初一數(shù)學(xué)知識(shí)點(diǎn)歸納錦集[15篇]
漫長(zhǎng)的學(xué)習(xí)生涯中,大家最不陌生的就是知識(shí)點(diǎn)吧!知識(shí)點(diǎn)就是一些?嫉膬(nèi)容,或者考試經(jīng)常出題的地方。想要一份整理好的知識(shí)點(diǎn)嗎?下面是小編收集整理的初一數(shù)學(xué)知識(shí)點(diǎn)歸納,希望能夠幫助到大家。
初一數(shù)學(xué)知識(shí)點(diǎn)歸納1
一、同底數(shù)冪的乘法
(m,n都是整數(shù))是冪的運(yùn)算中最基本的法則,在應(yīng)用法則運(yùn)算時(shí),要注意以下幾點(diǎn):
a)法則使用的前提條件是:冪的底數(shù)相同而且是相乘時(shí),底數(shù)a可以是一個(gè)具體的數(shù)字式字母,也可以是一個(gè)單項(xiàng)或多項(xiàng)式;
b)指數(shù)是1時(shí),不要誤以為沒(méi)有指數(shù);
c)不要將同底數(shù)冪的乘法與整式的加法相混淆,對(duì)乘法,只要底數(shù)相同指數(shù)就可以相加;而對(duì)于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;
二、冪的乘方與積的乘方
三、同底數(shù)冪的除法
(1)運(yùn)用法則的前提是底數(shù)相同,只有底數(shù)相同,才能用此法則
(2)底數(shù)可以是具體的數(shù),也可以是單項(xiàng)式或多項(xiàng)式
(3)指數(shù)相減指的是被除式的指數(shù)減去除式的指數(shù),要求差不為負(fù)
四、整式的乘法
1、單項(xiàng)式的概念:由數(shù)與字母的乘積構(gòu)成的代數(shù)式叫做單項(xiàng)式。單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式。單項(xiàng)式的數(shù)字因數(shù)叫做單項(xiàng)式的系數(shù),所有字母指數(shù)和叫單項(xiàng)式的次數(shù)。
如:bca22-的系數(shù)為2-,次數(shù)為4,單獨(dú)的一個(gè)非零數(shù)的次數(shù)是0。
2、多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。多項(xiàng)式中每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng),次數(shù)項(xiàng)的次數(shù)叫多項(xiàng)式的'次數(shù)。
五、平方差公式
表達(dá)式:(a+b)(a-b)=a^2-b^2,兩個(gè)數(shù)的和與這兩個(gè)數(shù)差的積,等于這兩個(gè)數(shù)的平方差,這個(gè)公式就叫做乘法的平方差公式
公式運(yùn)用
可用于某些分母含有根號(hào)的分式:
1/(3-4倍根號(hào)2)化簡(jiǎn):
六、完全平方公式
完全平方公式中常見(jiàn)錯(cuò)誤有:
、俾┫铝艘淮雾(xiàng)
、诨煜
、圻\(yùn)算結(jié)果中符號(hào)錯(cuò)誤
、茏兪綉(yīng)用難于掌握。
七、整式的除法
1、單項(xiàng)式的除法法則
單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式。
注意:首先確定結(jié)果的系數(shù)(即系數(shù)相除),然后同底數(shù)冪相除,如果只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式。
初一數(shù)學(xué)知識(shí)點(diǎn)歸納2
、偾髇個(gè)相同因數(shù)的積的運(yùn)算,叫乘方,乘方的結(jié)果叫冪。在a的n次方中,a叫做底數(shù),n叫做指數(shù)。負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)(負(fù)奇負(fù),負(fù)偶正)。正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。新- 課- 標(biāo)-第 -一- 網(wǎng)
、谂即畏降扔谝粋(gè)正數(shù)的值有兩個(gè)(兩個(gè)互為相反數(shù))如:a2=4,a=2或a=-2
注意:|a|+b2=0 得:a=0 且 b=0
強(qiáng)記:a0=1(a≠0);(-1)2=1 ;-12=-1;(-1)3=-1;
-13=-1; (-2)2 =4;-22=-4;(-2)3 =-8;-23=-8
、塾欣頂(shù)的混合運(yùn)算法則:先乘方,再乘除,最后加減;同級(jí)運(yùn)算,
從左到右進(jìn)行;如有括號(hào),先做括號(hào)內(nèi)的運(yùn)算,按小括號(hào)、中括號(hào)、
大括號(hào)依次進(jìn)行。注意:12-4×5=12-20(不能把-變+)
、馨岩粋(gè)大于10的數(shù)表示成a×10的n次方的形式,使用的.就是科學(xué)計(jì)數(shù)法,注意a的范圍為1≤a n比原整數(shù)位減1。(注意科學(xué)計(jì)數(shù)法與原數(shù)的互劃。
、菟纳嵛迦氲侥囊晃痪褪蔷_到哪一位,四舍五入時(shí)望后多看一位采用四舍五入。比如:3.5449精確到0.01就是3.54而不是3.55. (再如: 2.40萬(wàn):精確到百位;6.5×104精確到千位,有數(shù)量級(jí)和科學(xué)計(jì)數(shù)法的要還原成原數(shù),看數(shù)量級(jí)和科學(xué)計(jì)數(shù)法的最后一個(gè)數(shù))。
初一數(shù)學(xué)知識(shí)點(diǎn)歸納3
1、三角形的分類(lèi)
三角形按邊的關(guān)系分類(lèi)如下:
三角形包括不等邊三角形和等腰三角形
等腰三角形 包括底和腰不相等的等腰三角形和等邊三角形
三角形按角的關(guān)系分類(lèi)如下:
三角形包括 直角三角形(有一個(gè)角為直角的三角形)和斜三角形
斜三角形 包括 銳角三角形(三個(gè)角都是銳角的三角形)和 鈍角三角形(有一個(gè)角為鈍 角的三角形)
把邊和角聯(lián)系在一起,我們又有一種特殊的三角形:等腰直角三角形。它是兩條直角邊相等的直角三角形。
2、三角形的三邊關(guān)系定理及推論
(1)三角形三邊關(guān)系定理:三角形的兩邊之和大于第三邊。
推論:三角形的兩邊之差小于第三邊。
3、三角形的內(nèi)角和定理及推論
三角形的內(nèi)角和定理:三角形三個(gè)內(nèi)角和等于180°。
推論:
、僦苯侨切蔚膬蓚(gè)銳角互余。
、谌切蔚囊粋(gè)外角等于和它不相鄰的來(lái)兩個(gè)內(nèi)角的和。
、廴切蔚囊粋(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。
