- 八年級數(shù)學(xué)上冊知識點(diǎn)總結(jié) 推薦度:
- 相關(guān)推薦
八年級數(shù)學(xué)上冊知識點(diǎn)總結(jié)
總結(jié)是事后對某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析的一種書面材料,它可以有效鍛煉我們的語言組織能力,為此我們要做好回顧,寫好總結(jié)。那么總結(jié)要注意有什么內(nèi)容呢?下面是小編為大家收集的八年級數(shù)學(xué)上冊知識點(diǎn)總結(jié),僅供參考,歡迎大家閱讀。
八年級數(shù)學(xué)上冊知識點(diǎn)總結(jié)1
第一章軸對稱圖形
軸對稱圖形線段角等腰三角形軸對稱的性質(zhì)等腰梯形軸對稱的應(yīng)用軸對稱設(shè)計軸對稱圖案第二章勾股定理與平方根
一.勾股定理
1、勾股定理
直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即abc
2、勾股定理的逆定理
如果三角形的三邊長a,b,c有關(guān)系abc,那么這個三角形是直角三角形。
3、勾股數(shù):滿足abc的三個正整數(shù),稱為勾股數(shù)。
二、實(shí)數(shù)的概念及分類
1、實(shí)數(shù)的分類
正有理數(shù)
有理數(shù)零有限小數(shù)和無限循環(huán)小數(shù)實(shí)數(shù)負(fù)有理數(shù)
正無理數(shù)
無理數(shù)無限不循環(huán)小數(shù)負(fù)無理數(shù)
2、無理數(shù):無限不循環(huán)小數(shù)叫做無理數(shù)。
在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:
。1)開方開不盡的數(shù),如7,32等;
。2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如
。3)有特定結(jié)構(gòu)的數(shù),如0.1010010001等;
。4)某些三角函數(shù)值,如sin60等
o
π3+8等;
三、平方根、算數(shù)平方根和立方根
1、算術(shù)平方根:一般地,如果一個正數(shù)x的平方等于a,即x=a,那么這個正數(shù)x就叫做a的算術(shù)平方根。特別地,0的算術(shù)平方根是0。
表示方法:記作“a”,讀作根號a。
性質(zhì):正數(shù)和零的算術(shù)平方根都只有一個,零的算術(shù)平方根是零。
2、平方根:一般地,如果一個數(shù)x的平方等于a,即x2=a,那么這個數(shù)x就叫做a的平方根(或二次方根)。
表示方法:正數(shù)a的平方根記做“a”,讀作“正、負(fù)根號a”。
2
性質(zhì):一個正數(shù)有兩個平方根,它們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒有平方根。
開平方:求一個數(shù)a的平方根的運(yùn)算,叫做開平方。注意a的雙重非負(fù)性:
a0
3、立方根
一般地,如果一個數(shù)x的立方等于a,即x3=a那么這個數(shù)x就叫做a的立方根(或三次方根)。
表示方法:記作3a
性質(zhì):一個正數(shù)有一個正的立方根;一個負(fù)數(shù)有一個負(fù)的立方根;零的立方根是零。注意:3a3a,這說明三次根號內(nèi)的負(fù)號可以移到根號外面。
a0
四、實(shí)數(shù)大小的比較
1、實(shí)數(shù)比較大。赫龜(shù)大于零,負(fù)數(shù)小于零,正數(shù)大于一切負(fù)數(shù);數(shù)軸上的兩個點(diǎn)所表示的數(shù),右邊的`總比左邊的大;兩個負(fù)數(shù),絕對值大的反而小。
2、實(shí)數(shù)大小比較的幾種常用方法
。1)數(shù)軸比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。(2)求差比較:設(shè)a、b是實(shí)數(shù),
ab0ab,ab0ab,ab0ab(3)求商比較法:設(shè)a、b是兩正實(shí)數(shù),1ab;baab1ab;ab1ab;
。4)絕對值比較法:設(shè)a、b是兩負(fù)實(shí)數(shù),則abab。(5)平方法:設(shè)a、b是兩負(fù)實(shí)數(shù),則a2b2ab。
五、實(shí)數(shù)的運(yùn)算
(1)六種運(yùn)算:加、減、乘、除、乘方、開方
。2)實(shí)數(shù)的運(yùn)算順序
先算乘方和開方,再算乘除,最后算加減,如果有括號,就先算括號里面的。(3)運(yùn)算律
加法交換律abba
加法結(jié)合律(ab)ca(bc)乘法交換律abba乘法結(jié)合律(ab)ca(bc)乘法對加法的分配律a(bc)abac
八年級數(shù)學(xué)上冊知識點(diǎn)總結(jié)2
1.勾股定理
1、勾股定理
直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2b2c22、勾股定理的逆定理
