八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)歸納
會(huì)整合知識(shí)點(diǎn)。把需要學(xué)習(xí)的信息、掌握的知識(shí)分類,做成思維導(dǎo)圖或知識(shí)點(diǎn)卡片,會(huì)讓你的大腦、思維條理清醒,方便記憶、溫習(xí)、掌握。下面是小編整理的八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)歸納,希望能夠幫助到你。
第十一章 三角形
一、知識(shí)框架:
二、知識(shí)概念:
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.
2.三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊.
3.高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高.
4.中線:在三角形中,連接一個(gè)頂點(diǎn)和它對(duì)邊中點(diǎn)的線段叫做三角形的中線.
5.角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線.
6.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性.
7.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形.
8.多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角.
9.多邊形的外角:多邊形的一邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角.
10.多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線.
11.正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫正多邊形.
12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面,
13.公式與性質(zhì):
、湃切蔚膬(nèi)角和:三角形的內(nèi)角和為180°
、迫切瓮饨堑男再|(zhì):
性質(zhì)1:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和.
性質(zhì)2:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角.
、嵌噙呅蝺(nèi)角和公式:邊形的內(nèi)角和等于·180°
、榷噙呅蔚耐饨呛停憾噙呅蔚耐饨呛蜑360°.
、啥噙呅螌(duì)角線的條數(shù):①?gòu)倪呅蔚囊粋(gè)頂點(diǎn)出發(fā)可以引條對(duì)角線,把多邊形分成個(gè)三角形.②邊形共有條對(duì)角線.
第十二章 全等三角形
一、知識(shí)框架:
二、知識(shí)概念:
1.基本定義:
、湃刃危耗軌蛲耆睾系膬蓚(gè)圖形叫做全等形.
、迫热切危耗軌蛲耆睾系膬蓚(gè)三角形叫做全等三角形.
、菍(duì)應(yīng)頂點(diǎn):全等三角形中互相重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn).
⑷對(duì)應(yīng)邊:全等三角形中互相重合的邊叫做對(duì)應(yīng)邊.
、蓪(duì)應(yīng)角:全等三角形中互相重合的角叫做對(duì)應(yīng)角.
2.基本性質(zhì):
、湃切蔚姆(wěn)定性:三角形三邊的長(zhǎng)度確定了,這個(gè)三角形的形狀、大小就全確定,這個(gè)性質(zhì)叫做三角形的穩(wěn)定性.
、迫热切蔚男再|(zhì):全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等.
3.全等三角形的判定定理:
、胚呥呥():三邊對(duì)應(yīng)相等的兩個(gè)三角形全等.
、七吔沁():兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等.
⑶角邊角():兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等.
、冉墙沁():兩角和其中一個(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等.
⑸斜邊、直角邊():斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等.
4.角平分線:
、女嫹ǎ
⑵性質(zhì)定理:角平分線上的點(diǎn)到角的兩邊的距離相等.
、切再|(zhì)定理的逆定理:角的內(nèi)部到角的兩邊距離相等的點(diǎn)在角的平分線上.
5.證明的基本方法:
、琶鞔_命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關(guān)系)
、聘鶕(jù)題意,畫出圖形,并用數(shù)字符號(hào)表示已知和求證.
、墙(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程.
第十三章 軸對(duì)稱
一、知識(shí)框架:
二、知識(shí)概念:
1.基本概念:
、泡S對(duì)稱圖形:如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱圖形.
、苾蓚(gè)圖形成軸對(duì)稱:把一個(gè)圖形沿某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這條直線對(duì)稱.
⑶線段的垂直平分線:經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線.
、鹊妊切危河袃蓷l邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.
⑸等邊三角形:三條邊都相等的三角形叫做等邊三角形.
2.基本性質(zhì):
、艑(duì)稱的性質(zhì):
、俨还苁禽S對(duì)稱圖形還是兩個(gè)圖形關(guān)于某條直線對(duì)稱,對(duì)稱軸都是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線.
、趯(duì)稱的圖形都全等.
、凭段垂直平分線的性質(zhì):
①線段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等.
②與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上.
、顷P(guān)于坐標(biāo)軸對(duì)稱的點(diǎn)的坐標(biāo)性質(zhì)
、鹊妊切蔚男再|(zhì):
、俚妊切蝺裳嗟.
、诘妊切蝺傻捉窍嗟(等邊對(duì)等角).
③等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.
④等腰三角形是軸對(duì)稱圖形,對(duì)稱軸是三線合一(1條).
⑸等邊三角形的性質(zhì):
、俚冗吶切稳叾枷嗟.
②等邊三角形三個(gè)內(nèi)角都相等,都等于60°
、鄣冗吶切蚊織l邊上都存在三線合一.
④等邊三角形是軸對(duì)稱圖形,對(duì)稱軸是三線合一(3條).
3.基本判定:
、诺妊切蔚呐卸ǎ
、儆袃蓷l邊相等的三角形是等腰三角形.
、谌绻粋(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊).
⑵等邊三角形的判定:
①三條邊都相等的三角形是等邊三角形.
、谌齻(gè)角都相等的三角形是等邊三角形.
③有一個(gè)角是60°的等腰三角形是等邊三角形.
4.基本方法:
、抛鲆阎本的垂線:
、谱鲆阎段的垂直平分線:
⑶作對(duì)稱軸:連接兩個(gè)對(duì)應(yīng)點(diǎn),作所連線段的垂直平分線.
、茸饕阎獔D形關(guān)于某直線的對(duì)稱圖形:
、稍谥本上做一點(diǎn),使它到該直線同側(cè)的兩個(gè)已知點(diǎn)的距離之和最短.