注:在同一個(gè)三角形中:等角對(duì)等邊;等邊對(duì)等角;大角對(duì)大邊;大邊對(duì)大角。
4、三角形的面積
三角形的.面積=×底×高
全等三角形
1、全等三角形的概念
能夠完全重合的兩個(gè)三角形叫做全等三角形。。
2、三角形全等的判定
三角形全等的判定定理:
(1)邊角邊定理:有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡(jiǎn)寫(xiě)成“邊角邊”或“SAS”)
(2)角邊角定理:有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡(jiǎn)寫(xiě)成“角邊角”或“ASA”)
(3)邊邊邊定理:有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡(jiǎn)寫(xiě)成“邊邊邊”或“SSS”)。
直角三角形全等的判定:
對(duì)于特殊的直角三角形,判定它們?nèi)葧r(shí),還有HL定理(斜邊、直角邊定理):有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等(可簡(jiǎn)寫(xiě)成“斜邊、直角邊”或“HL”)
3、全等變換
只改變圖形的位置,不改變其形狀大小的圖形變換叫做全等變換。
全等變換包括一下三種:
(1)平移變換:把圖形沿某條直線(xiàn)平行移動(dòng)的變換叫做平移變換。
(2)對(duì)稱(chēng)變換:將圖形沿某直線(xiàn)翻折180°,這種變換叫做對(duì)稱(chēng)變換。
(3)旋轉(zhuǎn)變換:將圖形繞某點(diǎn)旋轉(zhuǎn)一定的角度到另一個(gè)位置,這種變換叫做旋轉(zhuǎn)變換。
等腰三角形
1、等腰三角形的性質(zhì)
(1)等腰三角形的性質(zhì)定理及推論:
定理:等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱(chēng):等邊對(duì)等角)
推論1:等腰三角形頂角平分線(xiàn)平分底邊并且垂直于底邊。即等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)、底邊上的高重合。
推論2:等邊三角形的各個(gè)角都相等,并且每個(gè)角都等于60°。
2、三角形中的中位線(xiàn)
連接三角形兩邊中點(diǎn)的線(xiàn)段叫做三角形的中位線(xiàn)。
(1)三角形共有三條中位線(xiàn),并且它們又重新構(gòu)成一個(gè)新的三角形。
(2)要會(huì)區(qū)別三角形中線(xiàn)與中位線(xiàn)。
三角形中位線(xiàn)定理:三角形的中位線(xiàn)平行于第三邊,并且等于它的一半。
三角形中位線(xiàn)定理的作用:
位置關(guān)系:可以證明兩條直線(xiàn)平行。
數(shù)量關(guān)系:可以證明線(xiàn)段的倍分關(guān)系。
常用結(jié)論:任一個(gè)三角形都有三條中位線(xiàn),由此有:
結(jié)論1:三條中位線(xiàn)組成一個(gè)三角形,其周長(zhǎng)為原三角形周長(zhǎng)的一半。
結(jié)論2:三條中位線(xiàn)將原三角形分割成四個(gè)全等的三角形。
結(jié)論3:三條中位線(xiàn)將原三角形劃分出三個(gè)面積相等的平行四邊形。
結(jié)論4:三角形一條中線(xiàn)和與它相交的中位線(xiàn)互相平分。
結(jié)論5:三角形中任意兩條中位線(xiàn)的夾角與這夾角所對(duì)的三角形的頂角相等。
初一數(shù)學(xué)知識(shí)點(diǎn)歸納4
一、知識(shí)梳理
知識(shí)點(diǎn)1:正、負(fù)數(shù)的概念:我們把像3、2、+0.5、0.03%這樣的數(shù)叫做正數(shù),它們都是比0大的數(shù);像-3、-2、-0.5、-0.03%這樣數(shù)叫做負(fù)數(shù)。它們都是比0小的數(shù)。0既不是正數(shù)也不是負(fù)數(shù)。我們可以用正數(shù)與負(fù)數(shù)表示具有相反意義的量。
知識(shí)點(diǎn)2:有理數(shù)的概念和分類(lèi):整數(shù)和分?jǐn)?shù)統(tǒng)稱(chēng)有理數(shù)。有理數(shù)的分類(lèi)主要有兩種:
注:有限小數(shù)和無(wú)限循環(huán)小數(shù)都可看作分?jǐn)?shù)。
知識(shí)點(diǎn)3:數(shù)軸的概念:像下面這樣規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線(xiàn)叫做數(shù)軸。
知識(shí)點(diǎn)4:絕對(duì)值的概念:
。1)幾何意義:數(shù)軸上表示a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對(duì)值,記作|a|;
。2)代數(shù)意義:一個(gè)正數(shù)的絕對(duì)值是它的本身;一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);零的絕對(duì)值是零。
注:任何一個(gè)數(shù)的絕對(duì)值均大于或等于0(即非負(fù)數(shù)).
知識(shí)點(diǎn)5:相反數(shù)的概念:
。1)幾何意義:在數(shù)軸上分別位于原點(diǎn)的兩旁,到原點(diǎn)的距離相等的兩個(gè)點(diǎn)所表示的數(shù),叫做互為相反數(shù);
。2)代數(shù)意義:符號(hào)不同但絕對(duì)值相等的兩個(gè)數(shù)叫做互為相反數(shù)。0的相反數(shù)是0。
知識(shí)點(diǎn)6:有理數(shù)大小的比較:
有理數(shù)大小比較的基本法則:正數(shù)都大于零,負(fù)數(shù)都小于零,正數(shù)大于負(fù)數(shù)。
數(shù)軸上有理數(shù)大小的比較:在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的'大。
用絕對(duì)值進(jìn)行有理數(shù)大小的比較:兩個(gè)正數(shù),絕對(duì)值大的正數(shù)大;兩個(gè)負(fù)數(shù),絕對(duì)值大的負(fù)數(shù)反而小。
知識(shí)點(diǎn)7:有理數(shù)加法法則:
(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
(2)異號(hào)兩數(shù)相加,絕對(duì)值相等時(shí),和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;
(3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù).
