女生各有多少人?

  題目解析:60人就是男女生人數(shù)的和。

  解題思路:

  第一步求每份:60÷(5+7)=5人

  第二步求男女生:男生:5×5=25人女生:5×7=35人。

  2.比的第二種應(yīng)用:已知一個數(shù)量是多少,兩個或幾個數(shù)的比,求另外幾個數(shù)量是多少?

  例如:六年級有男生25人,男女生的比是5:7,求女生有多少人?全班共有多少人?

  題目解析:“男生25人”就是其中的一個數(shù)量。

  解題思路:

  第一步求每份:25÷5=5人

  第二步求女生:女生:5×7=35人。全班:25+35=60人

  3.比的第三種應(yīng)用:已知兩個數(shù)量的差,兩個或幾個數(shù)的比,求這兩個或這幾個數(shù)量是多少?

  例如:六年級的男生比女生多20人(或女生比男生少20人),男女生的比是7:5,男女生各有多少人?全班共有多少人?

  4.要求量=已知量×要求量份數(shù)/已知量份數(shù)

  5.比在幾何里的運用:

  (1)已知長方形的周長,長和寬的比是a:b。求長和寬、面積。

  長=周長÷2×a/(a+b)

  寬=周長÷2×b/(a+b)

  面積=長×寬

  (2)已知已知長方體的棱長和,長、寬、高的比是a:b:c,求長、寬、高、體積。

  長=周長÷4×a/(a+b+c)

  寬=周長÷4×b/(a+b+c)

  高=周長÷4×c/(a+b+c)

  體積=長×寬×高

  (3)已知三角形三個角的比是a:b:c,求三個內(nèi)角的度數(shù)。三個角分別為:

  180×a/(a+b+c)

  180×b/(a+b+c)

  180×c/(a+b+c)

  (4)已知三角形的周長,三條邊的長度比是a:b:c,求三條邊的長度。三條邊分別為:

  周長×a/(a+b+c)

  周長×b/(a+b+c)

  周長×c/(a+b+c)

  數(shù)學(xué)知識點3

  高考數(shù)學(xué)知識點:軌跡方程的求解

  符合一定條件的動點所形成的圖形,或者說,符合一定條件的點的全體所組成的集合,叫做滿足該條件的點的軌跡.

  軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性).

  【軌跡方程】就是與幾何軌跡對應(yīng)的代數(shù)描述。

  一、求動點的軌跡方程的基本步驟

  ⒈建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動點M的坐標(biāo);

 、矊懗鳇cM的集合;

  ⒊列出方程=0;

 、椿喎匠虨樽詈喰问;

 、禉z驗。

  二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點法、參數(shù)法和交軌法等。

 、敝弊g法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

 、捕x法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

 、诚嚓P(guān)點法:用動點Q的坐標(biāo)x,y表示相關(guān)點P的坐標(biāo)x0、y0,然后代入點P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法。

 、磪(shù)法:當(dāng)動點坐標(biāo)x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

 、到卉壏ǎ簩蓜忧方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

  直譯法:求動點軌跡方程的一般步驟

 、俳ㄏ怠⑦m當(dāng)?shù)淖鴺?biāo)系;

 、谠O(shè)點——設(shè)軌跡上的任一點P(x,y);

  ③列式——列出動點p所滿足的關(guān)系式;

 、艽鷵Q——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;

 、葑C明——證明所求方程即為符合條件的動點軌跡方程。

  高考數(shù)學(xué)知識點:三角函數(shù)

  三角函數(shù)。注意歸一公式、誘導(dǎo)公式的正確性

  數(shù)列題。1.證明一個數(shù)列是等差(等比)數(shù)列時,最后下結(jié)論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;2.最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時,當(dāng)n=k+1時,一定利用上n=k時的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進行適當(dāng)?shù)姆趴s,這一點是有難度的。簡潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號,得到目標(biāo)式子,下結(jié)論時一定寫上綜上:由①②得證;3.證明不等式時,有時構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單

  立體幾何題1.證明線面位置關(guān)系,一般不需要去建系,更簡單;2.求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;3.注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

  概率問題。1.搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數(shù);2.搞清是什么概率模型,套用哪個公式;3.記準均值、方差、標(biāo)準差公式;4.求概率時,正難則反(根據(jù)p1+p2+...+pn=1);5.注意計數(shù)時利用列舉、樹圖等基本方法;6.注意放回抽樣,不放回抽樣;

  高考數(shù)學(xué)知識點:數(shù)列

  數(shù)列是高中數(shù)學(xué)的重要內(nèi)容,又是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。高考對本章的考查比較全面,等差數(shù)列,等比數(shù)列的考查每年都不會遺漏。有關(guān)數(shù)列的試題經(jīng)常是綜合題,經(jīng)常把數(shù)列知識和指數(shù)函數(shù)、對數(shù)函數(shù)和不等式的知識綜合起來,試題也常把等差數(shù)列、等比數(shù)列,求極限和數(shù)學(xué)歸納法綜合在一起。

  探索性問題是高考的熱點,常在數(shù)列解答題中出現(xiàn)。本章中還蘊含著豐富的數(shù)學(xué)思想,在主觀題中著重考查函數(shù)與方程、轉(zhuǎn)化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數(shù)法等基本數(shù)學(xué)方法。

  近幾年來,高考關(guān)于數(shù)列方面的命題主要有以下三個方面;

  (1)數(shù)列本身的有關(guān)知識,其中有等差數(shù)列與等比數(shù)列的概念、性質(zhì)、通項公式及求和公式。

  (2)數(shù)列與其它知識的結(jié)合,其中有數(shù)列與函數(shù)、方程、不等式、三角、幾何的結(jié)合。

  (3)數(shù)列的應(yīng)用問題,其中主要是以增長率問題為主。試題的難度有三個層次,小題大都以基礎(chǔ)題為主,解答題大都以基礎(chǔ)題和中檔題為主,只有個別地方用數(shù)列與幾何的綜合與函數(shù)、不等式的綜合作為最后一題難度較大。

  1.在掌握等差數(shù)列、等比數(shù)列的定義、性質(zhì)、通項公式、前n項和公式的基礎(chǔ)上,系統(tǒng)掌握解等差數(shù)列與等比數(shù)列綜合題的規(guī)律,深化數(shù)學(xué)思想方法在解題實踐中的指導(dǎo)作用,靈活地運用數(shù)列知識和方法解決數(shù)學(xué)和實際生活中的有關(guān)問題;

  2.在解決綜合題和探索性問題實踐中加深對基礎(chǔ)知識、基本技能和基本數(shù)學(xué)思想方法的認識,溝通各類知識的聯(lián)系,形成更完整的知識網(wǎng)絡(luò),提高分析問題和解決問題的能力,

  進一步培養(yǎng)學(xué)生閱讀理解和創(chuàng)新能力,綜合運用數(shù)學(xué)思想方法分析問題與解決問題的能力。

  高考數(shù)學(xué)知識點:棱柱的性質(zhì)

  ①棱柱的各個側(cè)面都是平行四邊形,所有的側(cè)棱都相等,直棱柱的各個側(cè)面都是矩形,正棱柱的各個側(cè)面都是全等的矩形;

 、谂c底面平行的截面是與底面對應(yīng)邊互相平行的全等多邊形;

 、圻^棱柱不相鄰的兩條側(cè)棱的截面都是平行四邊形。

  棱柱:

  有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的多面體叫做棱柱。兩個互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的側(cè)面。兩個側(cè)面的公共邊叫做棱柱的側(cè)棱。側(cè)面與底的公共頂點叫做棱柱的頂點,不在同一個面上的兩個頂點的連線叫做棱柱的對角線,兩個底面的距離叫做棱柱的高

  高考數(shù)學(xué)知識點:垂直

 、僭谕黄矫鎯(nèi),過一點有且只有一條直線與已知直線垂直。垂直一定會出現(xiàn)90°。

  ②連接直線外一點與直線上各點的所有線段中,垂線段最短。

  簡單說成:垂線段最短。

  ③點到直線的距離:直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。

  兩條直線相交成直角時,這兩條直線互相垂直,其中一條直線是另一條直線的垂線,這兩條直線的交點叫垂足。 ——《義務(wù)教育課程標(biāo)準實驗教科書數(shù)學(xué)四年級(上冊)》

  兩條直線相交成四個角,如果有一個角是直角,那么稱這兩條直線互相垂直,其中的一條直線叫做另一條直線的垂線,它們的交點叫做垂足。——《義務(wù)教育課程實驗教科書上海版數(shù)學(xué)四年級下冊》(20xx年審定新版)

  兩條直線成直角,那么這兩條直線互相垂直。

  數(shù)學(xué)知識點4

  學(xué)好立幾并不難,空間想象是關(guān)鍵。

  點線面體是一家,共筑立幾百花園。

  點在線面用屬于,線在面內(nèi)用包含。

  四個公理是基礎(chǔ),推證演算巧周旋。

  空間之中兩條線,平行相交和異面。

  線線平行同方向,等角定理進空間。

  判定線和面平行,面中找條平行線。

  已知線與面平行,過線作面找交線。

  要證面和面平行,面中找出兩交線,

  線面平行若成立,面面平行不用看。

  已知面與面平行,線面平行是必然;

  若與三面都相交,則得兩條平行線。

  判定線和面垂直,線垂面中兩交線。

  兩線垂直同一面,相互平行共伸展。

  兩面垂直同一線,一面平行另一面。

  要讓面與面垂直,面過另面一垂線。

  面面垂直成直角,線面垂直記心間。

  一面四線定射影,找出斜射一垂線,

  線線垂直得巧證,三垂定理風(fēng)采顯。

  空間距離和夾角,平行轉(zhuǎn)化在平面,

  一找二證三構(gòu)造,三角形中求答案。

  引進向量新工具,計算證明開新篇。

  空間建系求坐標(biāo),向量運算更簡便。

  知識創(chuàng)新無止境,學(xué)問思辨勇攀登。

  多面體和旋轉(zhuǎn)體,上述內(nèi)容的延續(xù)。

  扮演載體新角色,位置關(guān)系全在里。

  算面積來求體積,基本公式是依據(jù)。

  規(guī)則形體用公式,非規(guī)形體靠化歸。

  展開分割好辦法,化難為易新天地。

  數(shù)學(xué)知識點5

  1、柱、錐、臺、球的結(jié)構(gòu)特征

  (1)棱柱:

  幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

  (2)棱錐

  幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.

  (3)棱臺:

  幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點

  (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形.

  (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形.

  (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形.

  (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑.

  2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

  俯視圖(從上向下)

  注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度.

  3、空間幾何體的直觀圖——斜二測畫法

  斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

 、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半.

  4、柱體、錐體、臺體的表面積與體積

  (1)幾何體的表面積為幾何體各個面的面積的和.

  (2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

  (3)柱體、錐體、臺體的體積公式

  2高中數(shù)學(xué)必修二知識點總結(jié):直線與方程

  (1)直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°

  (2)直線的斜率

  ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.

  當(dāng)時,;當(dāng)時,;當(dāng)時,不存在.

 、谶^兩點的直線的斜率公式:

  注意下面四點:(1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;

  (4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到.

  (3)直線方程

 、冱c斜式:直線斜率k,且過點

  注意:當(dāng)直線的斜率為0°時,k=0,直線的方程是y=y1.

  當(dāng)直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標(biāo)都等于x1,所以它的方程是x=x1.

  ②斜截式:,直線斜率為k,直線在y軸上的截距為b

 、蹆牲c式:()直線兩點,

 、芙鼐厥剑

  其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為.

  ⑤一般式:(A,B不全為0)

  注意:各式的適用范圍特殊的方程如:

  平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

  (5)直線系方程:即具有某一共同性質(zhì)的直線

  (一)平行直線系

  平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

  (二)垂直直線系

  垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

  (三)過定點的直線系

  (ⅰ)斜率為k的直線系:,直線過定點;

  (ⅱ)過兩條直線,的交點的直線系方程為

  (為參數(shù)),其中直線不在直線系中.

  (6)兩直線平行與垂直

  注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.

  (7)兩條直線的交點

  相交

  交點坐標(biāo)即方程組的一組解.

  方程組無解;方程組有無數(shù)解與重合

  (8)兩點間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個點

  (9)點到直線距離公式:一點到直線的距離

  (10)兩平行直線距離公式

  在任一直線上任取一點,再轉(zhuǎn)化為點到直線的距離進行求解.

  3高中數(shù)學(xué)必修二知識點總結(jié):圓的方程

  1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑.

  2、圓的方程

  (1)標(biāo)準方程,圓心,半徑為r;

  (2)一般方程

  當(dāng)時,方程表示圓,此時圓心為,半徑為

  當(dāng)時,表示一個點;當(dāng)時,方程不表示任何圖形.

  (3)求圓方程的方法:

  一般都采用待定系數(shù)法:先設(shè)后求.確定一個圓需要三個獨立條件,若利用圓的標(biāo)準方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置.

  高中數(shù)學(xué)必修二知識點總結(jié):直線與圓的位置關(guān)系:

  直線與圓的位置關(guān)系有相離,相切,相交三種情況:

  (1)設(shè)直線,圓,圓心到l的距離為,則有;;

  (2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設(shè)點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

  (3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

  4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

  設(shè)圓,

  兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

  當(dāng)時兩圓外離,此時有公切線四條;

  當(dāng)時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;

  當(dāng)時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

  當(dāng)時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;

  當(dāng)時,兩圓內(nèi)含;當(dāng)時,為同心圓.

  注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

  4、空間點、直線、平面的位置關(guān)系

  公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線是所有的點都在這個平面內(nèi).

  應(yīng)用:判斷直線是否在平面內(nèi)

  用符號語言表示公理1:

  公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

  符號:平面α和β相交,交線是a,記作α∩β=a.

  符號語言:

  公理2的作用:

  ①它是判定兩個平面相交的方法.

 、谒f明兩個平面的交線與兩個平面公共點之間的關(guān)系:交線必過公共點.

  ③它可以判斷點在直線上,即證若干個點共線的重要依據(jù).

  公理3:經(jīng)過不在同一條直線上的三點,有且只有一個平面.

  推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.

  公理3及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)

  公理4:平行于同一條直線的兩條直線互相平行

  4高中數(shù)學(xué)必修二知識點總結(jié):空間直線與直線之間的位置關(guān)系

 、佼惷嬷本定義:不同在任何一個平面內(nèi)的兩條直線

  ②異面直線性質(zhì):既不平行,又不相交.