3.在直角三角形中,如果一個(gè)銳角等于300,那么它所對(duì)的直角邊等于斜邊的一半。
線段的垂直平分線
1.經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。
2.線段垂直平分線上的點(diǎn)與這條線段的兩個(gè)端點(diǎn)的距離相等
3.與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在線段的垂直平分線上
用坐標(biāo)表示軸對(duì)稱小結(jié):
1.在平面直角坐標(biāo)系中,關(guān)于x軸對(duì)稱的點(diǎn)橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù).關(guān)于y軸對(duì)稱的點(diǎn)橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等.
2.三角形三條邊的垂直平分線相交于一點(diǎn),這個(gè)點(diǎn)到三角形三個(gè)頂點(diǎn)的距離相等
第十四章 整式乘除與因式分解
一.回顧知識(shí)點(diǎn)
1、主要知識(shí)回顧:
冪的運(yùn)算性質(zhì):
am·an=am+n (m、n為正整數(shù))
同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.
單項(xiàng)式的乘法法則:
單項(xiàng)式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個(gè)因式.
單項(xiàng)式與多項(xiàng)式的乘法法則:
單項(xiàng)式與多項(xiàng)式相乘,用單項(xiàng)式和多項(xiàng)式的每一項(xiàng)分別相乘,再把所得的積相加.
多項(xiàng)式與多項(xiàng)式的乘法法則:
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)與另一個(gè)多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加.
單項(xiàng)式的除法法則:
單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式:對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式.
多項(xiàng)式除以單項(xiàng)式的法則:
多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng)式,再把所得的商相加.
2、乘法公式:
①平方差公式:(a+b)(a-b)=a2-b2
文字語言敘述:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差相乘,等于這兩個(gè)數(shù)的平方差.
、谕耆椒焦剑海╝+b)2=a2+2ab+b2
。╝-b)2=a2-2ab+b2
文字語言敘述:兩個(gè)數(shù)的和(或差)的平方等于這兩個(gè)數(shù)的平方和加上(或減去)這兩個(gè)數(shù)的積的2倍.
3、因式分解:
因式分解的定義.
把一個(gè)多項(xiàng)式化成幾個(gè)整式的乘積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解.
掌握其定義應(yīng)注意以下幾點(diǎn):
。1)分解對(duì)象是多項(xiàng)式,分解結(jié)果必須是積的形式,且積的因式必須是整式,這三個(gè)要素缺一不可;
(2)因式分解必須是恒等變形;
。3)因式分解必須分解到每個(gè)因式都不能分解為止.
弄清因式分解與整式乘法的內(nèi)在的關(guān)系.
因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式.
熟練掌握因式分解的常用方法.
1、提公因式法
。1)掌握提公因式法的概念;
。2)提公因式法的關(guān)鍵是找出公因式,公因式的構(gòu)成一般情況下有三部分:①系數(shù)一各項(xiàng)系數(shù)的最大公約數(shù);②字母——各項(xiàng)含有的相同字母;③指數(shù)——相同字母的最低次數(shù);
。3)提公因式法的步驟:第一步是找出公因式;第二步是提取公因式并確定另一因式.需注意的是,提取完公因式后,另一個(gè)因式的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)一致,這一點(diǎn)可用來檢驗(yàn)是否漏項(xiàng).
。4)注意點(diǎn):①提取公因式后各因式應(yīng)該是最簡(jiǎn)形式,即分解到“底”;②如果多項(xiàng)式的第一項(xiàng)的系數(shù)是負(fù)的,一般要提出“-”號(hào),使括號(hào)內(nèi)的第一項(xiàng)的系數(shù)是正的.
2、公式法
運(yùn)用公式法分解因式的實(shí)質(zhì)是把整式中的乘法公式反過來使用;
常用的公式:
、倨椒讲罟剑篴2-b2= (a+b)(a-b)
②完全平方公式:a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
第十五章分式
1.分式有意義、無意義的條件:
分式有意義的條件:分式的分母不等于0;
分式無意義的條件:分式的分母等于0。
2.分式值為零的條件:
當(dāng)分式的分子等于0且分母不等于0時(shí),分式的值為0。
。ǚ质降闹禐0的條件是:分子等于0,分母不等于0,二者缺一不可。首先求出使分子為0的字母的值,再檢驗(yàn)這個(gè)字母的值是否使分母的值為0.當(dāng)分母的值不為0時(shí),就是所要求的字母的值。)
3.分式的基本性質(zhì):分式的分子與分母同乘(或除以)一個(gè)不等于0的整式,分式的值不變。
注意:(1)“C是一個(gè)不等于0的整式”是分式基本性質(zhì)的一個(gè)制約條件;