知識(shí)點(diǎn)8:有理數(shù)加法運(yùn)算律:
加法交換律:兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。
加法結(jié)合律:三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。
知識(shí)點(diǎn)9:有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
知識(shí)點(diǎn)10:有理數(shù)加減混合運(yùn)算:根據(jù)有理數(shù)減法的法則,一切加法和減法的運(yùn)算,都可以統(tǒng)一成加法運(yùn)算,然后省略括號(hào)和加號(hào),并運(yùn)用加法法則、加法運(yùn)算律進(jìn)行計(jì)算。
初一數(shù)學(xué)知識(shí)點(diǎn)歸納5
七上第三章 整式及其加減
1.字母表示數(shù)
1)字母表示運(yùn)算律 2)字母表示計(jì)算公式
字母可以表示任何數(shù)
2.代數(shù)式
1)概念:像4+3(x-1),x+x+(x+1),a+b,ab,2(+n),s/t 等式子都是代數(shù)式,單獨(dú)一個(gè)數(shù)或一個(gè)字母也是代數(shù)式,如-5,a,b等.
2)書(shū)寫(xiě)要求:①字母與字母相乘時(shí),乘號(hào)通常簡(jiǎn)寫(xiě)作“ ”或省略不寫(xiě);數(shù)字與字母相乘時(shí),數(shù)字在前;帶分?jǐn)?shù)與字母相乘時(shí),應(yīng)先把帶分?jǐn)?shù)化成假分?jǐn)?shù)后再與字母相乘;數(shù)字與數(shù)字相乘仍用“×”.
、诔ㄒ话銓(xiě)成分?jǐn)?shù)形式
、 如果代數(shù)式是積或商的形式,單位直接寫(xiě)在后面;如果是和或差的形式,必須先把代數(shù)式用括號(hào)括起來(lái)再寫(xiě)單位。
3.整式
1)單項(xiàng)式:表示數(shù)字和字母的積,單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式.
、 系數(shù):?jiǎn)雾?xiàng)式中的數(shù)字因數(shù)(包括其前面的符號(hào))
、 次數(shù):?jiǎn)雾?xiàng)式中,所有字母的.指數(shù)的和;單獨(dú)的數(shù)字是0次單項(xiàng)式.
注意:(1)單項(xiàng)式中數(shù)與字母之間都是乘積關(guān)系,凡字母出現(xiàn)在分母中的式子一定不是單項(xiàng)式,如1/x不是單項(xiàng)式;(2)單項(xiàng)式中不含加減運(yùn)算;(3)π是常數(shù),在單項(xiàng)式中相當(dāng)于數(shù)字因數(shù);(4)定義中的“數(shù)”可以是小數(shù),也可以是分?jǐn)?shù)、整數(shù).
2)多項(xiàng)式:幾個(gè)單項(xiàng)式的和;在多項(xiàng)式中,每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),不含字母的項(xiàng)叫常數(shù)項(xiàng);一個(gè)多項(xiàng)式含有幾項(xiàng),就叫幾項(xiàng)式;
次數(shù): 多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù),是多項(xiàng)式的次數(shù);
注意:(1)確定多項(xiàng)式的項(xiàng)時(shí),不要忽略它的符號(hào);(2)關(guān)于某個(gè)字母的n次項(xiàng)式,要求是合并同類(lèi)項(xiàng)后的最簡(jiǎn)多項(xiàng)式.
3) 整式:?jiǎn)雾?xiàng)式和多項(xiàng)式統(tǒng)稱(chēng)為整式.
4)同類(lèi)項(xiàng):① 概念:所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng);與它們的系數(shù)大小無(wú)關(guān),與字母順序無(wú)關(guān);幾個(gè)常數(shù)也是同類(lèi)項(xiàng).
、诤喜⑼(lèi)項(xiàng)法則:同類(lèi)項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變.
4.整式的加減:
1)整式加減是求幾個(gè)整式的和或差的運(yùn)算,其實(shí)質(zhì)是去括號(hào),合并同類(lèi)項(xiàng)
2)法則:幾個(gè)整式相加減,用括號(hào)把每一個(gè)整式括起來(lái),再用加減號(hào)連接,然后去括號(hào),合并同類(lèi)項(xiàng).
3)化簡(jiǎn)求值:一是相加減化簡(jiǎn),二是用具體數(shù)值代替整式中的字母,三是按式子的運(yùn)算關(guān)系計(jì)算,計(jì)算其結(jié)果.
5.探索與表達(dá)規(guī)律:圖形中的規(guī)律、數(shù)字中的規(guī)律、算式中的規(guī)律.
初一數(shù)學(xué)知識(shí)點(diǎn)歸納6
有理數(shù)的乘方
(1)求相同因數(shù)的積的運(yùn)算叫做乘方.乘方運(yùn)算的.結(jié)果叫冪.
一般地,記作,讀作:a的n次方,表示n個(gè)a相乘;其中,a是底數(shù),n是指數(shù),稱(chēng)為冪。
(2)正數(shù)的任何次冪都是正數(shù).
負(fù)數(shù)的奇數(shù)次冪是負(fù)數(shù),
負(fù)數(shù)的偶數(shù)次冪是正數(shù).