如果三角形的三邊長a,b,c有關(guān)系a2b2c2,那么這個三角形是直角三角形。
勾股數(shù):滿足a2b2c2的三個正整數(shù),稱為勾股數(shù)。
2.實(shí)數(shù)
一、實(shí)數(shù)的概念及分類
1、實(shí)數(shù)的分類正有理數(shù)有理數(shù)零有限小數(shù)和無限循環(huán)小數(shù)實(shí)數(shù)負(fù)有理數(shù)正無理數(shù)無理數(shù)無限不循環(huán)小數(shù)負(fù)無理數(shù)
2、無理數(shù):無限不循環(huán)小數(shù)叫做無理數(shù)。
在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:
(1)開方開不盡的數(shù),如7,32等;π
。2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;
。3)有特定結(jié)構(gòu)的數(shù),如0.1010010001等;
(4)某些三角函數(shù)值,如sin60等二、實(shí)數(shù)的倒數(shù)、相反數(shù)和絕對值1、相反數(shù)
實(shí)數(shù)與它的相反數(shù)時一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應(yīng)的點(diǎn)關(guān)于原點(diǎn)對稱,如果a與b互為相反數(shù),則有a+b=0,a=b,反之亦成立。2、絕對值
在數(shù)軸上,一個數(shù)所對應(yīng)的點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對值。(|a|≥0)。零的絕對值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。
3、倒數(shù)
如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。
4、數(shù)軸
規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。
解題時要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對應(yīng)的,并能靈活運(yùn)用。
5、估算
三、平方根、算數(shù)平方根和立方根
1、算術(shù)平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x就叫做a的算術(shù)平方根。特別地,0的算術(shù)平方根是0。
表示方法:記作“a”,讀作根號a。
性質(zhì):正數(shù)和零的算術(shù)平方根都只有一個,零的算術(shù)平方根是零。
2、平方根:一般地,如果一個數(shù)x的平方等于a,即x2=a,那么這個數(shù)x就叫做a的平方根(或二次方根)。
表示方法:正數(shù)a的平方根記做“a”,讀作“正、負(fù)根號a”。
性質(zhì):一個正數(shù)有兩個平方根,它們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒有平方根。開平方:求一個數(shù)a的平方根的運(yùn)算,叫做開平方。a0注意a的雙重非負(fù)性:a0
3、立方根
一般地,如果一個數(shù)x的立方等于a,即x=a那么這個數(shù)x就叫做a的立方根(或三次方根)。
表示方法:記作3a
性質(zhì):一個正數(shù)有一個正的立方根;一個負(fù)數(shù)有一個負(fù)的立方根;零的立方根是零。注意:3a3a,這說明三次根號內(nèi)的負(fù)號可以移到根號外面。
四、實(shí)數(shù)大小的比較
1、實(shí)數(shù)比較大小:正數(shù)大于零,負(fù)數(shù)小于零,正數(shù)大于一切負(fù)數(shù);數(shù)軸上的兩個點(diǎn)所表示的數(shù),右邊的總比左邊的大;兩個負(fù)數(shù),絕對值大的反而小。
2、實(shí)數(shù)大小比較的幾種常用方法
。1)數(shù)軸比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。
。2)求差比較:設(shè)a、b是實(shí)數(shù),
ab0ab,ab0ab,ab0ab
。3)求商比較法:設(shè)a、b是兩正實(shí)數(shù),1ab;baab1ab;ab1ab;
。4)絕對值比較法:設(shè)a、b是兩負(fù)實(shí)數(shù),則abab。
(5)平方法:設(shè)a、b是兩負(fù)實(shí)數(shù),則abab。五、算術(shù)平方根有關(guān)計算(二次根式)
1、含有二次根號“2、性質(zhì):
2(1)(a)a(a0)
22”;被開方數(shù)a必須是非負(fù)數(shù)。
a(a0)
。2)a2aa(a0)
第1頁共5頁數(shù)學(xué)知識必須經(jīng)過自己的加工、創(chuàng)造,才能真正領(lǐng)會,學(xué)以致用!