。2)應(yīng)用分式的基本性質(zhì)時(shí),要深刻理解“同”的含義,避免犯只乘分子(或分母)的錯(cuò)誤;
。3)若分式的分子或分母是多項(xiàng)式,運(yùn)用分式的基本性質(zhì)時(shí),要先用括號(hào)把分子或分母括上,再乘或除以同一整式C;
。4)分式的基本性質(zhì)是分式進(jìn)行約分、通分和符號(hào)變化的依據(jù)。
4.分式的通分:
和分?jǐn)?shù)類似,利用分式的基本性質(zhì),使分子和分母同乘適當(dāng)?shù)恼剑桓淖兎质降闹,把幾個(gè)異分母分式化成相同分母的分式,這樣的分式變形叫做分式的通分。
通分的關(guān)鍵是確定幾個(gè)式子的最簡(jiǎn)公分母。幾個(gè)分式通分時(shí),通常取各分母所有因式的最高次冪的積作為公分母,這樣的分母就叫做最簡(jiǎn)公分母。求最簡(jiǎn)公分母時(shí)應(yīng)注意以下幾點(diǎn):
。1)“各分母所有因式的最高次冪”是指凡出現(xiàn)的字母(或含字母的式子)為底數(shù)的冪選取指數(shù)最大的;
(2)如果各分母的系數(shù)都是整數(shù)時(shí),通常取它們系數(shù)的最小公倍數(shù)作為最簡(jiǎn)公分母的系數(shù);
。3)如果分母是多項(xiàng)式,一般應(yīng)先分解因式。
5.分式的約分:
和分?jǐn)?shù)一樣,根據(jù)分式的基本性質(zhì),約去分式的分子和分母中的公因式,不改變分式的值,這樣的分式變形叫
做分式的約分。約分后分式的分子、分母中不再含有公因式,這樣的分式叫最簡(jiǎn)公因式。約分的關(guān)鍵是找出分式中分子和分母的公因式。
。1)約分時(shí)注意分式的分子、分母都是乘積形式才能進(jìn)行約分;分子、分母是多項(xiàng)式時(shí),通常將分子、分母分解因式,然后再約分;
。2)找公因式的方法:
① 當(dāng)分子、分母都是單項(xiàng)式時(shí),先找分子、分母系數(shù)的最大公約數(shù),再找相同字母的最低次冪,它們的積就是公因式;
、诋(dāng)分子、分母都是多項(xiàng)式時(shí),先把多項(xiàng)式因式分解。
易錯(cuò)點(diǎn):(1)當(dāng)分子或分母是一個(gè)式子時(shí),要看做一個(gè)整體,易出現(xiàn)漏乘(或漏除以);
。2)在式子變形中要注意分子與分母的符號(hào)變化,一般情況下要把分子或分母前的“—” 放在分?jǐn)?shù)線前;
。3)確定幾個(gè)分式的最簡(jiǎn)公分母時(shí),要防止遺漏只在一個(gè)分母中出現(xiàn)的字母;
6.分式的運(yùn)算:
分式乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為積的分母。
分式除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
提示:(1)分式與分式相乘,若分子、分母是單項(xiàng)式,可先將分子、分母分別相乘,然后約去公因式,化為最簡(jiǎn)
分式;若分子、分母是多項(xiàng)式,先把分子、分母分解公因式,看能否約分,然后再相乘;
。2)當(dāng)分式與整式相乘時(shí),要把整式與分式的分子相乘作為積的分子,分母不變
。3)分式的除法可以轉(zhuǎn)化為分式的乘法運(yùn)算;
。4)分式的乘除混合運(yùn)算統(tǒng)一為乘法運(yùn)算。
①分式的乘除法混合運(yùn)算順序與分?jǐn)?shù)的乘除混合運(yùn)算相同,即按照從左到右的順序,有括號(hào)先算括號(hào)里面的;
②分式的乘除混合運(yùn)算要注意各分式中分子、分母符號(hào)的處理,可先確定積的符號(hào);
、鄯质降某顺旌线\(yùn)算結(jié)果要通過約分化為最簡(jiǎn)分式(分式的分子、分母沒有公因式)或整式的形式。
分式乘方法則:分式乘方要把分子、分母各自乘方。
注意:(1)乘方時(shí),一定要把分式加上括號(hào);
(2)分式乘方時(shí)確定乘方結(jié)果的符號(hào)與有理數(shù)乘方相同,即正分式的任何次冪都為正;負(fù)分式的偶次冪為正,奇次冪為負(fù);
(3)分式乘方時(shí),應(yīng)把分子、分母分別看做一個(gè)整體;
。4)在一個(gè)算式中同時(shí)含有分式的乘方、乘法、除法時(shí),應(yīng)先算乘方,再算乘除,有多項(xiàng)式時(shí)應(yīng)先分解因式,再約分。
分式的加減法則:
法則:同分母的分式相加減,分母不變,把分子相加減。
法則:異分母的分式相加減,先通分,轉(zhuǎn)化為同分母分式,然后再加減。
注意:(1)“把分子相加減”是把各個(gè)分子的整體相加減,即各個(gè)分子應(yīng)先加上括號(hào)后再加減,分子是單項(xiàng)式時(shí)括號(hào)可以省略;
(2)異分母分式相加減,“先通分”是關(guān)鍵,最簡(jiǎn)公分母確定后再通分,計(jì)算時(shí)要注意分式中符號(hào)的處理,
特別是分子相減,要注意分子的整體性;
。3)運(yùn)算時(shí)順序合理、步驟清晰;
(4)運(yùn)算結(jié)果必須化成最簡(jiǎn)分式或整式。
分式的混合運(yùn)算:
分式的混合運(yùn)算,關(guān)鍵是弄清運(yùn)算順序,與分?jǐn)?shù)的加、減、乘、除及乘方的混合運(yùn)算一樣,先算乘方,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里面的,計(jì)算結(jié)果要化為整式或最簡(jiǎn)分式。
注意:當(dāng)冪指數(shù)為負(fù)整數(shù)時(shí),最后的計(jì)算結(jié)果要把冪指數(shù)化為正整數(shù)。
7. 整數(shù)指數(shù)冪:
解分式方程的步驟 :
(1)能化簡(jiǎn)的先化簡(jiǎn);(2)方程兩邊同乘以最簡(jiǎn)公分母,化為整式方程;(3)解整式方程;(4)驗(yàn)根.