(3)一個(gè)數(shù)的平方為它本身,這個(gè)數(shù)是0和1;
一個(gè)數(shù)的立方為它本身,這個(gè)數(shù)是0、1和-1。
初一數(shù)學(xué)知識(shí)點(diǎn)歸納7
本章的主要內(nèi)容可以概括為有理數(shù)的概念與有理數(shù)的運(yùn)算兩部分。有理數(shù)的概念可以利用數(shù)軸來(lái)認(rèn)識(shí)、理解,同時(shí),利用數(shù)軸又可以把這些概念串在一起。有理數(shù)的運(yùn)算是全章的重點(diǎn)。在具體運(yùn)算時(shí),要注意四個(gè)方面,一是運(yùn)算法則,二是運(yùn)算律,三是運(yùn)算順序,四是近似計(jì)算。
基礎(chǔ)知識(shí):
1、正數(shù)(positionnumber):大于0的數(shù)叫做正數(shù)。
2、負(fù)數(shù)(negationnumber):在正數(shù)前面加上負(fù)號(hào)-的數(shù)叫做負(fù)數(shù)。
3、0既不是正數(shù)也不是負(fù)數(shù)。
4、有理數(shù)(rationalnumber):正整數(shù)、負(fù)整數(shù)、0、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)都可以寫(xiě)成分?jǐn)?shù)的形式,這樣的數(shù)稱(chēng)為有理數(shù)。
5、數(shù)軸(numberaxis):通常,用一條直線(xiàn)上的點(diǎn)表示數(shù),這條直線(xiàn)叫做數(shù)軸。
數(shù)軸滿(mǎn)足以下要求:
(1)在直線(xiàn)上任取一個(gè)點(diǎn)表示數(shù)0,這個(gè)點(diǎn)叫做原點(diǎn)(origin);
(2)通常規(guī)定直線(xiàn)上從原點(diǎn)向右(或上)為正方向,從原點(diǎn)向左(或下)為負(fù)方向;
(3)選取適當(dāng)?shù)拈L(zhǎng)度為單位長(zhǎng)度。
6、相反數(shù)(oppositenumber):絕對(duì)值相等,只有負(fù)號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù)。
7、絕對(duì)值(absolutevalue)一般地,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對(duì)值。記做|a|。由絕對(duì)值的定義可得:|a-b|表示數(shù)軸上a點(diǎn)到b點(diǎn)的距離。一個(gè)正數(shù)的絕對(duì)值是它本身;一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0.正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù);兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。
8、有理數(shù)加法法則
(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加。
(2)絕對(duì)值不相等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的'符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;橄喾磾(shù)的兩個(gè)數(shù)相加得0.
(3)一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。
加法交換律:有理數(shù)的加法中,兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。表達(dá)式:a+b=b+a.
加法結(jié)合律:有理數(shù)的加法中,三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加或者先把后兩個(gè)數(shù)相加,和不變。
表達(dá)式:(a+b)+c=a+(b+c)
9、有理數(shù)減法法則:減去一個(gè)數(shù),等于加這個(gè)數(shù)的相反數(shù)。表達(dá)式:a-b=a+(-b)
10、有理數(shù)乘法法則
兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘。
任何數(shù)同0相乘,都得0.
乘法交換律:一般地,有理數(shù)乘法中,兩個(gè)數(shù)相乘,交換因數(shù)的位置,積相等。表達(dá)式:ab=ba
乘法結(jié)合律:三個(gè)數(shù)相乘,先把前兩個(gè)數(shù)相乘,或者先把后兩個(gè)數(shù)相乘,積相等。表達(dá)式:(ab)c=a(bc)
乘法分配律:一般地,一個(gè)數(shù)同兩個(gè)的和相乘,等于把這個(gè)數(shù)分別同這兩個(gè)數(shù)相乘,再把積相加。
表達(dá)式:a(b+c)=ab+ac
11、倒數(shù)
1除以一個(gè)數(shù)(零除外)的商,叫做這個(gè)數(shù)的倒數(shù)。如果兩個(gè)數(shù)互為倒數(shù),那么這兩個(gè)數(shù)的積等于1.
12、有理數(shù)除法法則:兩數(shù)相除,同號(hào)得負(fù),異號(hào)得正,并把絕對(duì)值相除。0除以任何一個(gè)不等于0的數(shù),都得0.
13、有理數(shù)的乘方:求n個(gè)相同因數(shù)的積的運(yùn)算,叫做乘方,乘方的結(jié)果叫做冪(power)。an中,a叫做底數(shù)(basenumber),n叫做指數(shù)(exponent)。
根據(jù)有理數(shù)的乘法法則可以得出:負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0.
14、有理數(shù)的混合運(yùn)算順序
(1)先乘方,再乘除,最后加減的順序進(jìn)行;
(2)同級(jí)運(yùn)算,從左到右進(jìn)行;
(3)如有括號(hào),先做括號(hào)內(nèi)的運(yùn)算,按小括號(hào)、中括號(hào)、大括號(hào)依次進(jìn)行。
15、科學(xué)技術(shù)法:把一個(gè)大于10的數(shù)表示成a﹡10n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù)(即010),n是正整數(shù))。
16、近似數(shù)(approximatenumber):
17、有理數(shù)可以寫(xiě)成m/n(m、n是整數(shù),n0)的形式。另一方面,形如m/n(m、n是整數(shù),n0)的數(shù)都是有理數(shù)。所以有理數(shù)可以用m/n(m、n是整數(shù),n0)表示。
初一數(shù)學(xué)知識(shí)點(diǎn)歸納8
1.有理數(shù):
(1)凡能寫(xiě)成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱(chēng)整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱(chēng)有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);π不是有理數(shù);
(2)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性;
2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線(xiàn).
3.相反數(shù):
(1)只有符號(hào)不同的兩個(gè)數(shù),我們說(shuō)其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;
(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
4.絕對(duì)值:
(1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的`絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開(kāi)原點(diǎn)的距離;
(2)絕對(duì)值可表示為:
絕對(duì)值的問(wèn)題經(jīng)常分類(lèi)討論;
(3)a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a|?|b|=|a?b|,
5.有理數(shù)比大。(1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小;(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.
初一數(shù)學(xué)知識(shí)點(diǎn)歸納9
同類(lèi)項(xiàng)的概念:
所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類(lèi)項(xiàng)。幾個(gè)常數(shù)項(xiàng)也叫同類(lèi)項(xiàng)。
判斷幾個(gè)單項(xiàng)式或項(xiàng),是否是同類(lèi)項(xiàng)的兩個(gè)標(biāo)準(zhǔn):
、偎帜赶嗤。②相同字母的次數(shù)也相同。
判斷同類(lèi)項(xiàng)時(shí)與系數(shù)無(wú)關(guān),與字母排列的順序也無(wú)關(guān)。
合并同類(lèi)項(xiàng)的概念:把多項(xiàng)式中的同類(lèi)項(xiàng)合并成一項(xiàng)叫做合并同類(lèi)項(xiàng)。
合并同類(lèi)項(xiàng)的法則:同類(lèi)項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的`指數(shù)不變。
合并同類(lèi)項(xiàng)步驟:
、.準(zhǔn)確的找出同類(lèi)項(xiàng)。
、.逆用分配律,把同類(lèi)項(xiàng)的系數(shù)加在一起(用小括號(hào)),字母和字母的指數(shù)不變。
、.寫(xiě)出合并后的結(jié)果。
合并同類(lèi)項(xiàng)時(shí)注意:
(1)如果兩個(gè)同類(lèi)項(xiàng)的系數(shù)互為相反數(shù),合并同類(lèi)項(xiàng)后,結(jié)果為0.