。3)abababab(a0,b0)(abab(a0,b0))n(n3)6、設(shè)多邊形的邊數(shù)為n,則多邊形的對角線共有
(a0,b0)(abab(a0,b0))2條。從n邊形的一個頂點(diǎn)出
3、運(yùn)算結(jié)果若含有“a”形式,必須滿足:
。1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式
六、實(shí)數(shù)的運(yùn)算
。1)六種運(yùn)算:加、減、乘、除、乘方、開方
。2)實(shí)數(shù)的運(yùn)算順序
先算乘方和開方,再算乘除,最后算加減,如果有括號,就先算括號里面的。
。3)運(yùn)算律
加法交換律abba
加法結(jié)合律(ab)ca(bc)乘法交換律abba
乘法結(jié)合律(ab)ca(bc)乘法對加法的分配律a(bc)abac
3.圖形的平移與旋轉(zhuǎn)
一、平移
1、定義
在平面內(nèi),將一個圖形整體沿某方向移動一定的距離,這樣的圖形運(yùn)動稱為平移。
2、性質(zhì)
平移前后兩個圖形是全等圖形,對應(yīng)點(diǎn)連線平行且相等,對應(yīng)線段平行且相等,對應(yīng)角相等。
二、旋轉(zhuǎn)
1、定義
在平面內(nèi),將一個圖形繞某一定點(diǎn)沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運(yùn)動稱為旋轉(zhuǎn),這個定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。
2、性質(zhì)
旋轉(zhuǎn)前后兩個圖形是全等圖形,對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角等于旋轉(zhuǎn)角。
4.四邊形性質(zhì)探索
一、四邊形的相關(guān)概念
1、四邊形
在同一平面內(nèi),由不在同一直線上的四條線段首尾順次相接組成的圖形叫做四邊形。
2、四邊形具有不穩(wěn)定性
3、四邊形的內(nèi)角和定理及外角和定理
四邊形的內(nèi)角和定理:四邊形的內(nèi)角和等于360°。四邊形的外角和定理:四邊形的外角和等于360°。
推論:多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n2)180°;多邊形的外角和定理:任意多邊形的外角和等于360°。
發(fā)能引(n-3)條對角線,將n邊形分成(n-2)個三角形。
二、平行四邊形
1、平行四邊形的定義
兩組對邊分別平行的四邊形叫做平行四邊形。
2、平行四邊形的性質(zhì)
。1)平行四邊形的對邊平行且相等。
。2)平行四邊形相鄰的角互補(bǔ),對角相等
(3)平行四邊形的對角線互相平分。
。4)平行四邊形是中心對稱圖形,對稱中心是對角線的交點(diǎn)。常用點(diǎn):
。1)若一直線過平行四邊形兩對角線的交點(diǎn),則這條直線被一組對邊截下的線段的中點(diǎn)是對角線的交點(diǎn),并且這條直線二等分此平行四邊形的面積。
。2)推論:夾在兩條平行線間的平行線段相等。
3、平行四邊形的`判定
(1)定義:兩組對邊分別平行的四邊形是平行四邊形
。2)定理
1:兩組對角分別相等的四邊形是平行四邊形
(3)定理2:兩組對邊分別相等的四邊形是平行四邊形
。4)定理3:對角線互相平分的四邊形是平行四邊形
。5)定理4:一組對邊平行且相等的四邊形是平行四邊形
4、兩條平行線的距離
兩條平行線中,一條直線上的任意一點(diǎn)到另一條直線的距離,叫做這兩條平行線的距離。
平行線間的距離處處相等。
5、平行四邊形的面積S平行四邊形=底邊長×高=ah
三、矩形
1、矩形的定義
有一個角是直角的平行四邊形叫做矩形。
2、矩形的性質(zhì)
。1)矩形的對邊平行且相等
。2)矩形的四個角都是直角
。3)矩形的對角線相等且互相平分
。4)矩形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(diǎn)(對稱中心到矩形四個頂點(diǎn)的距離相等);對稱軸有兩條,是對邊中點(diǎn)連線所在的直線。
3、矩形的判定
。1)定義:有一個角是直角的平行四邊形是矩形
。2)定理1:有三個角是直角的四邊形是矩形
。3)定理2:對角線相等的平行四邊形是矩形4、矩形的面積S矩形=長×寬=ab四、菱形
1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形
第2頁共5頁數(shù)學(xué)知識必須經(jīng)過自己的加工、創(chuàng)造,才能真正領(lǐng)會,學(xué)以致用!
2、菱形的性質(zhì)