分式方程檢驗(yàn)方法:將整式方程的解帶入最簡(jiǎn)公分母,如果最簡(jiǎn)公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個(gè)解不是原分式方程的解。
8.含有字母的分式方程的解法:
在數(shù)學(xué)式子的字母不僅可以表示未知數(shù),也可以表示已知數(shù),含有字母已知數(shù)的分式方程的解法,也是去分母,
解整式方程,檢驗(yàn)這三個(gè)步驟,需要注意的是要找準(zhǔn)哪個(gè)字母表示未知數(shù),哪個(gè)字母表示未知數(shù),還要注意題目的
限制條件。計(jì)算結(jié)果是用已知數(shù)表示未知數(shù),不要混淆。
9.列分式方程解應(yīng)用題的步驟是:
(1)審:審清題意;(2)找: 找出相等關(guān)系;(3)設(shè):設(shè)未知數(shù);(4)列:列出分式方程;(5)解:解這個(gè)分式方程;(6)驗(yàn):既要檢驗(yàn)根是否是所列分式方程的解,又要檢驗(yàn)根是否符合題意;(7)答:寫出答案。
應(yīng)用題有幾種類型;基本公式是什么?
基本上有五種: (1)行程問題 基本公式:路程=速度×?xí)r間 而行程問題中又分相遇問題、追及問題.
(2)數(shù)字問題:在數(shù)字問題中要掌握十進(jìn)制數(shù)的表示法.
(3)工程問題 基本公式:工作量=工時(shí)×工效.
用科學(xué)記數(shù)法表示絕對(duì)值大于1的數(shù)時(shí),應(yīng)當(dāng)表示為a×10n的形式,其中1≤︱a︱<10,n為原整數(shù)部分的位數(shù)減1;
用科學(xué)記數(shù)法表示絕對(duì)值小于1的數(shù)時(shí),則可表示為a×10-n的形式,其中n為原數(shù)第1個(gè)不為0的數(shù)字前面所有0的個(gè)數(shù)(包括小數(shù)點(diǎn)前面的那個(gè)0),1≤︱a︱<10.
第十六章 二次根式
知識(shí)點(diǎn)1、二次根式定義
形如√a(a≥0)式子叫做二次根式;
二次根式必須滿足:含有二次根號(hào);被開方數(shù)a必須是非負(fù)數(shù)。
、俦婚_方數(shù)可以是數(shù),也可以是單項(xiàng)式、多項(xiàng)式、分式等代數(shù)式;
、谂袛鄷r(shí)一定要注意不要化簡(jiǎn),一定要有意義。
知識(shí)點(diǎn)2、最簡(jiǎn)二次根式
若二次根式滿足:被開方數(shù)的因數(shù)是整數(shù),因式是整式;被開方數(shù)中不含能開得盡方的因數(shù)或因式,這樣的二次根式叫做最簡(jiǎn)二次根式。
、俑(hào)下無分母,分母中無根號(hào);
、诒婚_方數(shù)中沒有能開方的因數(shù)或因式。
知識(shí)點(diǎn)3、二次根式的性質(zhì)
。1)非負(fù)性 √a (a≥0)是一個(gè)非負(fù)數(shù)
注意:此性質(zhì)可作公式記住,后面根式運(yùn)算中經(jīng)常用到.
。2)(√a)=a (a≥0)
注意:此性質(zhì)既可正用,也可反用,反用的意義在于,可以把任意一個(gè)非負(fù)數(shù)或非負(fù)代數(shù)式寫成
注意:(1)字母不一定是正數(shù);
。2)能開得盡方的因式移到根號(hào)外時(shí),必須用它的算術(shù)平方根代替.
知識(shí)點(diǎn)4、最簡(jiǎn)二次根式和同類二次根式
。1)最簡(jiǎn)二次根式:
☆最簡(jiǎn)二次根式的定義:
①被開方數(shù)是整數(shù),因式是整式;
、诒婚_方數(shù)中不含能開得盡方的數(shù)或因式,分母中不含根號(hào)。
☆同類二次根式(可合并根式):
幾個(gè)二次根式化成最簡(jiǎn)二次根式后,如果被開方數(shù)相同,這幾個(gè)二次根式就叫做同類二次根式,即可以合并的兩個(gè)根式
知識(shí)點(diǎn)5、二次根式計(jì)算——分母有理化
。1)分母有理化
定義:把分母中的根號(hào)化去,叫做分母有理化。
。2)有理化因式:
兩個(gè)含有二次根式的代數(shù)式相乘,如果它們的積不含有二次根式,就說這兩個(gè)代數(shù)式互為有理化因式。
有理化因式確定方法如下:
、賳雾(xiàng)二次根式:利用√a √a=a來確定,如下,分別互為有理化因式。
、趦身(xiàng)二次根式:利用平方差公式來確定。如下列式子,互為有理化因式
。3)分母有理化的方法與步驟:
、傧葘⒎肿、分母化成最簡(jiǎn)二次根式;
②將分子、分母都乘以分母的有理化因式,使分母中不含根式;
知識(shí)點(diǎn)6、二次根式計(jì)算——二次根式的乘除
。1)積的算術(shù)平方根的性質(zhì)
積的算術(shù)平方根,等于積中各因式的算術(shù)平方根的積。
。2)二次根式的乘法法則
兩個(gè)因式的算術(shù)平方根的積,等于這兩個(gè)因式積的算術(shù)平方根。
。3)商的算術(shù)平方根的性質(zhì)
商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根。
。4)二次根式的除法法則
兩個(gè)數(shù)的算術(shù)平方根的商,等于這兩個(gè)數(shù)的商的算術(shù)平方根。
注意:乘、除法的運(yùn)算法則要靈活運(yùn)用,在實(shí)際運(yùn)算中經(jīng)常從等式的右邊變形至等式的左邊,同時(shí)還要考慮字母的取值范圍,最后把運(yùn)算結(jié)果化成最簡(jiǎn)二次根式.