(2)不要漏掉不能合并的項(xiàng)。
(3)只要不再有同類(lèi)項(xiàng),就是結(jié)果(可能是單項(xiàng)式,也可能是多項(xiàng)式)。
(4)不是同類(lèi)項(xiàng)千萬(wàn)不能進(jìn)行合并。
初一數(shù)學(xué)知識(shí)點(diǎn)歸納10
本章的主要內(nèi)容是圖形的初步認(rèn)識(shí),從生活周?chē)煜さ奈矬w入手,對(duì)物體的形狀的認(rèn)識(shí)從感性逐步上升到抽象的幾何圖形。通過(guò)從不同方向看立體圖形和展開(kāi)立體圖形,初步認(rèn)識(shí)立體圖形與平面圖形的聯(lián)系。在此基礎(chǔ)上,認(rèn)識(shí)一些簡(jiǎn)單的平面圖形直線(xiàn)、射線(xiàn)、線(xiàn)段和角。
一、目標(biāo)與要求
1.能從現(xiàn)實(shí)物體中抽象得出幾何圖形,正確區(qū)分立體圖形與平面圖形;能把一些立體圖形的問(wèn)題,轉(zhuǎn)化為平面圖形進(jìn)行研究和處理,探索平面圖形與立體圖形之間的關(guān)系。
2.經(jīng)歷探索平面圖形與立體圖形之間的關(guān)系,發(fā)展空間觀念,培養(yǎng)提高觀察、分析、抽象、概括的能力,培養(yǎng)動(dòng)手操作能力,經(jīng)歷問(wèn)題解決的過(guò)程,提高解決問(wèn)題的能力。
3.積極參與教學(xué)活動(dòng)過(guò)程,形成自覺(jué)、認(rèn)真的學(xué)習(xí)態(tài)度,培養(yǎng)敢于面對(duì)學(xué)習(xí)困難的精神,感受幾何圖形的美感;倡導(dǎo)自主學(xué)習(xí)和小組合作精神,在獨(dú)立思考的基礎(chǔ)上,能從小組交流中獲益,并對(duì)學(xué)習(xí)過(guò)程進(jìn)行正確評(píng)價(jià),體會(huì)合作學(xué)習(xí)的重要性。
二、知識(shí)框架
三、難點(diǎn)
立體圖形與平面圖形之間的轉(zhuǎn)化是難點(diǎn);
探索點(diǎn)、線(xiàn)、面、體運(yùn)動(dòng)變化后形成的圖形是難點(diǎn);
畫(huà)一條線(xiàn)段等于已知線(xiàn)段的尺規(guī)作圖方法,正確比較兩條線(xiàn)段長(zhǎng)短是難點(diǎn)。
四、知識(shí)點(diǎn)、概念總結(jié)
1.幾何圖形:點(diǎn)、線(xiàn)、面、體這些可幫助人們有效的刻畫(huà)錯(cuò)綜復(fù)雜的世界,它們都稱(chēng)為幾何圖形。從實(shí)物中抽象出的'各種圖形統(tǒng)稱(chēng)為幾何圖形。有些幾何圖形的各部分不在同一平面內(nèi),叫做立體圖形。有些幾何圖形的各部分都在同一平面內(nèi),叫做平面圖形。雖然立體圖形與平面圖形是兩類(lèi)不同的幾何圖形,但它們是互相聯(lián)系的。
2.幾何圖形的分類(lèi):幾何圖形一般分為立體圖形和平面圖形。
13.角的種類(lèi):角的大小與邊的長(zhǎng)短沒(méi)有關(guān)系;角的大小決定于角的兩條邊張開(kāi)的程度,張開(kāi)的越大,角就越大,相反,張開(kāi)的越小,角則越小。在動(dòng)態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負(fù)角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱(chēng)為角度制。此外,還有密位制、弧度制等。
銳角:大于0,小于90的角叫做銳角。
直角:等于90的角叫做直角。
鈍角:大于90而小于180的角叫做鈍角。
平角:等于180的角叫做平角。
優(yōu)角:大于180小于360叫優(yōu)角。
劣角:大于0小于180叫做劣角,銳角、直角、鈍角都是劣角。
周角:等于360的角叫做周角。
負(fù)角:按照順時(shí)針?lè)较蛐D(zhuǎn)而成的角叫做負(fù)角。
正角:逆時(shí)針旋轉(zhuǎn)的角為正角。
0角:等于零度的角。
余角和補(bǔ)角:兩角之和為90則兩角互為余角,兩角之和為180則兩角互為補(bǔ)角。等角的余角相等,等角的補(bǔ)角相等。
對(duì)頂角:兩條直線(xiàn)相交后所得的只有一個(gè)公共頂點(diǎn)且兩個(gè)角的兩邊互為反向延長(zhǎng)線(xiàn),這樣的兩個(gè)角叫做互為對(duì)頂角。兩條直線(xiàn)相交,構(gòu)成兩對(duì)對(duì)頂角;閷(duì)頂角的兩個(gè)角相等。
還有許多種角的關(guān)系,如內(nèi)錯(cuò)角,同位角,同旁?xún)?nèi)角(三線(xiàn)八角中,主要用來(lái)判斷平行)!