。1)菱形的四條邊相等,對邊平行
。2)菱形的相鄰的角互補(bǔ),對角相等
。3)菱形的對角線互相垂直平分,并且每一條對角線平分一組對角
。4)菱形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(diǎn)(對稱中心到菱形四條邊的距離相等);對稱軸有兩條,是對角線所在的直線。
3、菱形的判定
。1)定義:有一組鄰邊相等的平行四邊形是菱形
(2)定理1:四邊都相等的四邊形是菱形
。3)定理2:對角線互相垂直的平行四邊形是菱形
4、菱形的面積
S菱形=底邊長×高=兩條對角線乘積的一半
五、正方形(3~10分)
1、正方形的定義有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。
2、正方形的性質(zhì)
。1)正方形四條邊都相等,對邊平行
。2)正方形的四個角都是直角
。3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角
。4)正方形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(diǎn);對稱軸有四條,是對角線所在的直線和對邊中點(diǎn)連線所在的直線。
3、正方形的判定
判定一個四邊形是正方形的主要依據(jù)是定義,途徑有兩種:先證它是矩形,再證它是菱形。先證它是菱形,再證它是矩形。
4、正方形的面積
設(shè)正方形邊長為a,對角線長為b,S正方形=a2
。ㄈ┑妊菪1、等腰梯形的定義
兩腰相等的梯形叫做等腰梯形。
2、等腰梯形的性質(zhì)
。1)等腰梯形的兩腰相等,兩底平行。
。2)等腰梯形同一底上的兩個角相等,同一腰上的兩個角互補(bǔ)。
。3)等腰梯形的對角線相等。
。4)等腰梯形是軸對稱圖形,它只有一條對稱軸,即兩底的垂直平分線。
3、等腰梯形的判定
。1)定義:兩腰相等的梯形是等腰梯形
。2)定理:在同一底上的兩個角相等的梯形是等腰梯形
。3)對角線相等的梯形是等腰梯形。(選擇題和填空題可直接用)
。ㄋ模┨菪蔚拿娣e
。1)如圖,S梯形ABCD12(CDAB)DE
。2)梯形中有關(guān)圖形的面積:
①SABDSBAC;②SAODSBOC;③SADCSBCD
七、有關(guān)中點(diǎn)四邊形問題的知識點(diǎn):
。1)順次連接任意四邊形的四邊中點(diǎn)所得的四邊形是平行四邊形;
。2)順次連接矩形的四邊中點(diǎn)所得的四邊形是菱形;
。3)順次連接菱形的四邊中點(diǎn)所得的四邊形是矩形;
。4)順次連接等腰梯形的四邊中點(diǎn)所得的四邊形是菱形;
。5)順次連接對角線相等的四邊形四邊中點(diǎn)所得的四邊形是菱形;
。6)順次連接對角線互相垂直的四邊形四邊中點(diǎn)所得的四邊形是矩形;
。7)順次連接對角線互相垂直且相等的四邊形四邊中點(diǎn)所得的四邊形是正方形;
八、中心對稱圖形
1、定義
在平面內(nèi),一個圖形繞某個點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點(diǎn)叫做它的對稱中心。
2、性質(zhì)
。1)關(guān)于中心對稱的兩個圖形是全等形。
。2)關(guān)于中心對稱的兩個圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分。
(3)關(guān)于中心對稱的兩個圖形,對應(yīng)線段平行(或在同一直線上)且相等。
3、判定
如果兩個圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個圖形關(guān)于這一點(diǎn)對稱。
九、四邊形、矩形、菱形、正方形、梯形、等腰梯形、直角梯形的關(guān)系圖:
b22
六、梯形
。ㄒ唬1、梯形的相關(guān)概念
一組對邊平行而另一組對邊不平行的四邊形叫做梯形。
梯形中平行的兩邊叫做梯形的底,通常把較短的底叫做上底,較長的底叫做下底。梯形中不平行的兩邊叫做梯形的腰。梯形的兩底的距離叫做梯形的高。2、梯形的判定
。1)定義:一組對邊平行而另一組對邊不平行的四邊形是梯形。
。2)一組對邊平行且不相等的四邊形是梯形。
。ǘ┲苯翘菪蔚亩x:一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分類如下:一般梯形
梯形直角梯形特殊梯形
等腰梯形
第3頁共5頁數(shù)學(xué)知識必須經(jīng)過自己的加工、創(chuàng)造,才能真正領(lǐng)會,學(xué)以致用!
5.位置的確定
一、在平面內(nèi),確定物體的位置一般需要兩個數(shù)據(jù)。
二、平面直角坐標(biāo)系及有關(guān)概念1、平面直角坐標(biāo)系
