數(shù)學必修四第二章公式知識點
在平時的學習中,大家對知識點應該都不陌生吧?知識點是指某個模塊知識的重點、核心內(nèi)容、關鍵部分。為了幫助大家掌握重要知識點,以下是小編整理的數(shù)學必修四第二章公式知識點,歡迎閱讀,希望大家能夠喜歡。
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結(jié)合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0
AB-AC=CB. 即“共同起點,指向被減”
a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').
3、數(shù)乘向量
實數(shù)λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣?∣a∣。
當λ>0時,λa與a同方向;
當λ<0時,λa與a反方向;
當λ=0時,λa=0,方向任意。
當a=0時,對于任意實數(shù)λ,都有λa=0。
注:按定義知,如果λa=0,那么λ=0或a=0。
實數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
數(shù)與向量的乘法滿足下面的運算律
結(jié)合律:(λa)?b=λ(a?b)=(a?λb)。
向量對于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.
數(shù)對于向量的分配律(第二分配律):λ(a+b)=λa+λb.
數(shù)乘向量的消去律:① 如果實數(shù)λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
4、向量的的數(shù)量積
定義:已知兩個非零向量a,b.作OA=a,OB=b,則角AOB稱作向量a和向量b的夾角,記作〈a,b〉并規(guī)定0≤〈a,b〉≤π
定義:兩個向量的數(shù)量積(內(nèi)積、點積)是一個數(shù)量,記作a?b.若a、b不共線,則a?b=|a|?|b|?cos〈a,b〉;若a、b共線,則a?b=+-∣a∣∣b∣.
向量的數(shù)量積的坐標表示:a?b=x?x'+y?y'.
向量的數(shù)量積的運算律
a?b=b?a(交換律);
(λa)?b=λ(a?b)(關于數(shù)乘法的結(jié)合律);
(a+b)?c=a?c+b?c(分配律);
向量的數(shù)量積的`性質(zhì)
a?a=|a|的平方.
a⊥b 〈=〉a?b=0.
|a?b|≤|a|?|b|.
向量的數(shù)量積與實數(shù)運算的主要不同點
1、向量的數(shù)量積不滿足結(jié)合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2.
2、向量的數(shù)量積不滿足消去律,即:由 a?b=a?c (a≠0),推不出 b=c.
3、|a?b|≠|(zhì)a|?|b|
4、由 |a|=|b| ,推不出 a=b或a=-b.
5、向量的向量積
定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作axb.若a、b不共線,則axb的模是:∣axb∣=|a|?|b|?sin〈a,b〉;axb的方向是:垂直于a和b,且a、b和axb按這個次序構(gòu)成右手系.若a、b共線,則axb=0.
向量的向量積性質(zhì):
∣axb∣是以a和b為邊的平行四邊形面積.
axa=0.
a‖b〈=〉axb=0.
向量的向量積運算律
axb=-bxa;
(λa)xb=λ(axb)=ax(λb);
(a+b)xc=axc+bxc.
注:向量沒有除法,“向量AB/向量CD”是沒有意義的
6、向量的三角形不等式
1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
、 當且僅當a、b反向時,左邊取等號;
② 當且僅當a、b同向時,右邊取等號.
2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.
① 當且僅當a、b同向時,左邊取等號;
② 當且僅當a、b反向時,右邊取等號.
7、定比分點
定比分點公式(向量P1P=λ?向量PP2)
設P1、P2是直線上的兩點,P是l上不同于P1、P2的任意一點.則存在一個實數(shù) λ,使 向量P1P=λ?向量PP2,λ叫做點P分有向線段P1P2所成的比.
若P1(x1,y1),P2(x2,y2),P(x,y),則有
OP=(OP1+λOP2)(1+λ);(定比分點向量公式)
x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ).(定比分點坐標公式)
我們把上面的式子叫做有向線段P1P2的定比分點公式
8、三點共線定理
若OC=λOA+μOB,且λ+μ=1 ,則A、B、C三點共線
三角形重心判斷式
在△ABC中,若GA+GB+GC=O,則G為△ABC的重心
[編輯本段]向量共線的重要條件
若b≠0,則a//b的重要條件是存在唯一實數(shù)λ,使a=λb。
a//b的重要條件是 xy'-x'y=0。
零向量0平行于任何向量。
[編輯本段]向量垂直的充要條件
a⊥b的充要條件是a?b=0。
a⊥b的充要條件是x x'+yy'=0。
零向量0垂直于任何向量.
【數(shù)學必修四第二章公式知識點】相關文章:
必修四數(shù)學公式知識點08-17
必修四數(shù)學第二章知識點01-05
數(shù)學必修三第二章知識點11-16
數(shù)學必修二第二章知識點11-20
數(shù)學必修四第二章平面向量知識點10-21
人教版必修三數(shù)學知識點第二章11-16
物理必修二第二章知識點10-26
必修四數(shù)學知識點歸納07-30
數(shù)學公式的知識點07-24