14.幾何圖形分類(lèi)
(1)立體幾何圖形可以分為以下幾類(lèi):
第一類(lèi):柱體;
包括:圓柱和棱柱,棱柱又可分為直棱柱和斜棱柱,棱柱體按底面邊數(shù)的多少又可分為三棱柱、四棱柱、N棱柱;
棱柱體積統(tǒng)一等于底面面積乘以高,即V=SH,
第二類(lèi):錐體;
包括:圓錐體和棱錐體,棱錐分為三棱錐、四棱錐以及N棱錐;
棱錐體積統(tǒng)一為V=SH/3,
第三類(lèi):球體;
此分類(lèi)只包含球一種幾何體,
體積公式V=4R3/3,
其他不常用分類(lèi):圓臺(tái)、棱臺(tái)、球冠等很少接觸到。
大多幾何體都由這些幾何體組成。
(2)平面幾何圖形如何分類(lèi)
a.圓形
b.多邊形:三角形(分為一般三角形,直角三角形,等腰三角形,等邊三角形)、四邊形(分為不規(guī)則四邊形,體形,平行四邊形,平行四邊形又分:矩形,菱形,正方形)、五邊形、六
注:正方形既是矩形也是菱形
初一數(shù)學(xué)知識(shí)點(diǎn)歸納11
3.1 一元一次方程
1、方程是含有未知數(shù)的等式。
2、方程都只含有一個(gè)未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程。
注意:判斷一個(gè)方程是否是一元一次方程要抓住三點(diǎn):
1)未知數(shù)所在的式子是整式(方程是整式方程);
2)化簡(jiǎn)后方程中只含有一個(gè)未知數(shù);
3)經(jīng)整理后方程中未知數(shù)的次數(shù)是1.
3、解方程就是求出使方程中等號(hào)左右兩邊相等的未知數(shù)的值,這個(gè)值就是方程的解。
4、等式的性質(zhì):
1)等式兩邊同時(shí)加(或減)同一個(gè)數(shù)(或式子),結(jié)果仍相等;
2)等式兩邊同時(shí)乘同一個(gè)數(shù),或除以同一個(gè)不為0的數(shù),結(jié)果仍相等。
注意:運(yùn)用性質(zhì)時(shí),一定要注意等號(hào)兩邊都要同時(shí)變;運(yùn)用性質(zhì)2時(shí),一定要注意0這個(gè)數(shù).
3.2 、3.3解一元一次方程
在實(shí)際解方程的過(guò)程中,以下步驟不一定完全用上,有些步驟還需重復(fù)使用. 因此在解方程時(shí)還要注意以下幾點(diǎn):
、偃シ帜福涸诜匠虄蛇叾汲艘愿鞣帜傅淖钚」稊(shù),不要漏乘不含分母的項(xiàng);分子是一個(gè)整體,去分母后應(yīng)加上括號(hào);去分母與分母化整是兩個(gè)概念,不能混淆;
、谌ダㄌ(hào):遵從先去小括號(hào),再去中括號(hào),最后去大括號(hào);不要漏乘括號(hào)的項(xiàng);不要弄錯(cuò)符號(hào);
、垡祈(xiàng):把含有未知數(shù)的項(xiàng)移到方程的一邊,其他項(xiàng)都移到方程的另一邊(移項(xiàng)要變符號(hào)) 移項(xiàng)要變號(hào);
④合并同類(lèi)項(xiàng):不要丟項(xiàng),解方程是同解變形,每一步都是一個(gè)方程,不能像計(jì)算或化簡(jiǎn)題那樣寫(xiě)能連等的形式;
、菹禂(shù)化為1::字母及其指數(shù)不變系數(shù)化成1,在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解。不要分子、分母搞顛倒。
3.4 實(shí)際問(wèn)題與一元一次方程
一、概念梳理
、帕幸辉淮畏匠探鉀Q實(shí)際問(wèn)題的一般步驟是:①審題,特別注意關(guān)鍵的字和詞的意義,弄清相關(guān)數(shù)量關(guān)系;②設(shè)出未知數(shù)(注意單位);③根據(jù)相等關(guān)系列出方程;④解這個(gè)方程;⑤檢驗(yàn)并寫(xiě)出答案(包括單位名稱(chēng))。
、埔恍┕潭P椭械牡攘筷P(guān)系及典型例題參照一元一次方程應(yīng)用題專(zhuān)練學(xué)案。
二、思想方法(本單元常用到的數(shù)學(xué)思想方法小結(jié))
、沤K枷耄和ㄟ^(guò)對(duì)實(shí)際問(wèn)題中的數(shù)量關(guān)系的分析,抽象成數(shù)學(xué)模型,建立一元一次方程的思想.
、品匠趟枷耄河梅匠探鉀Q實(shí)際問(wèn)題的思想就是方程思想.
、腔瘹w思想:解一元一次方程的過(guò)程,實(shí)質(zhì)上就是利用去分母、去括號(hào)、移項(xiàng)、合并同類(lèi)項(xiàng)、未知數(shù)的系數(shù)化為1等各種同解變形,不斷地用新的更簡(jiǎn)單的.方程來(lái)代替原來(lái)的方程,最后逐步把方程轉(zhuǎn)化為x=a的形式. 體現(xiàn)了化“未知”為“已知”的化歸思想.
、葦(shù)形結(jié)合思想:在列方程解決問(wèn)題時(shí),借助于線(xiàn)段示意圖和圖表等來(lái)分析數(shù)量關(guān)系,使問(wèn)題中的數(shù)量關(guān)系很直觀地展示出來(lái),體現(xiàn)了數(shù)形結(jié)合的優(yōu)越性.
、煞诸(lèi)思想:在解含字母系數(shù)的方程和含絕對(duì)值符號(hào)的方程過(guò)程中往往需要分類(lèi)討論,在解有關(guān)方案設(shè)計(jì)的實(shí)際問(wèn)題的過(guò)程中往往也要注意分類(lèi)思想在過(guò)程中的運(yùn)用.
三、數(shù)學(xué)思想方法的學(xué)習(xí)
1. 解一元一次方程時(shí),要明確每一步過(guò)程都作什么變形,應(yīng)該注意什么問(wèn)題.
2. 尋找實(shí)際問(wèn)題的數(shù)量關(guān)系時(shí),要善于借助直觀分析法,如表格法,直線(xiàn)分析法和圖示分析法等.
3. 列方程解應(yīng)用題的檢驗(yàn)包括兩個(gè)方面:⑴檢驗(yàn)求得的結(jié)果是不是方程的解;
、剖且袛喾匠痰慕馐欠穹项}目中的實(shí)際意義.