 、郛惷嬷本判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線

 、墚惷嬷本所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.

  求異面直線所成角步驟:

  A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來求角

  (7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補.

  (8)空間直線與平面之間的位置關(guān)系

  直線在平面內(nèi)——有無數(shù)個公共點.

  三種位置關(guān)系的符號表示:aαa∩α=Aa‖α

  (9)平面與平面之間的位置關(guān)系:平行——沒有公共點;α‖β

  相交——有一條公共直線.α∩β=b

  5、空間中的平行問題

  (1)直線與平面平行的判定及其性質(zhì)

  線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.

  線線平行線面平行

  線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,

  那么這條直線和交線平行.線面平行線線平行

  (2)平面與平面平行的判定及其性質(zhì)

  兩個平面平行的判定定理

  (1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行

  (線面平行→面面平行),

  (2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行.

  (線線平行→面面平行),

  (3)垂直于同一條直線的兩個平面平行,

  兩個平面平行的性質(zhì)定理

  (1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行.(面面平行→線面平行)

  (2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行.(面面平行→線線平行)

  7、空間中的垂直問題

  (1)線線、面面、線面垂直的定義

 、賰蓷l異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.

  ②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直.

 、燮矫婧推矫娲怪保喝绻麅蓚平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.

  (2)垂直關(guān)系的判定和性質(zhì)定理

 、倬面垂直判定定理和性質(zhì)定理

  判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面.

  性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行.

 、诿婷娲怪钡呐卸ǘɡ砗托再|(zhì)定理

  判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直.

  性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面.

  9、空間角問題

  (1)直線與直線所成的角

  ①兩平行直線所成的角:規(guī)定為.

 、趦蓷l相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.

 、蹆蓷l異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.

  (2)直線和平面所成的角

 、倨矫娴钠叫芯與平面所成的角:規(guī)定為.②平面的垂線與平面所成的角:規(guī)定為.

 、燮矫娴男本與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角.

  求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”.

  在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點到面的垂線,

  在解題時,注意挖掘題設(shè)中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線.

  (3)二面角和二面角的平面角

 、俣娼堑亩x:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.

  ②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.

 、壑倍娼牵浩矫娼鞘侵苯堑亩娼墙兄倍娼.

  兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

 、芮蠖娼堑姆椒

  定義法:在棱上選擇有關(guān)點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角

  垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

  5高中數(shù)學(xué)必修二知識點總結(jié):解三角形

  (1)正弦定理和余弦定理

  掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題.

  (2)應(yīng)用

  能夠運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的實際問題.

  6高中數(shù)學(xué)必修二知識點總結(jié):數(shù)列

  (1)數(shù)列的概念和簡單表示法

 、倭私鈹(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項公式).

 、诹私鈹(shù)列是自變量為正整數(shù)的一類函數(shù).

  (2)等差數(shù)列、等比數(shù)列

  ①理解等差數(shù)列、等比數(shù)列的概念.

  ②掌握等差數(shù)列、等比數(shù)列的通項公式與前項和公式.

 、勰茉诰唧w的問題情境中,識別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題.

 、芰私獾炔顢(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.

  高中數(shù)學(xué)必修二知識點總結(jié):不等式

  7高中數(shù)學(xué)必修二知識點總結(jié):不等關(guān)系

  了解現(xiàn)實世界和日常生活中的不等關(guān)系,了解不等式(組)的實際背景.

  (2)一元二次不等式

  ①會從實際情境中抽象出一元二次不等式模型.

 、谕ㄟ^函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.

 、蹠庖辉尾坏仁,對給定的一元二次不等式,會設(shè)計求解的程序框圖.

  (3)二元一次不等式組與簡單線性規(guī)劃問題

  ①會從實際情境中抽象出二元一次不等式組.

 、诹私舛淮尾坏仁降膸缀我饬x,能用平面區(qū)域表示二元一次不等式組.

  ③會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.

  (4)基本不等式:

 、倭私饣静坏仁降淖C明過程.

 、跁没静坏仁浇鉀Q簡單的最大(小)值問題圓的輔助線一般為連圓心與切線或者連圓心與弦中點

  數(shù)學(xué)知識點6

  一、數(shù)學(xué)知識點:方陣問題

  1、概念和分類

  學(xué)生排隊,士兵列隊,橫著排叫做行,豎著排叫做列。如果行數(shù)與列數(shù)都相等,則正好排成一個正方形,這種圖形就叫方隊,也叫做方陣。

  方陣包括實心方陣和空心方陣。如果方陣排滿物體,叫做實心方陣;如果方陣的中間不排物體,叫做空心方陣。而實心方陣的每一層又可以單獨看成一個空心方陣,因此空心方陣的規(guī)律對它也是適用的。

  2、基本規(guī)律

  (1)方陣不論哪一層,每邊上的人(或物)數(shù)量都相同,每向里一層,每邊上的人數(shù)就少2,

  四周上的人數(shù)就少8。(可應(yīng)用等差數(shù)列相關(guān)知識進行解題)

  (2)每層總數(shù)=[每邊人(或物)數(shù)-1]×4

  每邊人(或物)數(shù)=每層總數(shù)÷4+1

  (3)實心方陣

  總?cè)?或物)數(shù)=每邊人(或物)數(shù)×每邊人(或物)數(shù)

  (4)空心方陣

  總?cè)?或物)數(shù)=(最外層每邊人(或物)數(shù)-層數(shù))×層數(shù)×4

  總?cè)?或物)數(shù)=(最外層人(或物)數(shù)+最內(nèi)層人(或物)數(shù))*層數(shù)/2

  最外層每邊數(shù)=總?cè)?或物)數(shù)÷4÷層數(shù)+層數(shù)

  二、數(shù)學(xué)知識點:雞兔同籠

  1、雞兔同籠問題的來歷

  這個問題,是我國古代著名趣題之一.大約在1500年前,《孫子算經(jīng)》中就記載了這個有趣的問題.書中是這樣敘述的:“今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數(shù),有35個頭;從下面數(shù),有94只腳.求籠中各有幾只雞和兔?

  你會解答這個問題嗎?你想知道《孫子算經(jīng)》中是如何解答這個問題的嗎?

  2、雞兔同籠的解題思路

  (1)砍足法

  解答思路是這樣的:假如砍去每只雞、每只兔一半的腳,則每只雞就變成了“獨腳雞”,每只兔就變成了“雙腳兔”.這樣,雞和兔的腳的總數(shù)就由94只變成了47只;如果籠子里有一只兔子,則腳的總數(shù)就比頭的總數(shù)多1.因此,腳的總只數(shù)47與總頭數(shù)35的差,就是兔子的只數(shù),即47-35=12(只).顯然,雞的只數(shù)就是35-12=23(只)了。

  數(shù)學(xué)知識點7

  1 分數(shù)加減法應(yīng)用題:

  分數(shù)加減法的應(yīng)用題與整數(shù)加減法的應(yīng)用題的結(jié)構(gòu)、數(shù)量關(guān)系和解題方法基本相同,所不同的只是在已知數(shù)或未知數(shù)中含有分數(shù)。

  2分數(shù)乘法應(yīng)用題:

  是指已知一個數(shù),求它的幾分之幾是多少的應(yīng)用題。

  特征:已知單位1的量和分率,求與分率所對應(yīng)的實際數(shù)量。

  解題關(guān)鍵:準確判斷單位1的量。找準要求問題所對應(yīng)的分率,然后根據(jù)一個數(shù)乘分數(shù)的意義正確列式。

  3 分數(shù)除法應(yīng)用題:

  求一個數(shù)是另一個數(shù)的幾分之幾(或百分之幾)是多少。

  特征:已知一個數(shù)和另一個數(shù),求一個數(shù)是另一個數(shù)的幾分之幾或百分之幾。一個數(shù)是比較量,另一個數(shù)是標(biāo)準量。求分率或百分率,也就是求他們的倍數(shù)關(guān)系。

  解題關(guān)鍵:從問題入手,搞清把誰看作標(biāo)準的數(shù)也就是把誰看作了單位一,誰和單位一的量作比較,誰就作被除數(shù)。

  甲是乙的幾分之幾(百分之幾):甲是比較量,乙是標(biāo)準量,用甲除以乙。

  甲比乙多(或少)幾分之幾(百分之幾):甲減乙比乙多(或少幾分之幾)或(百分之幾)。關(guān)系式(甲數(shù)減乙數(shù))/乙數(shù)或(甲數(shù)減乙數(shù))/甲數(shù) 。

  已知一個數(shù)的幾分之幾(或百分之幾 ) ,求這個數(shù)。

  特征:已知一個實際數(shù)量和它相對應(yīng)的分率,求單位1的量。

  解題關(guān)鍵:準確判斷單位1的量把單位1的量看成x根據(jù)分數(shù)乘法的意義列方程,或者根據(jù)分數(shù)除法的意義列算式,但必須找準和分率相對應(yīng)的已知實際

  數(shù)量。

  4 出勤率

  發(fā)芽率=發(fā)芽種子數(shù)/試驗種子數(shù)100%

  小麥的出粉率= 面粉的重量/小麥的重量100%

  產(chǎn)品的合格率=合格的產(chǎn)品數(shù)/產(chǎn)品總數(shù)100%

  職工的出勤率=實際出勤人數(shù)/應(yīng)出勤人數(shù)100%

  5 工程問題:

  是分數(shù)應(yīng)用題的特例,它與整數(shù)的工作問題有著密切的聯(lián)系。它是探討工作總量、工作效率和工作時間三個數(shù)量之間相互關(guān)系的一種應(yīng)用題。

  解題關(guān)鍵:把工作總量看作單位1,工作效率就是工作時間的倒數(shù),然后根據(jù)題目的具體情況,靈活運用公式。

  數(shù)量關(guān)系式:

  工作總量=工作效率工作時間

  工作效率=工作總量工作時間

  工作時間=工作總量工作效率

  工作總量工作效率和=合作時間

  6 納稅

  納稅就是把根據(jù)國家各種稅法的有關(guān)規(guī)定,按照一定的比率把集體或個人收入的一部分繳納給國家。

  繳納的稅款叫應(yīng)納稅款。

  應(yīng)納稅額與各種收入的(銷售額、營業(yè)額、應(yīng)納稅所得額 )的比率叫做稅率。

  * 利息

  存入銀行的錢叫做本金。

  取款時銀行多支付的錢叫做利息。

  利息與本金的比值叫做利率。

  利息=本金利率時間

  --

  第二章 度量衡

  一 長度

  (一) 什么是長度

  長度是一維空間的度量。

  (二) 長度常用單位

  * 公里(km) * 米(m) * 分米(dm) * 厘米(cm) * 毫米(mm) * 微米(um)

  (三) 單位之間的換算

  * 1毫米 =1000微米 * 1厘米 =10 毫米 * 1分米 =10 厘米 * 1米 =1000 毫米 * 1千米 =1000 米

  二 面積

  (一)什么是面積

  面積,就是物體所占平面的大小。對立體物體的表面的多少的測量一般稱表面積。

  (二)常用的面積單位

  * 平方毫米 * 平方厘米 * 平方分米 * 平方米 * 平方千米

  (三)面積單位的換算

  * 1平方厘米 =100 平方毫米 * 1平方分米=100平方厘米 * 1平方米 =100 平方分米

  * 1公傾 =10000 平方米 * 1平方公里 =100 公頃

  三 體積和容積

  (一)什么是體積、容積

  體積,就是物體所占空間的大小。

  容積,箱子、油桶、倉庫等所能容納物體的體積,通常叫做它們的容積。

  (二)常用單位

  1 體積單位

  * 立方米 * 立方分米 * 立方厘米

  2 容積單位 * 升 * 毫升

  (三)單位換算

  1 體積單位

  * 1立方米=1000立方分米

  * 1立方分米=1000立方厘米

  2 容積單位

  * 1升=1000毫升

  * 1升=1立方米

  * 1毫升=1立方厘米

  四 質(zhì)量

  (一)什么是質(zhì)量

  質(zhì)量,就是表示表示物體有多重。

  (二)常用單位

  * 噸 t * 千克 kg * 克 g

  (三)常用換算

  * 一噸=1000千克

  * 1千克=1000克

  五 時間

  (一)什么是時間

  是指有起點和終點的一段時間

  (二)常用單位

  世紀、 年 、 月 、 日 、 時 、 分、 秒

  (三)單位換算

  * 1世紀=100年

  * 1年=365天 平年

  * 一年=366天 閏年

  * 一、三、五、七、八、十、十二是大月 大月有31 天

  * 四、六、九、十一是小月小月 小月有30天

  * 平年2月有28天 閏年2月有29天

  * 1天= 24小時

  * 1小時=60分

  * 一分=60秒

  六 貨幣

  (一)什么是貨幣

  貨幣是充當(dāng)一切商品的等價物的特殊商品。貨幣是價值的一般代表,可以購買任何別的商品。

  (二)常用單位

  * 元 * 角 * 分

  (三)單位換算

  * 1元=10角

  * 1角=10分

  -

  第三章 代數(shù)初步知識

  一、用字母表示數(shù)

  1 用字母表示數(shù)的意義和作用

  * 用字母表示數(shù),可以把數(shù)量關(guān)系簡明的表達出來,同時也可以表示運算的結(jié)果。

  2用字母表示常見的數(shù)量關(guān)系、運算定律和性質(zhì)、幾何形體的計算公式

  (1)常見的數(shù)量關(guān)系

  路程用s表示,速度v用表示,時間用t表示,三者之間的關(guān)系:

  s=vt

  v=s/t

  t=s/v

  總價用a表示,單價用b表示,數(shù)量用c表示,三者之間的關(guān)系:

  a=bc

  b=a/c

  c=a/b

  (2)運算定律和性質(zhì)

  加法交換律:a+b=b+a

  加法結(jié)合律:(a+b)+c=a+(b+c)

  乘法交換律:ab=ba

  乘法結(jié)合律:(ab)c=a(bc)