知識(shí)點(diǎn)7、二次根式計(jì)算——二次根式的加減
二次根式的被開方數(shù)相同時(shí)是可以直接合并的,如若不同,需要先把二次根式化成最簡(jiǎn)二次根式,然后把被開方數(shù)相同的二次根式(即同類二次根式)的系數(shù)相加減,被開方數(shù)不變。
。1)判斷是否同類二次根式時(shí),一定要先化成最簡(jiǎn)二次根式后再判斷。
。2)二次根式的加減分三個(gè)步驟:
、倩勺詈(jiǎn)二次根式;
、谡页鐾惗胃;
、酆喜⑼惗胃剑皇峭惗胃降牟荒芎喜
第十七章 勾股定理
一、勾股定理
1.勾股定理:命題1:如果直角三角形的兩直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c,那么a2+b2=c2。
2.勾股定理的逆定理:如果三角形三邊長(zhǎng)a,b,c滿足a2+b2=c2。,那么這個(gè)三角形是直角三角形。2.經(jīng)過證明被確認(rèn)正確的命題叫做定理。
3.逆命題:我們把題設(shè)、結(jié)論正好相反的兩個(gè)命題叫做互逆命題。如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。(例:勾股定理與勾股定理逆定理)
第十八章 平行四邊形
19.1平行四邊行
19.1.1平行四邊形的性質(zhì)
1.平行四邊形定義: 有兩組對(duì)邊分別平行的四邊形叫做平行四邊形。
2.平行四邊形的性質(zhì):①平行四邊形的對(duì)邊相等;②平行四邊形的對(duì)角相等。③平行四邊形的對(duì)角線互相平分。
19.1.2平行四邊形的判定
1.兩組對(duì)邊分別相等的四邊形是平行四邊形
2.對(duì)角線互相平分的四邊形是平行四邊形;
3.兩組對(duì)角分別相等的四邊形是平行四邊形;
4.一組對(duì)邊平行且相等的四邊形是平行四邊形。
5.三角形的中位線:連接三角形兩邊中點(diǎn)的線段。三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。 直角三角形斜邊上的中線等于斜邊的一半。
19.2特殊的平行四邊形
19.2.1矩形
1.矩形的定義:有一個(gè)角是直角的平行四邊形叫做矩形。
2.矩形的性質(zhì):①矩形的四個(gè)角都是直角;②矩形的對(duì)角線平分且相等。AC=BD
3.矩形判定定理:①有一個(gè)角是直角的平行四邊形叫做矩形。②對(duì)角線相等的平行四邊形是矩形。 ③有三個(gè)角是直角的四邊形是矩形。
4.黃金矩形:寬和長(zhǎng)的比是(約為0.618)的矩形叫做。
19.2.2菱形
1.菱形的定義 :有一組鄰邊相等的平行四邊形叫做菱形。
2.菱形的性質(zhì):①菱形的四條邊都相等;②菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。
3.菱形的判定定理:①一組鄰邊相等的平行四邊形是菱形。②對(duì)角線互相垂直的平行四邊形是菱形。③四條邊相等的四邊形是菱形。
S菱形=1/2×ab(a、b為兩條對(duì)角線)
19.2.3正方形
1.正方形定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。
2.正方形的性質(zhì):四條邊都相等,四個(gè)角都是直角。
3.正方形判定定理:①鄰邊相等的矩形是正方形。②有一個(gè)角是直角的菱形是正方形。
19.3梯形
1.梯形:一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形叫做梯形。
2.直角梯形:有一個(gè)角是直角的梯形
3.等腰梯形:兩腰相等的梯形。
4.等腰梯形的性質(zhì):①等腰梯形同一底邊上的兩個(gè)角相等;②等腰梯形的兩條對(duì)角線相等。
5.等腰梯形判定定理:①同一底上兩個(gè)角相等的梯形是等腰梯形。
6.解梯形問題常用的輔助線:
19.4課題學(xué)習(xí) 重心
重心:是物體的質(zhì)量中心,能夠保持物體平衡的點(diǎn)就是重心。(是一個(gè)平衡點(diǎn))①線段的重心就是線段的中點(diǎn)。② 平行四邊形的重心是它的兩條對(duì)角線的交點(diǎn)。③三角形的三條中線交于一點(diǎn),這一點(diǎn)就是三角形的重心。
第十九章一次函數(shù)
函數(shù)
一般地,在某一變化過程中有兩個(gè)變量x與y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
自變量取值范圍
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實(shí)數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負(fù)數(shù))、實(shí)際意義幾方面考慮。
函數(shù)的三種表示法及其優(yōu)缺點(diǎn)
關(guān)系式(解析)法
兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做關(guān)系式(解析)法。
列表法
把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
圖象法
用圖象表示函數(shù)關(guān)系的方法叫做圖象法。
由函數(shù)關(guān)系式畫其圖像的一般步驟
列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值。
描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)。
連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。
正比例函數(shù)和一次函數(shù)
、僬壤瘮(shù)和一次函數(shù)的概念
一般地,若兩個(gè)變量x,y間的關(guān)系可以表示成y=kx+b (k,b為常數(shù),k不等于 0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。
特別地,當(dāng)一次函數(shù)y=kx+b中的b=0時(shí)(k為常數(shù),k 不等于0),稱y是x的正比例函數(shù)。
、谝淮魏瘮(shù)的圖像:
所有一次函數(shù)的圖像都是一條直線。
、垡淮魏瘮(shù)、正比例函數(shù)圖像的主要特征
一次函數(shù)y=kx+b的圖像是經(jīng)過點(diǎn)(0,b)的直線;
正比例函數(shù)y=kx的圖像是經(jīng)過原點(diǎn)(0,0)的直線。
④正比例函數(shù)的性質(zhì)
一般地,正比例函數(shù) 有下列性質(zhì):
當(dāng)k>0時(shí),圖像經(jīng)過第一、三象限,y隨x的增大而增大;
當(dāng)k<0時(shí),圖像經(jīng)過第二、四象限,y隨x的增大而減小。
⑤一次函數(shù)的性質(zhì)
一般地,一次函數(shù) 有下列性質(zhì):
當(dāng)k>0時(shí),y隨x的增大而增大;
當(dāng)k<0時(shí),y隨x的增大而減小。
、拚壤瘮(shù)和一次函數(shù)解析式的確定
確定一個(gè)正比例函數(shù),就是要確定正比例函數(shù)定義式y(tǒng)=kx(k 不等于0)中的常數(shù)k。
確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k 不等于0)中的常數(shù)k和b。解這類問題的一般方法是待定系數(shù)法.