四、應(yīng)用(常見(jiàn)等量關(guān)系)
行程問(wèn)題:s=v×t
工程問(wèn)題:工作總量=工作效率×?xí)r間
盈虧問(wèn)題:利潤(rùn)=售價(jià)-成本
利率=利潤(rùn)÷成本×100%
售價(jià)=標(biāo)價(jià)×折扣數(shù)×10%
儲(chǔ)蓄利潤(rùn)問(wèn)題:利息=本金×利率×?xí)r間
本息和=本金+利息
初一數(shù)學(xué)知識(shí)點(diǎn)歸納12
1.有理數(shù):
(1)凡能寫(xiě)成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱(chēng)整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱(chēng)有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);不是有理數(shù);
(2)有理數(shù)的分類(lèi):①②
(3)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);
a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0a是負(fù)數(shù)或0a是非正數(shù).
2.?dāng)?shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線(xiàn).
3.相反數(shù):
(1)只有符號(hào)不同的兩個(gè)數(shù),我們說(shuō)其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;
(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
(3)相反數(shù)的和為0a+b=0a、b互為相反數(shù).
4.絕對(duì)值:
(1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開(kāi)原點(diǎn)的距離;
(2)絕對(duì)值可表示為:或;絕對(duì)值的問(wèn)題經(jīng)常分類(lèi)討論;
(3);;
(4)|a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a|·|b|=|a·b|,.
5.有理數(shù)比大。
。1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;
(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0;
。3)正數(shù)大于一切負(fù)數(shù);
。4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而;
。5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;
。6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.
6.互為倒數(shù):乘積為1的兩個(gè)數(shù)互為倒數(shù);注意:0沒(méi)有倒數(shù);若a≠0,那么的倒數(shù)是;倒數(shù)是本身的數(shù)是±1;若ab=1a、b互為倒數(shù);若ab=-1a、b互為負(fù)倒數(shù).
7.有理數(shù)加法法則:
。1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
。2)異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;
。3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù).
8.有理數(shù)加法的運(yùn)算律:
。1)加法的交換律:a+b=b+a;(2)加法的`結(jié)合律:(a+b)+c=a+(b+c).
9.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a-b=a+(-b).
10有理數(shù)乘法法則:
。1)兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;
。2)任何數(shù)同零相乘都得零;
。3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定.
11有理數(shù)乘法的運(yùn)算律:
(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);
。3)乘法的分配律:a(b+c)=ab+ac.
12.有理數(shù)除法法則:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù);注意:零不能做除數(shù),.
13.有理數(shù)乘方的法則:
。1)正數(shù)的任何次冪都是正數(shù);
。2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時(shí):(-a)n=-an或(a-b)n=-(b-a)n,當(dāng)n為正偶數(shù)時(shí):(-a)n=an或(a-b)n=(b-a)n.
14.乘方的定義:
。1)求相同因式積的運(yùn)算,叫做乘方;
。2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
。3)a2是重要的非負(fù)數(shù),即a2≥0;若a2+|b|=0a=0,b=0;
。4)據(jù)規(guī)律底數(shù)的小數(shù)點(diǎn)移動(dòng)一位,平方數(shù)的小數(shù)點(diǎn)移動(dòng)二位.
15.科學(xué)記數(shù)法:把一個(gè)大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法.
16.近似數(shù)的精確位:一個(gè)近似數(shù),四舍五入到那一位,就說(shuō)這個(gè)近似數(shù)的精確到那一位.
17.有效數(shù)字:從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字.
18.混合運(yùn)算法則:先乘方,后乘除,最后加減;注意:怎樣算簡(jiǎn)單,怎樣算準(zhǔn)確,是數(shù)學(xué)計(jì)算的最重要的原則.
19.特殊值法:是用符合題目要求的數(shù)代入,并驗(yàn)證題設(shè)成立而進(jìn)行猜想的一種方法,但不能用于證明.
初一數(shù)學(xué)知識(shí)點(diǎn)歸納13
一、目標(biāo)與要求
同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對(duì)角叫做同位角。
內(nèi)錯(cuò)角:∠2與∠6像這樣的一對(duì)角叫做內(nèi)錯(cuò)角。
同旁?xún)?nèi)角:∠2與∠5像這樣的一對(duì)角叫做同旁?xún)?nèi)角。
9.平行:在平面上兩條直線(xiàn)、空間的兩個(gè)平面或空間的一條直線(xiàn)與一平面之間沒(méi)有任何公共點(diǎn)時(shí),稱(chēng)它們平行。
10.平行線(xiàn):在同一平面內(nèi),不相交的兩條直線(xiàn)叫做平行線(xiàn)。
11.命題:判斷一件事情的語(yǔ)句叫命題。
12.真命題:正確的命題,即如果命題的題設(shè)成立,那么結(jié)論一定成立。
13.假命題:條件和結(jié)果相矛盾的命題是假命題。
14.平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,圖形的這種移動(dòng)叫做平移平移變換,簡(jiǎn)稱(chēng)平移。
15.對(duì)應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動(dòng)后得到的,這樣的兩個(gè)點(diǎn)叫做對(duì)應(yīng)點(diǎn)。
16.定理與性質(zhì)
對(duì)頂角的性質(zhì):對(duì)頂角相等。
17.垂線(xiàn)的性質(zhì):
性質(zhì)1:過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直。
性質(zhì)2:連接直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)的所有線(xiàn)段中,垂線(xiàn)段最短。
18.平行公理:經(jīng)過(guò)直線(xiàn)外一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)平行。
平行公理的推論:如果兩條直線(xiàn)都與第三條直線(xiàn)平行,那么這兩條直線(xiàn)也互相平行。
19.平行線(xiàn)的性質(zhì):
性質(zhì)1:兩直線(xiàn)平行,同位角相等。
性質(zhì)2:兩直線(xiàn)平行,內(nèi)錯(cuò)角相等。
性質(zhì)3:兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)。
20.平行線(xiàn)的判定:
判定1:同位角相等,兩直線(xiàn)平行。
判定2:內(nèi)錯(cuò)角相等,兩直線(xiàn)平行。
判定3:同旁?xún)?nèi)角相等,兩直線(xiàn)平行。
21.命題的擴(kuò)展
三種命題
(1)對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論分別是另外一個(gè)命題的結(jié)論和條件,那么這兩個(gè)命題叫做互逆命題,其中一個(gè)命題叫做原命題,另外一個(gè)命題叫做原命題的逆命題。
(2)對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論分別是另外一個(gè)命題的條件的否定和結(jié)論的否定,那么這兩個(gè)命題叫做互否命題,其中一個(gè)命題叫做原命題,另外一個(gè)命題叫做原命題的否命題。
(3)對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論分別是另外一個(gè)命題的結(jié)論的否定和條件的否定,那么這兩個(gè)命題叫做互為逆否命題,其中一個(gè)命題叫做原命題,另外一個(gè)命題叫做原命題的逆否命題。
四種命題的相互關(guān)系
(1)四種命題的.相互關(guān)系:原命題與逆命題互逆,否命題與原命題互否,原命題與逆否命題相互逆否,逆命題與否命題相互逆否,逆命題與逆否命題互否,逆否命題與否命題互逆。
(2)四種命題的真假關(guān)系:
兩個(gè)命題互為逆否命題,它們有相同的真假性。兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系
命題之間的關(guān)系
(1)能夠判斷真假的陳述句叫做命題,正確的命題叫做真命題,錯(cuò)誤的命題叫做假命題。
(2)“若p,則q”形式的命題中p叫做命題的條件,q叫做命題的結(jié)論。
(3)命題的分類(lèi):
A:原命題:一個(gè)命題的本身稱(chēng)之為原命題,如:若x>1,則f(x)=(x-1)2單調(diào)遞增。
B:逆命題:將原命題的條件和結(jié)論顛倒的新命題,如:若f(x)=(x-1)2單調(diào)遞增,則x>1.