  乘法分配律:(a+b)c=ac+bc

  減法的性質(zhì):a-(b+c) =a-b-c

  (3)用字母表示幾何形體的公式

  長方形的長用a表示,寬用b表示,周長用c表示,面積用s表示。

  c=2(a+b)

  s=ab

  正方形的邊長a用表示,周長用c表示,面積用s表示。

  c=4a

  s=a

  平行四邊形的底a用表示,高用h表示,面積用s表示。

  s=ah

  三角形的底用a表示,高用h表示,面積用s表示。

  s=ah/2

  梯形的上底用a表示,下底b用表示,高用h表示,中位線用m表示,面積用s表示。

  s=(a+b)h/2

  s=mh

  圓的半徑用r表示,直徑用d表示,周長用c表示,面積用s表示。

  c=d=2r

  s= r

  扇形的半徑用r表示,n表示圓心角的度數(shù),面積用s表示。

  s= nr/360

  長方體的長用a表示,寬用b表示,高用h表示,表面積用s表示,體積用v表示。

  v=sh

  s=2(ab+ah+bh)

  v=abh

  正方體的棱長用a表示,底面周長c用表示,底面積用s表示, 體積用v表示.

  s=6a

  v=a

  圓柱的高用h表示,底面周長用c表示,底面積用s表示, 體積用v表示.

  s側(cè)=ch

  s表=s側(cè)+2s底

  v=sh

  圓錐的高用h表示,底面積用s表示, 體積用v表示.

  v=sh/3

  3 用字母表示數(shù)的寫法

  數(shù)字和字母、字母和字母相乘時,乘號可以記作.,或者省略不寫,數(shù)字要寫在字母的前面。

  當(dāng)1與任何字母相乘時,1省略不寫。

  在一個問題中,同一個字母表示同一個量,不同的量用不同的字母表示。

  用含有字母的式子表示問題的答案時,除數(shù)一般寫成分母,如果式子中有加號或者減號,要先用括號把含字母的式子括起來,再在括號后面寫上單位的名稱。

  4將數(shù)值代入式子求值

  * 把具體的數(shù)代入式子求值時,要注意書寫格式:先寫出字母等于幾,然后寫出原式,再把數(shù)代入式子求值。字母表示的是數(shù),后面不寫單位名稱。

  * 同一個式子,式子中所含字母取不同的數(shù)值,那么所求出的式子的值也不相同。

  二、簡易方程

  (一)方程和方程的解

  1方程:含有未知數(shù)的等式叫做方程。

  注意方程是等式,又含有未知數(shù),兩者缺一不可。

  方程和算術(shù)式不同。算術(shù)式是一個式子,它由運算符號和已知數(shù)組成,它表示未知數(shù)。方程是一個等式,在方程里的未知數(shù)可以參加運算,并且只有當(dāng)未知數(shù)為特定的數(shù)值時 ,方程才成立 。

  2 方程的解:使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。

  三、解方程

  解方程,求方程的解的過程叫做解方程。

  四、列方程解應(yīng)用題

  1 列方程解應(yīng)用題的意義

  * 用方程式去解答應(yīng)用題求得應(yīng)用題的未知量的方法。

  2 列方程解答應(yīng)用題的步驟

  * 弄清題意,確定未知數(shù)并用x表示;

  * 找出題中的數(shù)量之間的相等關(guān)系;

  * 列方程,解方程;

  * 檢查或驗算,寫出答案。

  3列方程解應(yīng)用題的方法

  * 綜合法:先把應(yīng)用題中已知數(shù)(量)和所設(shè)未知數(shù)(量)列成有關(guān)的代數(shù)式,再找出它們之間的等量關(guān)系,進而列出方程。這是從部分到整體的一種 思維過程,其思考方向是從已知到未知。

  * 分析法:先找出等量關(guān)系,再根據(jù)具體建立等量關(guān)系的需要,把應(yīng)用題中已知數(shù)(量)和所設(shè)的未知數(shù)(量)列成有關(guān)的代數(shù)式進而列出方程。這是從整體到部分的一種思維過程,其思考方向是從未知到已知。

  4列方程解應(yīng)用題的范圍

  小學(xué)范圍內(nèi)常用方程解的應(yīng)用題:

  a一般應(yīng)用題;

  b和倍、差倍問題;

  c幾何形體的周長、面積、體積計算;

  d 分數(shù)、百分數(shù)應(yīng)用題;

  e 比和比例應(yīng)用題。

  五 比和比例

  1比的意義和性質(zhì)

  (1) 比的意義

  兩個數(shù)相除又叫做兩個數(shù)的比。

 。菏潜忍,讀作比。比號前面的數(shù)叫做比的前項,比號后面的數(shù)叫做比的后項。比的前項除以后項所得的商,叫做比值。

  同除法比較,比的前項相當(dāng)于被除數(shù),后項相當(dāng)于除數(shù),比值相當(dāng)于商。

  比值通常用分數(shù)表示,也可以用小數(shù)表示,有時也可能是整數(shù)。

  比的后項不能是零。

  根據(jù)分數(shù)與除法的關(guān)系,可知比的前項相當(dāng)于分子,后項相當(dāng)于分母,比值相當(dāng)于分數(shù)值。

  (2)比的性質(zhì)

  比的前項和后項同時乘上或者除以相同的數(shù)(0除外),比值不變,這叫做比的基本性質(zhì)。

  (3) 求比值和化簡比

  求比值的方法:用比的前項除以后項,它的結(jié)果是一個數(shù)值可以是整數(shù),也可以是小數(shù)或分數(shù)。

  根據(jù)比的基本性質(zhì)可以把比化成最簡單的整數(shù)比。它的結(jié)果必須是一個最簡比,即前、后項是互質(zhì)的數(shù)。

  (4)比例尺

  圖上距離:實際距離=比例尺

  要求會求比例尺;已知圖上距離和比例尺求實際距離;已知實際距離和比例尺求圖上距離。

  線段比例尺:在圖上附有一條注有數(shù)目的線段,用來表示和地面上相對應(yīng)的實際距離。

  (5)按比例分配

  在農(nóng)業(yè)生產(chǎn)和日常生活中,常常需要把一個數(shù)量按照一定的比來進行分配。這種分配的方法通常叫做按比例分配。

  方法:首先求出各部分占總量的幾分之幾,然后求出總數(shù)的幾分之幾是多少。

  2 比例的意義和性質(zhì)

  (1) 比例的意義

  表示兩個比相等的式子叫做比例。

  組成比例的四個數(shù),叫做比例的項。

  兩端的兩項叫做外項,中間的兩項叫做內(nèi)項。

  (2)比例的性質(zhì)

  在比例里,兩個外項的積等于兩個兩個內(nèi)向的積。這叫做比例的基本性質(zhì)。

  (3)解比例

  根據(jù)比例的基本性質(zhì),如果已知比例中的任何三項,就可以求出這個數(shù)比例中的另外一個未知項。求比例中的未知項,叫做解比例。

  3 正比例和反比例

  (1) 成正比例的量

  兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關(guān)系叫做正比例關(guān)系。

  用字母表示y/x=k(一定)

  (2)成反比例的量

  兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,他們的關(guān)系叫做反比例關(guān)系。

  用字母表示xy=k(一定)

  數(shù)學(xué)知識點8

  數(shù)學(xué)知識點9

  加法交換律 a+b=b+a

  結(jié)合律 (a+b)+c=a+(b+c)

  減法性質(zhì) a-b-c=a-(b+c)

  a-(b-c)=a-b+c

  乘法交換律 a×b=b×a

  結(jié)合律 (a×b)×c=a×(b×c)

  分配律 (a+b)×c=a×c+b×c

  除法性質(zhì) a÷(b×c)=a÷b÷c

  a÷(b÷c)=a÷b×c

  (a+b)÷c=a÷c+b÷c

  (a-b)÷c=a÷c-b÷c

  商不變性質(zhì)m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)

  ■積的變化規(guī)律:在乘法中,一個因數(shù)不變,另一個因數(shù)擴大(或縮小)若干倍,積也擴大(或縮小)相同的倍數(shù).