、咭淮魏瘮(shù)與一元一次方程的關(guān)系
任何一個(gè)一元一次方程都可轉(zhuǎn)化為:kx+b=0(k、b為常數(shù),k≠0)的形式。而一次函數(shù)解析式形式正是y=kx+b(k、b為常數(shù),k≠0)。當(dāng)函數(shù)值為0時(shí),即kx+b=0就與一元一次方程完全相同。
結(jié)論:由于任何一元一次方程都可轉(zhuǎn)化為kx+b=0(k、b為常數(shù),k≠0)的形式。所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)一次函數(shù)值為0時(shí),求相應(yīng)的自變量的值。
從圖象上看,這相當(dāng)于已知直線y=kx+b確定它與x軸交點(diǎn)的橫坐標(biāo)值。
第二十章 數(shù)據(jù)的分析
20.1數(shù)據(jù)的代表
20.1.1平均數(shù):包括加權(quán)平均數(shù)和算術(shù)平均數(shù)。加權(quán)平均數(shù)與算術(shù)平均數(shù)類似,不同點(diǎn)在于,數(shù)據(jù)中的每個(gè)點(diǎn)對(duì)于平均數(shù)的貢獻(xiàn)并不是相等的,有些點(diǎn)要比其他的點(diǎn)更加重要。加權(quán)平均數(shù)的概念在描述統(tǒng)計(jì)學(xué)中具有重要的意義,并且在其他數(shù)學(xué)領(lǐng)域產(chǎn)生了更一般的形式。如果所有的權(quán)重相同,那么加權(quán)平均數(shù)與算術(shù)平均數(shù)相同。加權(quán)平均數(shù)作為算術(shù)平均數(shù)的更廣義的表現(xiàn)形式
1.加權(quán)平均數(shù):加權(quán)平均數(shù)的計(jì)算公式。
權(quán)的理解:反映了某個(gè)數(shù)據(jù)在整個(gè)數(shù)據(jù)中的重要程度。學(xué)會(huì)權(quán)沒有直接給出數(shù)量,而是以比的或百分比的形式出現(xiàn)及頻數(shù)分布表求加權(quán)平均數(shù)的方法。
20.1.2中位數(shù)和眾數(shù)
1.中位數(shù):將一組數(shù)據(jù)按照由小到大(或由大到小)的順序排列,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。
2.眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)。
20.2.數(shù)據(jù)的波動(dòng)
20.2.1極差
1.極差:一組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差。
20.2.2方差
方差的定義:衡量一組數(shù)據(jù)的波動(dòng)大小的一個(gè)數(shù)據(jù)s2,其計(jì)算方法如下:
備注:方差等于各數(shù)據(jù)與平均數(shù)的差的平方的平均數(shù)
1.方差:方差越大,數(shù)據(jù)的波動(dòng)越大;方差越小,數(shù)據(jù)的波動(dòng)越小,就越穩(wěn)定。
2. 平均數(shù):平均數(shù)受極端值的影響,眾數(shù)不受極端值的影響,這是一個(gè)優(yōu)勢(shì),中位數(shù)的計(jì)算很少不受極端值的影響。
20.3課題學(xué)習(xí) 體質(zhì)健康測(cè)試中的數(shù)據(jù)分析
7.數(shù)據(jù)的收集與整理的步驟:1.收集數(shù)據(jù) 2.整理數(shù)據(jù) 3.描述數(shù)據(jù) 4.分析數(shù)據(jù) 5.撰寫調(diào)查報(bào)告 6.交流
數(shù)學(xué)知識(shí)點(diǎn)歸納
二元一次方程
、俣淮畏匠
含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的整式方程叫做二元一次方程。
、诙淮畏匠痰慕
適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。
二元一次方程組
、俸袃蓚(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組。
、诙淮畏匠探M的解
二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。
、鄱淮畏匠探M的解法
代入(消元)法
加減(消元)法
、芤淮魏瘮(shù)與二元一次方程(組)的關(guān)系:
一次函數(shù)與二元一次方程的關(guān)系:
直線y=kx+b上任意一點(diǎn)的坐標(biāo)都是它所對(duì)應(yīng)的二元一次方程kx- y+b=0的解
一次函數(shù)與二元一次方程組的關(guān)系:
二元一次方程組
的解可看作兩個(gè)一次函數(shù)
和 的圖象的交點(diǎn)。
當(dāng)函數(shù)圖象有交點(diǎn)時(shí),說明相應(yīng)的二元一次方程組有解;
當(dāng)函數(shù)圖象(直線)平行即無交點(diǎn)時(shí),說明相應(yīng)的二元一次方程組無解。
實(shí)數(shù)的概念及分類
①實(shí)數(shù)的分類
、跓o理數(shù)
無限不循環(huán)小數(shù)叫做無理數(shù)。
在理解無理數(shù)時(shí),要抓住“無限不循環(huán)”這一時(shí)之,歸納起來有四類:
開方開不盡的數(shù),如 √7 ,3 √2等;
有特定意義的數(shù),如圓周率π,或化簡(jiǎn)后含有π的數(shù),如π /?+8等;
有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;