C:否命題:將原命題的條件和結(jié)論全否定的新命題,但不改變條件和結(jié)論的順序,
如:若x小于1,則f(x)=(x-1)2不單調(diào)遞增。
D:逆否命題:將原命題的條件和結(jié)論顛倒,然后再將條件和結(jié)論全否定的新命題,
如:若f(x)=(x-1)2不單調(diào)遞增,則x小于1.
(4)命題的否定
命題的否定是只將命題的結(jié)論否定的新命題,這與否命題不同。
(5)4種命題及命題的否定的真假性關(guān)系
原命題和逆否命題等價(jià),否命題和逆命題等價(jià),命題的否定與原命題的真假性相反。
充分條件與必要條件
(1)“若p,則q”為真命題,叫做由p推出q,記作p=>q,并且說(shuō)p是q的充分條件,q是p的必要條件。
(2)“若p,則q”為假命題,叫做由p推不出q,記作p≠>q,并且說(shuō)p不是q的充分條件(或p是q的非充分條件),q不是p的必要條件(或q是p的非必要條件)。
充要條件
如果既有p=>q,又有q=>p,就記作p<=>q,并且說(shuō)p是q的充分必要條件(或q是p的充分必要條件),簡(jiǎn)稱(chēng)充要條件。
初一數(shù)學(xué)知識(shí)點(diǎn)歸納14
1.有理數(shù):
(1)凡能寫(xiě)成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱(chēng)整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱(chēng)有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);π不是有理數(shù);
(2)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性;
2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線(xiàn)。
3.相反數(shù):
(1)只有符號(hào)不同的兩個(gè)數(shù),我們說(shuō)其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;
(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
4.絕對(duì)值:
(1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開(kāi)原點(diǎn)的'距離;
(2)絕對(duì)值可表示為:
絕對(duì)值的問(wèn)題經(jīng)常分類(lèi)討論;
(3)a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a|?|b|=|a?b|,5.有理數(shù)比大。(1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小;(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.
初一數(shù)學(xué)知識(shí)點(diǎn)歸納15
9.1 平行四邊形的性質(zhì)
1.平行四邊形
2.平行四邊形的性質(zhì),等腰梯形的性質(zhì)與判定
9.2 平行四邊形的判定
1.定義:兩組對(duì)邊分別平行的四邊形叫平行四邊形
2.平行四邊形的性質(zhì)
(1)平行四邊形的對(duì)邊平行且相等;
(2)平行四邊形的鄰角互補(bǔ),對(duì)角相等;
(3)平行四邊形的對(duì)角線(xiàn)互相平分;
9.3 菱形
菱形的`判定定理:
1.一組鄰邊相等的平行四邊形是菱形(rhombus)。
2.對(duì)角線(xiàn)互相垂直的平行四邊形是菱形。
9.4 矩形 正方形
矩形的性質(zhì):
、倬匦蔚乃膫(gè)角都是直角.
、诰匦蔚膶(duì)角線(xiàn)相等.
③矩形具有平行四邊形的所有性質(zhì).
9.5 梯形
一、梯形的定義、性質(zhì)及判定:
1.定義:只有一組對(duì)邊平行的四邊形叫做梯形.兩腰相等的梯形叫做等腰梯形;有一個(gè)角是直角的梯形叫做直角梯形.
9.6 多邊形的內(nèi)角和與外角和
【n 邊形內(nèi)角和公式】
n 邊形內(nèi)角和等于 (n-2)×180°.
【n 邊形外角和定理】
n 邊形的外角和等于 360°.
9.7 平面圖形的密鋪
1.用形狀、大小完全相同的三角形可以密鋪.因?yàn)槿切蔚膬?nèi)角和為180°,所以,用6個(gè)這樣的三角形就可以組合起來(lái)鑲嵌成一個(gè)平面.
9.8 中心對(duì)稱(chēng)的圖形
圓
1、定義:圓是到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
2、點(diǎn)與圓的位置關(guān)系:
如果⊙O的半徑為r,點(diǎn)P到圓心O的距離為d,那么
點(diǎn)P在圓內(nèi),則dr;
點(diǎn)P在圓上,則dr;
點(diǎn)P在圓外,則dr;反之亦成立。
【初一數(shù)學(xué)知識(shí)點(diǎn)歸納】相關(guān)文章:
初一數(shù)學(xué)知識(shí)點(diǎn)歸納12-27
初一下數(shù)學(xué)知識(shí)點(diǎn)歸納01-12
【薦】初一數(shù)學(xué)知識(shí)點(diǎn)歸納08-02
[合集]初一數(shù)學(xué)知識(shí)點(diǎn)歸納07-27
[熱門(mén)]初一數(shù)學(xué)知識(shí)點(diǎn)歸納08-04
數(shù)學(xué)知識(shí)點(diǎn)歸納03-13
初一上冊(cè)數(shù)學(xué)《統(tǒng)計(jì)》知識(shí)點(diǎn)歸納10-28
初一數(shù)學(xué)整式及其加減知識(shí)點(diǎn)歸納08-23