在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
2、為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(diǎn)(坐標(biāo)軸上的點(diǎn)),不屬于任何一個象限。
3、點(diǎn)的坐標(biāo)的概念
對于平面內(nèi)任意一點(diǎn)P,過點(diǎn)P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應(yīng)的數(shù)a,b分別叫做點(diǎn)P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(a,b)叫做點(diǎn)P的坐標(biāo)。
點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對,當(dāng)ab時,(a,b)和(b,a)是兩個不同點(diǎn)的坐標(biāo)。
平面內(nèi)點(diǎn)的與有序?qū)崝?shù)對是一一對應(yīng)的。
4、不同位置的點(diǎn)的坐標(biāo)的特征
。1)、各象限內(nèi)點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一象限x0,y0
點(diǎn)P(x,y)在第二象限x0,y0點(diǎn)P(x,y)在第三象限x0,y0點(diǎn)P(x,y)在第四象限x0,y0
。2)、坐標(biāo)軸上的點(diǎn)的特征
點(diǎn)P(x,y)在x軸上y0,x為任意實(shí)數(shù)點(diǎn)P(x,y)在y軸上x0,y為任意實(shí)數(shù)
點(diǎn)P(x,y)既在x軸上,又在y軸上x,y同時為零,即點(diǎn)P坐標(biāo)為(0,0)即原點(diǎn)
。3)、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一、三象限夾角平分線(直線y=x)上x與y相等點(diǎn)P(x,y)在第二、四象限夾角平分線上x與y互為相反數(shù)
。4)、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)相同。
。5)、關(guān)于x軸、y軸或原點(diǎn)對稱的點(diǎn)的坐標(biāo)的特征
點(diǎn)P與點(diǎn)p’關(guān)于x軸對稱橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于x軸的對稱點(diǎn)為P’(x,-y)
點(diǎn)P與點(diǎn)p’關(guān)于y軸對稱縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于y軸的對稱點(diǎn)為P’(-x,y)
點(diǎn)P與點(diǎn)p’關(guān)于原點(diǎn)對稱橫、縱坐標(biāo)均互為相反數(shù),即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對稱點(diǎn)為P’(-x,-y)
(6)、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離點(diǎn)P(x,y)到坐標(biāo)軸及原點(diǎn)的距離:
。1)點(diǎn)P(x,y)到x軸的距離等于y
。2)點(diǎn)P(x,y)到y(tǒng)軸的距離等于x
(3)點(diǎn)P(x,y)到原點(diǎn)的距離等于三、坐標(biāo)變化與圖形變化的規(guī)律:
坐標(biāo)(x,y)的變化x×a或y×ax×a,y×ax×(-1)或y×(-1)x×(-1),y×(-1)x+a或y+ax+a,y+axy22
圖形的變化被橫向或縱向拉長(壓縮)為原來的a倍放大(縮。樵瓉淼腶倍關(guān)于y軸或x軸對稱關(guān)于原點(diǎn)成中心對稱沿x軸或y軸平移a個單位沿x軸平移a個單位,再沿y軸平移a個單6.一次函數(shù)
一、函數(shù):
一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
二、自變量取值范圍
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實(shí)數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負(fù)數(shù))、實(shí)際意義幾方面考慮。
三、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)