某些三角函數(shù)值,如sin60°等
實(shí)數(shù)的倒數(shù)、相反數(shù)和絕對(duì)值
、傧喾磾(shù)
實(shí)數(shù)與它的相反數(shù)是一對(duì)數(shù)(只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱,如果a與b互為相反數(shù),則有a+b=0,a=-b,反之亦成立。
、诮^對(duì)值
在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對(duì)值。|a|≥0。0的絕對(duì)值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。
③倒數(shù)
如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。0沒有倒數(shù)。
、軘(shù)軸
規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸(畫數(shù)軸時(shí),要注意上述規(guī)定的三要素缺一不可)。
解題時(shí)要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對(duì)應(yīng)的,并能靈活運(yùn)用。
⑤估算
平方根、算數(shù)平方根和立方根
、偎阈g(shù)平方根
一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x就叫做a的算術(shù)平方根。特別地,0的算術(shù)平方根是0。
性質(zhì):正數(shù)和零的算術(shù)平方根都只有一個(gè),0的算術(shù)平方根是0。
、谄椒礁
一般地,如果一個(gè)數(shù)x的平方等于a,即x2=a,那么這個(gè)數(shù)x就叫做a的平方根(或二次方根)。
性質(zhì):一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒有平方根。
開平方求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開平方。注意 √a的雙重非負(fù)性:√a≥0 ; a≥0
③立方根
一般地,如果一個(gè)數(shù)x的立方等于a,即x3=a,那么這個(gè)數(shù)x就叫做a 的立方根(或三次方根)。
表示方法:記作 3 √a
性質(zhì):一個(gè)正數(shù)有一個(gè)正的立方根;一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根;零的立方根是零。
注意:- 3 √a=3 √-a,這說明三次根號(hào)內(nèi)的負(fù)號(hào)可以移到根號(hào)外面。
實(shí)數(shù)大小的比較
①實(shí)數(shù)比較大小
正數(shù)大于零,負(fù)數(shù)小于零,正數(shù)大于一切負(fù)數(shù);
數(shù)軸上的兩個(gè)點(diǎn)所表示的數(shù),右邊的總比左邊的大;
兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。
、趯(shí)數(shù)大小比較的幾種常用方法
數(shù)軸比較:在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大。
求差比較:設(shè)a、b是實(shí)數(shù) a-b>0a>b; a-b=0a=b; a-b<0a<b 。
求商比較法:設(shè)a、b是兩正實(shí)數(shù),
絕對(duì)值比較法:設(shè)a、b是兩負(fù)實(shí)數(shù),則∣a∣>∣b∣a<b。
平方法:設(shè)a、b是兩負(fù)實(shí)數(shù),則 a2>b2a<b 。
算術(shù)平方根有關(guān)計(jì)算(二次根式)
、俸卸胃(hào)“ √ ”;被開方數(shù)a必須是非負(fù)數(shù)。
②性質(zhì):
、圻\(yùn)算結(jié)果若含有“ √ ”形式,必須滿足:
被開方數(shù)的因數(shù)是整數(shù),因式是整式
被開方數(shù)中不含能開得盡方的因數(shù)或因式
實(shí)數(shù)的運(yùn)算
、倭N運(yùn)算:加、減、乘、除、乘方 、開方。
、趯(shí)數(shù)的運(yùn)算順序
先算乘方和開方,再算乘除,最后算加減,如果有括號(hào),就先算括號(hào)里面的。
、圻\(yùn)算律
加法交換律 a+b= b+a
加法結(jié)合律 (a+b)+c= a+( b+c )
乘法交換律 ab= ba
乘法結(jié)合律 (ab)c = a( bc )
乘法對(duì)加法的分配律 a( b+c )=ab+ac
矩形判定定理:
1.有一個(gè)角是直角的平行四邊形叫做矩形。
2.對(duì)角線相等的平行四邊形是矩形。
3.有三個(gè)角是直角的四邊形是矩形。
菱形的定義 :鄰邊相等的平行四邊形。
菱形的性質(zhì):菱形的四條邊都相等;
菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。
菱形的判定定理:
1.一組鄰邊相等的平行四邊形是菱形。
2.對(duì)角線互相垂直的平行四邊形是菱形。
3.四條邊相等的四邊形是菱形。
S菱形=1/2×ab(a、b為兩條對(duì)角線)
正方形定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。
正方形的性質(zhì):四條邊都相等,四個(gè)角都是直角。 正方形既是矩形,又是菱形。
正方形判定定理:
1.鄰邊相等的矩形是正方形。
2.有一個(gè)角是直角的菱形是正方形。