  推廣:一個因數(shù)擴大A倍,另一個因數(shù)擴大B倍,積擴大AB倍.

  一個因數(shù)縮小A倍,另一個因數(shù)縮小B倍,積縮小AB倍.

  ■商不變規(guī)律:在除法中,被除數(shù)和除數(shù)同時擴大(或縮小)相同的倍數(shù),商不變.

  推廣:被除數(shù)擴大(或縮小)A倍,除數(shù)不變,商也擴大(或縮小)A倍.

  被除數(shù)不變,除數(shù)擴大(或縮小)A倍,商反而縮小(或擴大)A倍.

  ■利用積的變化規(guī)律和商不變規(guī)律性質(zhì)可以使一些計算簡便.但在有余數(shù)的除法中要注意余數(shù).

  如:8500÷200= 可以把被除數(shù)、除數(shù)同時縮小100倍來除,即85÷2= ,商不變,但此時的余數(shù)1是被縮小100被后的.,所以還原成原來的余數(shù)應(yīng)該是100.

  數(shù)學(xué)知識點10

  ■用字母表示數(shù)

  用字母表示數(shù)是代數(shù)的基本特點.既簡單明了,又能表達數(shù)量關(guān)系的一般規(guī)律.

  ■用字母表示數(shù)的注意事項

  1、數(shù)字與字母、字母和字母相乘時,乘號可以簡寫成““或省略不寫.數(shù)與數(shù)相乘,乘號不能省略.

  2、當(dāng)1和任何字母相乘時,“ 1” 省略不寫.

  3、數(shù)字和字母相乘時,將數(shù)字寫在字母前面.

  ■含有字母的式子及求值

  求含有字母的式子的值或利用公式求值,應(yīng)注意書寫格式

  ■等式與方程

  表示相等關(guān)系的式子叫等式.

  含有未知數(shù)的等式叫方程.

  判斷一個式子是不是方程應(yīng)具備兩個條件:一是含有未知數(shù);二是等式.所以,方程一定是等式,但等式不一定是方程.

  ■方程的解和解方程

  使方程左右兩邊相等的未知數(shù)的值,叫方程的解.

  求方程的解的過程叫解方程.

  ■在列方程解文字題時,如果題中要求的未知數(shù)已經(jīng)用字母表示,解答時就不需要寫設(shè),否則首先演將所求的未知數(shù)設(shè)為x.

  ■解方程的方法

  1、直接運用四則運算中各部分之間的關(guān)系去解.如x-8=12

  加數(shù)+加數(shù)=和 一個加數(shù)=和-另一個加數(shù)

  被減數(shù)-減數(shù)=差 減數(shù)=被減數(shù)-差 被減數(shù)=差+減數(shù)

  被乘數(shù)×乘數(shù)=積 一個因數(shù)=積÷另一個因數(shù)

  被除數(shù)÷除數(shù)=商 除數(shù)=被除數(shù)÷商 被除數(shù)=除數(shù)×商

  2、先把含有未知數(shù)x的項看作一個數(shù),然后再解.如3x+20=41

  先把3x看作一個數(shù),然后再解.

  3、按四則運算順序先計算,使方程變形,然后再解.如2.5×4-x=4.2,

  要先求出2.5×4的積,使方程變形為10-x=4.2,然后再解.

  4、利用運算定律或性質(zhì),使方程變形,然后再解.如:2.2x+7.8x=20

  先利用運算定律或性質(zhì)使方程變形為(2.2+7.8)x=20,然后計算括號里面使方程變形為10x=20,最后再解.

  數(shù)學(xué)知識點11

  ■比和比例應(yīng)用題

  在工業(yè)生產(chǎn)和日常生活中,常常要把一個數(shù)量按照一定的比例來進行分配,這種分配方法通常叫“按比例分配”.

  ■解題策略

  按比例分配的有關(guān)習(xí)題,在解答時,要善于找準分配的總量和分配的比,然后把分配的比轉(zhuǎn)化成分數(shù)或份數(shù)來進行解答

  ■正、反比例應(yīng)用題的解題策略

  1、審題,找出題中相關(guān)聯(lián)的兩個量

  2、分析,判斷題中相關(guān)聯(lián)的兩個量是成正比例關(guān)系還是成反比例關(guān)系.

  3、設(shè)未知數(shù),列比例式

  4、解比例式

  5、檢驗,寫答語

  數(shù)學(xué)知識點12

  1.對于函數(shù)f(x),如果對于定義域內(nèi)任意一個x,都有f(-x)=-f(x),那么f(x)為奇函數(shù);

  2.對于函數(shù)f(x),如果對于定義域內(nèi)任意一個x,都有f(-x)=f(x),那么f(x)為偶函數(shù);

  3.一般地,對于函數(shù)y=f(x),定義域內(nèi)每一個自變量x,都有f(a+x)=2b-f(a-x),則y=f(x)的圖象關(guān)于點(a,b)成中心對稱;

  4.一般地,對于函數(shù)y=f(x),定義域內(nèi)每一個自變量x都有f(a+x)=f(a-x),則它的圖象關(guān)于x=a成軸對稱。

  5.函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);

  6.由函數(shù)奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內(nèi)的任意一個x,則-x也一定是定義域內(nèi)的一個自變量(即定義域關(guān)于原點對稱).

  一、充分條件和必要條件

  當(dāng)命題“若A則B”為真時,A稱為B的充分條件,B稱為A的必要條件。

  二、充分條件、必要條件的常用判斷法

  1.定義法:判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫出箭頭示意圖,再利用定義判斷即可

  2.轉(zhuǎn)換法:當(dāng)所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷。

  3.集合法

  在命題的條件和結(jié)論間的關(guān)系判斷有困難時,可從集合的角度考慮,記條件p、q對應(yīng)的集合分別為A、B,則:

  三、知識擴展

  1.四種命題反映出命題之間的內(nèi)在聯(lián)系,要注意結(jié)合實際問題,理解其關(guān)系(尤其是兩種等價關(guān)系)的產(chǎn)生過程,關(guān)于逆命題、否命題與逆否命題,也可以敘述為:

  (1)交換命題的條件和結(jié)論,所得的新命題就是原來命題的逆命題;

  (2)同時否定命題的條件和結(jié)論,所得的新命題就是原來的否命題;

  (3)交換命題的條件和結(jié)論,并且同時否定,所得的新命題就是原命題的逆否命題。

  2.由于“充分條件與必要條件”是四種命題的關(guān)系的深化,他們之間存在這密切的聯(lián)系,故在判斷命題的條件的充要性時,可考慮“正難則反”的原則,即在正面判斷較難時,可轉(zhuǎn)化為應(yīng)用該命題的逆否命題進行判斷。

  一個結(jié)論成立的充分條件可以不止一個,必要條件也可以不止一個。

  高考數(shù)學(xué)知識點

  第一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。

  主要是考函數(shù)和導(dǎo)數(shù),這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。

  第二、平面向量和三角函數(shù)。

  重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。

  第三、數(shù)列。

  數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。

  第四、空間向量和立體幾何,在里面重點考察兩個方面:一個是證明;一個是計算。

  第五、概率和統(tǒng)計。

  這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,當(dāng)然應(yīng)該掌握下面幾個方面,第一……等可能的概率,第二………事件,第三是獨立事件,還有獨立重復(fù)事件發(fā)生的概率。