。1)關(guān)系式(解析)法
兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運(yùn)算符號的等式表示,這種表示法叫做關(guān)系式(解析)法。
。2)列表法
把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
(3)圖象法
用圖象表示函數(shù)關(guān)系的方法叫做圖象法。
四、由函數(shù)關(guān)系式畫其圖像的一般步驟
。1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值
(2)描點(diǎn):以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)
。3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。
五、正比例函數(shù)和一次函數(shù)
1、正比例函數(shù)和一次函數(shù)的概念
一般地,若兩個變量x,y間的關(guān)系可以表示成ykxb(k,b為常數(shù),k0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。
特別地,當(dāng)一次函數(shù)ykxb中的b=0時(即ykx)(k為常數(shù),k0),稱y是x的正比例函數(shù)。
2、一次函數(shù)的圖像:所有一次函數(shù)的圖像都是一條直線3、一次函數(shù)、正比例函數(shù)圖像的主要特征:
一次函數(shù)ykxb的圖像是經(jīng)過點(diǎn)(0,b)的直線;正比例函數(shù)ykx的圖像是經(jīng)過原點(diǎn)(0,0)的直線。
第4頁共5頁數(shù)學(xué)知識必須經(jīng)過自己的加工、創(chuàng)造,才能真正領(lǐng)會,學(xué)以致用!
k的符號b的符號函數(shù)圖像y0x圖像特征b>0圖像經(jīng)過一、二、三象限,y隨x的增大而增大。k>0yb00x圖像經(jīng)過一、二、四象限,y隨x的增大而減小K
八年級數(shù)學(xué)上冊知識點(diǎn)總結(jié)3
第十一章三角形
一、知識框架:
知識概念:
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
3、高:從三角形的一個頂點(diǎn)向它的對邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。
4、中線:在三角形中,連接一個頂點(diǎn)和它對邊中點(diǎn)的線段叫做三角形的中線。
5、角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。
6、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質(zhì)叫三角形的穩(wěn)定性。
7、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
8、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
9、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10、多邊形的對角線:連接多邊形不相鄰的兩個頂點(diǎn)的線段,叫做多邊形的對角線。
11、正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫正多邊形。
12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面,
13、公式與性質(zhì):
、湃切蔚膬(nèi)角和:三角形的內(nèi)角和為180°
、迫切瓮饨堑男再|(zhì):
性質(zhì)1:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。
性質(zhì)2:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。
⑶多邊形內(nèi)角和公式:邊形的內(nèi)角和等于·180°
、榷噙呅蔚耐饨呛停憾噙呅蔚耐饨呛蜑360°。
、啥噙呅螌蔷的條數(shù):
、購倪呅蔚囊粋頂點(diǎn)出發(fā)可以引條對角線,把多邊形分成個三角形。
、谶呅喂灿袟l對角線。
第十二章全等三角形
一、知識框架:
二、知識概念:
1、基本定義:
⑴全等形:能夠完全重合的兩個圖形叫做全等形。
⑵全等三角形:能夠完全重合的兩個三角形叫做全等三角形。