梯形的定義: 一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形叫做梯形。
直角梯形的定義:有一個(gè)角是直角的梯形
等腰梯形的定義:兩腰相等的梯形。
等腰梯形的性質(zhì):等腰梯形同一底邊上的兩個(gè)角相等;
等腰梯形的兩條對(duì)角線相等。
等腰梯形判定定理:同一底上兩個(gè)角相等的梯形是等腰梯形。
解梯形問題常用的輔助線:
線段的重心就是線段的中點(diǎn)。 平行四邊形的重心是它的兩條對(duì)角線的交點(diǎn)。 三角形的三條中線交于疑點(diǎn),這一點(diǎn)就是三角形的重心。 寬和長(zhǎng)的比是 (約為0.618)的矩形叫做黃金矩形初二下冊(cè)每一章數(shù)學(xué)知識(shí)點(diǎn)總結(jié)初中輔導(dǎo)。
如何學(xué)好數(shù)學(xué)
一、克服心理疲勞
第一,要有明確的學(xué)習(xí)目的。學(xué)習(xí)就像從河里抽水,動(dòng)力越足,水流量越大。動(dòng)力來源于目的,只有樹立正確的學(xué)習(xí)目的,才會(huì)產(chǎn)生強(qiáng)大的學(xué)習(xí)動(dòng)力;第二,要培養(yǎng)濃厚的學(xué)習(xí)興趣。興趣的形成與大腦皮層的興奮中心相聯(lián)系,并伴有愉快、喜悅、積極的情緒體驗(yàn)。而心理疲勞的產(chǎn)生正是大腦皮層抵制的消極情緒引起的。因此,培養(yǎng)自己的學(xué)習(xí)興趣,是克服心理疲勞的關(guān)鍵所在。有了興趣,學(xué)習(xí)才會(huì)有積極性、自覺性、主動(dòng)性,才能使心理處于一種良好的競(jìng)技狀態(tài);第三,要注意學(xué)習(xí)的多樣化,書本學(xué)習(xí)本身就是枯燥單調(diào)的,如果多次重復(fù)學(xué)習(xí)某門課程或章節(jié)內(nèi)容,易使大腦皮層產(chǎn)生抑制,出現(xiàn)心理飽和,產(chǎn)生厭倦情緒。所以考生不妨將各門課程交替起來進(jìn)行復(fù)習(xí)。
二、戰(zhàn)勝高原現(xiàn)象
復(fù)習(xí)中的高原現(xiàn)象,是指在復(fù)習(xí)到一定時(shí)期時(shí),往往停滯不前,不僅復(fù)習(xí)不見進(jìn)步,反而有退步的現(xiàn)象。在高原期內(nèi),并非學(xué)習(xí)毫無進(jìn)步,而是某部分進(jìn)步,另外一些部分則退步,兩者相抵,致使復(fù)習(xí)成效未從根本上發(fā)生變化,因而使人灰心失望。當(dāng)考生在復(fù)習(xí)迎考過程中遭遇高原期時(shí),切忌急躁或喪失信心,應(yīng)找出學(xué)習(xí)方法、學(xué)習(xí)積極性等方面的原因。及時(shí)調(diào)整復(fù)習(xí)進(jìn)度,在科學(xué)用腦、提高復(fù)習(xí)效率上多下功夫。
三、重視復(fù)習(xí)“錯(cuò)誤”
如果在復(fù)習(xí)中不善于從錯(cuò)誤中走出來,缺陷和漏洞就會(huì)越來越多,任其下去,最終就會(huì)蟻穴潰堤。在備考期間,要想降低錯(cuò)誤率,除了及時(shí)訂正、全面扎實(shí)復(fù)習(xí)之外,非常關(guān)鍵的問題就是找出原因,不斷復(fù)習(xí)錯(cuò)誤。即定期翻閱錯(cuò)題,回想錯(cuò)誤的原因,并對(duì)各種錯(cuò)題及錯(cuò)誤原因進(jìn)行分類整理。對(duì)其中那些反復(fù)錯(cuò)誤的問題還可考慮再做一遍,以絕“后患”。錯(cuò)誤原因大致有:概念理解上的問題、粗心大意帶來的問題以及書寫潦草凌亂給自己帶來的錯(cuò)覺問題等,從而有效地避免在考試時(shí)再犯同一類型的錯(cuò)誤。
四、把握心理特點(diǎn)搞好考前復(fù)習(xí)
實(shí)踐證明,一個(gè)人在氣質(zhì)、性格、心理穩(wěn)定程度等因素也會(huì)影響考前復(fù)習(xí)?忌趶(fù)習(xí)迎考過程中,應(yīng)根據(jù)自己的心理特點(diǎn)來制訂復(fù)習(xí)迎考計(jì)劃,根據(jù)自己的心態(tài)來調(diào)整復(fù)習(xí)的進(jìn)度,選擇與運(yùn)用的復(fù)習(xí)方式方法,使自己的考前復(fù)習(xí)達(dá)到預(yù)期的效果。
五、課本不容忽視
對(duì)于初二的學(xué)生來說,都在學(xué)習(xí)新課,課本是大家都容易忽視的一個(gè)重要的復(fù)習(xí)資料。平時(shí)在學(xué)校的課堂上大家都會(huì)隨堂記筆記,課本基本不會(huì)翻看,建議同學(xué)們?cè)诜垂P記的同時(shí),對(duì)照課本,把學(xué)過的知識(shí)點(diǎn)反復(fù)閱讀、理解,并對(duì)照課后練習(xí)里的習(xí)題進(jìn)行反復(fù)思考、琢磨、融會(huì)貫通,加深對(duì)知識(shí)點(diǎn)的理解。對(duì)于課本上的重點(diǎn)內(nèi)容、重點(diǎn)例題也要著重記憶。
【八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)歸納】相關(guān)文章:
數(shù)學(xué)知識(shí)點(diǎn)歸納06-21
數(shù)學(xué)知識(shí)點(diǎn)歸納03-13
數(shù)學(xué)矩形知識(shí)點(diǎn)歸納04-25
高考數(shù)學(xué)知識(shí)點(diǎn)歸納06-13
高考數(shù)學(xué)知識(shí)點(diǎn)歸納09-16
初三數(shù)學(xué)的知識(shí)點(diǎn)歸納04-20
初三數(shù)學(xué)的知識(shí)點(diǎn)歸納09-25