  第六、解析幾何。

  這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量的題,當(dāng)然這一類題,我總結(jié)下面五類?嫉念}型,包括:

  第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容。考生應(yīng)該掌握它的通法;

  第二類我們所講的動點問題;

  第三類是弦長問題;

  第四類是對稱問題,這也是20xx年高考已經(jīng)考過的一點;

  第五類重點問題,這類題時往往覺得有思路,但是沒有答案,

  當(dāng)然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準確度,這是我們所講的第六大板塊。

  第七、押軸題。

  考生在備考復(fù)習(xí)時,應(yīng)該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。

  高考數(shù)學(xué)復(fù)習(xí)重點總結(jié)

  第一,高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)

  主要是考函數(shù)和導(dǎo)數(shù),這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。

  第二,平面向量和三角函數(shù)

  重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。

  第三,數(shù)列

  數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。

  第四,空間向量和立體幾何

  在里面重點考察兩個方面:一個是證明;一個是計算。

  第五,概率和統(tǒng)計

  這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,當(dāng)然應(yīng)該掌握下面幾個方面,第一……等可能的概率,第二………事件,第三是獨立事件,還有獨立重復(fù)事件發(fā)生的概率。

  第六,解析幾何

  這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量的題,當(dāng)然這一類題,我總結(jié)下面五類?嫉念}型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容?忌鷳(yīng)該掌握它的通法,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是20xx年高考已經(jīng)考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當(dāng)然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準確度,這是我們所講的第六大板塊。

  第七,押軸題

  考生在備考復(fù)習(xí)時,應(yīng)該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。

  數(shù)學(xué)知識點13

  指數(shù)函數(shù)

  (1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

  (2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。

  (3)函數(shù)圖形都是下凹的。

  (4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

  (5)可以看到一個顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

  (6)函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。

  (7)函數(shù)總是通過(0,1)這點。

  (8)顯然指數(shù)函數(shù)。

  反比例函數(shù)

  形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

  自變量x的取值范圍是不等于0的一切實數(shù)。

  反比例函數(shù)圖像性質(zhì):

  反比例函數(shù)的圖像為雙曲線。

  由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點對稱。

  另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標(biāo)軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

  k分別為正和負(2和-2)時的函數(shù)圖像。

  當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

  當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

  反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

  知識點:

  1.過反比例函數(shù)圖象上任意一點作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。

  2.對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

  數(shù)學(xué)知識點14

  一、數(shù)與數(shù)字的區(qū)別

  數(shù)字(也就是數(shù)碼),是用來記數(shù)的符號,通常用國際通用的阿拉伯?dāng)?shù)字 0~9這十個數(shù)字。其他還有中國小寫數(shù)字,大寫數(shù)字,羅馬數(shù)字等等。

  數(shù)是由數(shù)字和數(shù)位組成。

  1.0的意義:0既可以表示“沒有”,也可以作為某些數(shù)量的界限。如溫度等。0是一個完全有確定意義的數(shù)。0是最小的自然數(shù),是一個偶數(shù)。00是最小的自然數(shù),是一個偶數(shù)。是任何自然數(shù)(0除外)的倍數(shù)。0不能作除數(shù)。

  2.自然數(shù):用來表示物體個數(shù)的0、1、2、3、4、5、6、7、8、9、10……叫做自然數(shù)。簡單說就是大于等于零的整數(shù)。

  3.整數(shù): 自然數(shù)都是整數(shù),整數(shù)不都是自然數(shù)。

  4.小數(shù):小數(shù)是特殊形式的分數(shù),所有分數(shù)都可以表示成小數(shù),小數(shù)中的圓點叫做小數(shù)點。但是不能說小數(shù)就是分數(shù)。

  5.混小數(shù)(帶小數(shù)):小數(shù)的整數(shù)部分不為零的小數(shù)叫混小數(shù),也叫帶小數(shù)。

  5.純小數(shù):小數(shù)的整數(shù)部分為零的小數(shù),叫做純小數(shù)。

  7.有限小數(shù):小數(shù)的小數(shù)部分只有有限個數(shù)字的小數(shù)(不全為零)叫做有限小數(shù)。

  8.無限小數(shù):小數(shù)的小數(shù)部分有無數(shù)個數(shù)字(不包含全為零)的小數(shù),叫做無限小數(shù)。循環(huán)小數(shù)都是無限小數(shù),無限小數(shù)不一定都是循環(huán)小數(shù)。例如,圓周率π也是無限小數(shù)。

  9.循環(huán)小數(shù):小數(shù)部分一個數(shù)字或幾個數(shù)字依次不斷地重復(fù)出現(xiàn),這樣的小數(shù)叫做循環(huán)小數(shù)。例如:0.333……,1.2470470470……都是循環(huán)小數(shù)。

  10.純循環(huán)小數(shù):循環(huán)節(jié)從十分位就開始的循環(huán)小數(shù),叫做純循環(huán)小數(shù)。

  11.混循環(huán)小數(shù):與純循環(huán)小數(shù)有唯一的區(qū)別,不是從十分位開始循環(huán)的循環(huán)小數(shù),叫混循環(huán)小數(shù)。

  12.無限不循環(huán)小數(shù):一個小數(shù),從小數(shù)部分起到無限位數(shù),沒有一個數(shù)字或幾個數(shù)字依次不斷的重復(fù)出現(xiàn),這樣的小數(shù)叫做無限不循環(huán)小數(shù)。

  二、分數(shù)

  表示把 “單位1”平均分成若干份,取其中的一份或幾份的數(shù),叫做分數(shù)。

  數(shù)學(xué)知識點15

  一、數(shù)學(xué)知識點:分數(shù)應(yīng)用題

  1、知識點概述

  分數(shù)應(yīng)用題是研究數(shù)量之間份數(shù)關(guān)系的典型應(yīng)用題,包括三種類型:求一個數(shù)是另一個數(shù)的幾分之幾;求一個數(shù)的幾分之幾是多少;已知一個數(shù)的幾分之幾是多少,求這個數(shù)。

  分數(shù)應(yīng)用題一方面是在整數(shù)應(yīng)用題上的延續(xù)和深化,另一方面,它有其自身的特點和解題規(guī)律.在解這類問題時,分析中數(shù)量之間的關(guān)系,準確找出“量”與“率”之間的對應(yīng)是解題的關(guān)鍵.