、菍(yīng)頂點(diǎn):全等三角形中互相重合的頂點(diǎn)叫做對應(yīng)頂點(diǎn)。
、葘(yīng)邊:全等三角形中互相重合的邊叫做對應(yīng)邊。
、蓪(yīng)角:全等三角形中互相重合的角叫做對應(yīng)角。
2、基本性質(zhì):
、湃切蔚姆(wěn)定性:三角形三邊的長度確定了,這個三角形的形狀、大小就全確定,這個性質(zhì)叫做三角形的穩(wěn)定性。
、迫热切蔚男再|(zhì):全等三角形的對應(yīng)邊相等,對應(yīng)角相等。
3、全等三角形的判定定理:
、胚呥呥叄ǎ喝厡(yīng)相等的兩個三角形全等。
、七吔沁叄ǎ簝蛇吅退鼈兊膴A角對應(yīng)相等的兩個三角形全等。
、墙沁吔牵ǎ簝山呛退鼈兊膴A邊對應(yīng)相等的兩個三角形全等。
、冉墙沁叄ǎ簝山呛推渲幸粋角的對邊對應(yīng)相等的兩個三角形全等。
、尚边叀⒅苯沁叄ǎ盒边吅鸵粭l直角邊對應(yīng)相等的兩個直角三角形全等。
4、角平分線:
、女嫹ǎ
、菩再|(zhì)定理:角平分線上的點(diǎn)到角的兩邊的距離相等。
⑶性質(zhì)定理的逆定理:角的內(nèi)部到角的兩邊距離相等的點(diǎn)在角的平分線上。
5、證明的基本方法:
、琶鞔_命題中的.已知和求證。(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關(guān)系)
、聘鶕(jù)題意,畫出圖形,并用數(shù)字符號表示已知和求證。
、墙(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程。
第十三章軸對稱
一、知識框架:
二、知識概念:
1、基本概念:
、泡S對稱圖形:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形。
、苾蓚圖形成軸對稱:把一個圖形沿某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱。
、蔷段的垂直平分線:經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線。
、鹊妊切危河袃蓷l邊相等的三角形叫做等腰三角形。相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角。
、傻冗吶切危喝龡l邊都相等的三角形叫做等邊三角形。
2、基本性質(zhì):
、艑ΨQ的性質(zhì):
、俨还苁禽S對稱圖形還是兩個圖形關(guān)于某條直線對稱,對稱軸都是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。
②對稱的圖形都全等。
、凭段垂直平分線的性質(zhì):
①線段垂直平分線上的點(diǎn)與這條線段兩個端點(diǎn)的距離相等。
、谂c一條線段兩個端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上。
⑶關(guān)于坐標(biāo)軸對稱的點(diǎn)的坐標(biāo)性質(zhì)
八年級數(shù)學(xué)上冊知識點(diǎn)總結(jié)4
一、全等三角形
1.定義:能夠完全重合的兩個三角形叫做全等三角形。
理解:
、偃热切涡螤钆c大小完全相等,與位置無關(guān);
、谝粋三角形經(jīng)過平移、翻折、旋轉(zhuǎn)可以得到它的全等形;
、廴切稳炔灰蛭恢冒l(fā)生變化而改變。
2、全等三角形有哪些性質(zhì)
。1)全等三角形的對應(yīng)邊相等、對應(yīng)角相等。
理解:
、匍L邊對長邊,短邊對短邊;最大角對最大角,最小角對最小角;
、趯(yīng)角的對邊為對應(yīng)邊,對應(yīng)邊對的角為對應(yīng)角。
。2)全等三角形的周長相等、面積相等。
。3)全等三角形的對應(yīng)邊上的對應(yīng)中線、角平分線、高線分別相等。
3、全等三角形的判定
邊邊邊:三邊對應(yīng)相等的兩個三角形全等(可簡寫成“SSS”)
邊角邊:兩邊和它們的夾角對應(yīng)相等兩個三角形全等(可簡寫成“SAS”)
角邊角:兩角和它們的夾邊對應(yīng)相等的兩個三角形全等(可簡寫成“ASA”)
角角邊:兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等(可簡寫成“AAS”)
斜邊.直角邊:斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等(可簡寫成“HL”)
二、角的平分線:從一個角的頂點(diǎn)得出一條射線把這個角分成兩個相等的角,稱這條射線為這個角的平分線。
1、性質(zhì):角的平分線上的點(diǎn)到角的兩邊的距離相等.