  2、關(guān)鍵:分數(shù)應(yīng)用題經(jīng)常要涉及到兩個或兩個以上的量,我們往往把其中的一個量看作是標(biāo)準量.也稱為:單位“1”,例如a是b的幾分之幾,就把數(shù)b看作單位“1”.在幾個量中,弄清哪一個是單位“1”很重要,否則容易出錯誤.而百分數(shù)應(yīng)用題中所涉及的百分數(shù),只是分母是100的分數(shù),因而計算的方法和分數(shù)應(yīng)用題是一樣的,關(guān)鍵也是要找準單位“1”和對應(yīng)的百分率,以及對應(yīng)量三者的關(guān)系。

  3、怎樣找準分數(shù)應(yīng)用題中單位“1”

  (1)部分數(shù)和總數(shù)

  在同一整體中,部分數(shù)和總數(shù)作比較關(guān)系時,部分數(shù)通常作為比較量,而總數(shù)則作為標(biāo)準量,那么總數(shù)就是單位“1”。

  例如:我國人口約占世界人口的幾分之幾?——世界人口是總數(shù),我國人口是部分數(shù),世界人口就是單位“1”。

  解答題關(guān)鍵:只要找準總數(shù)和部分數(shù),確定單位“1”就很容易了。

  (2)兩種數(shù)量比較

  分數(shù)應(yīng)用題中,兩種數(shù)量相比的關(guān)鍵句非常多。有的是“比”字句,有的則沒有“比”字,而是帶有指向性特征的“占”、“是”、“相當(dāng)于”。在含有“比”字的關(guān)鍵句中,比后面的那個數(shù)量通常就作為標(biāo)準量,也就是單位“1”。

  例如:六(2)班男生比女生多——就是以女生人數(shù)為標(biāo)準(單位“1”),

  解題關(guān)鍵:在另外一種沒有比字的兩種量相比的時候,我們通常找到分率,看“占”誰的,“相當(dāng)于”誰的,“是”誰的幾分之幾。這個“占”,“相當(dāng)于”,“是”后面的數(shù)量——誰就是單位“!”。

  數(shù)學(xué)知識點16

  兩個復(fù)數(shù)相等的定義:

  如果兩個復(fù)數(shù)的實部和虛部分別相等,那么我們就說這兩個復(fù)數(shù)相等,即:如果a,b,c,d∈R,那么a+bi=c+di

  a=c,b=d。特殊地,a,b∈R時,a+bi=0

  a=0,b=0.

  復(fù)數(shù)相等的充要條件,提供了將復(fù)數(shù)問題化歸為實數(shù)問題解決的途徑。

  復(fù)數(shù)相等特別提醒:

  一般地,兩個復(fù)數(shù)只能說相等或不相等,而不能比較大小。如果兩個復(fù)數(shù)都是實數(shù),就可以比較大小,也只有當(dāng)兩個復(fù)數(shù)全是實數(shù)時才能比較大小。

  解復(fù)數(shù)相等問題的方法步驟:

  (1)把給的復(fù)數(shù)化成復(fù)數(shù)的標(biāo)準形式;

  (2)根據(jù)復(fù)數(shù)相等的充要條件解之。

  數(shù)學(xué)知識點17

  一、十位加、減十位,個位加、減個位。

  1、不進位的加法20+30=5067+2=6968+30=98

  2、不退位的減法80—50=3069—2=6798—30=68

  二、進位加法(湊十法)

  1、湊十歌:一湊九,二湊八,三湊七來四湊六,五五相湊就滿十。(注:湊十的兩個數(shù)互為補數(shù))

  2、20以內(nèi)進位加:湊十法:8+72=15十位加1,個位減補數(shù)(2+8=10,2是8的補數(shù))

  3、100以內(nèi)進位加362+8=44提煉方法:個位用弧線連上,十位加1,個位減補數(shù)。(方法和20以內(nèi)一樣)

  三、退位減法

  1、20以內(nèi)退位減:破十法:161—9=7個位加補數(shù)

  2、100以內(nèi)退位減:361—9=27提煉方法:個位用弧線連上,十位減1,個位加補數(shù)

  學(xué)前準備

  口算。(電腦出示。學(xué)生開火車練)

  11—3= 13—8= 17—9= 14—5=

  15—7= 12—3= 16—8= 13—7=

  師談話:上節(jié)課我們學(xué)習(xí)了什么知識?我們來做幾道題,并說說你是怎么想的?

  38—6= 87—3= 96—6=

  師談話:把它們改為38—9=、87—8=、96—8=,你會算嗎?仔細觀察你發(fā)現(xiàn)了什么?

  同學(xué)們發(fā)現(xiàn)兩位數(shù)個位上的數(shù)都比減數(shù)小,如果直接減,夠不夠減?(不夠減)那這三道題怎么計算呢?(退位),這節(jié)課我們一起研究兩位數(shù)減一位數(shù)的退位減法。

  板書課題:兩位數(shù)減一位數(shù)退位減法

  數(shù)學(xué)知識點18

  一、立體幾何初步

  (1)棱柱:

  定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱

  幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點字母,如五棱錐

  幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

  (3)棱臺:

  定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準分為三棱態(tài)、四棱臺、五棱臺等

  表示:用各頂點字母,如五棱臺

  幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點

  (4)圓柱:

  定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。

  (5)圓錐:

  定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體

  幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。

  (6)圓臺:

  定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

  幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。

  (7)球體:

  定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

  二、向量的向量積

  定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按這個次序構(gòu)成右手系。若a、b共線,則a×b=0。

  向量的向量積性質(zhì):

  ∣a×b∣是以a和b為邊的平行四邊形面積。

  a×a=0。

  a‖b〈=〉a×b=0。

  三、向量的向量積運算律

  a×b=-b×a;

  (λa)×b=λ(a×b)=a×(λb);

  (a+b)×c=a×c+b×c.

  注:向量沒有除法,“向量AB/向量CD”是沒有意義的。

  四、必修四數(shù)學(xué)學(xué)習(xí)方法

  數(shù)學(xué)不是靠老師教會的,而是在老師的引導(dǎo)下,靠自己主動的思維活動去獲取的。學(xué)習(xí)數(shù)學(xué)一定要講究“活”,只看書不做題不行,只埋頭做題不總結(jié)積累也不行。記數(shù)學(xué)筆記,特別是對概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。

  要建立數(shù)學(xué)糾錯本。把平時容易出現(xiàn)錯誤的知識或推理記載下來,以防再 犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。

  五、必修四數(shù)學(xué)學(xué)習(xí)技巧

  首先:課前復(fù)習(xí)。就是上課前花兩三分鐘把書本本節(jié)課要學(xué)的內(nèi)容看一遍。僅僅是看一遍,過一遍。這樣上課老師講自己不但可以跟上老師節(jié)奏還可以再次鞏固。其余不要干其他多余的事。

  其次:上課時候一定要專心聽講,如果覺得老師這里講得都懂了的話可以自己翻書看后面的內(nèi)容。做習(xí)題的時候一定要一道一道往過做,不要越題做。因為對于課本來說這些都是基礎(chǔ),只有基礎(chǔ)完全掌握后才能做難題。上課過程中第一次接觸到的知識點概念等,一定一定要當(dāng)堂背過。不然以后很難背過,不要妄想考前抱佛教再背

  另外要把筆記記準確,知道自己需要記什么不需要記什么,憋一個勁地往書上搬。字不要求整齊,自己能看懂就行。課本資料書上有例題,多看多記方法。先看課本基礎(chǔ),在看資料書上著重的。例題的方法一定一定要理解,不要去背!接著下課再看筆記,只是略微鞏固記住。

【數(shù)學(xué)知識點】相關(guān)文章:

數(shù)學(xué)高考知識點11-23

數(shù)學(xué)向量知識點11-17

數(shù)學(xué)必考知識點09-13

數(shù)學(xué)中考知識點02-17

數(shù)學(xué)高考必考知識點02-19

高考數(shù)學(xué)三知識點11-24

高考數(shù)學(xué)必考知識點11-21

高考數(shù)學(xué)復(fù)習(xí)知識點08-24

高考數(shù)學(xué)必備知識點08-24