2、判定:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上。三、學(xué)習(xí)全等三角形應(yīng)注意以下幾個問題:
。1)要正確區(qū)分“對應(yīng)邊”與“對邊”,“對應(yīng)角”與“對角”的不同含義;
(2)表示兩個三角形全等時,表示對應(yīng)頂點(diǎn)的字母要寫在對應(yīng)的位置上;
。3)“有三個角對應(yīng)相等”或“有兩邊及其中一邊的對角對應(yīng)相等”的兩個三角形不一定全等;
。4)時刻注意圖形中的隱含條件,如“公共角”、“公共邊”、“對頂角”
。5)截長補(bǔ)短法證三角形全等。
一、軸對稱圖形
1.把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關(guān)于這條直線(成軸)對稱。
2.把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那么就說這兩個圖關(guān)于這條直線對稱。這條直線叫做對稱軸。折疊后重合的點(diǎn)是對應(yīng)點(diǎn),叫做對稱點(diǎn)3.軸對稱與軸對稱圖形的性質(zhì)
、訇P(guān)于某直線對稱的兩個圖形是全等形。
、谌绻麅蓚圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。
、圯S對稱圖形的對稱軸,是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。
④如果兩個圖形的對應(yīng)點(diǎn)連線被同條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。
⑤兩個圖形關(guān)于某條直線成軸對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上。
二、線段的垂直平分線
1.定義:經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。
2.性質(zhì):線段垂直平分線上的點(diǎn)與這條線段的兩個端點(diǎn)的距離相等
3.判定:與一條線段兩個端點(diǎn)距離相等的點(diǎn),在線段的垂直平分線上
三、用坐標(biāo)表示軸對稱小結(jié):
1.在平面直角坐標(biāo)系中
、訇P(guān)于x軸對稱的點(diǎn)橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù);
、陉P(guān)于y軸對稱的點(diǎn)橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等;
③關(guān)于原點(diǎn)對稱的點(diǎn)橫坐標(biāo)和縱坐標(biāo)互為相反數(shù);
、芘cX軸或Y軸平行的直線的兩個點(diǎn)橫(縱)坐標(biāo)的關(guān)系;
⑤關(guān)于與直線X=C或Y=C對稱的坐標(biāo)點(diǎn)(x,y)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為_(x,-y)_____.點(diǎn)(x,y)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)為___(-x,y)___.
2.三角形三條邊的垂直平分線相交于一點(diǎn),這個點(diǎn)到三角形三個頂點(diǎn)的距離相等
四、(等腰三角形)知識點(diǎn)回顧1.等腰三角形的性質(zhì)
①.等腰三角形的兩個底角相等。(等邊對等角)
、.等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)
理解:已知等腰三角形的一線就可以推知另兩線。
2、等腰三角形的判定:
如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)
五、(等邊三角形)知識點(diǎn)回顧1.等邊三角形的性質(zhì):
等邊三角形的三個角都相等,并且每一個角都等于600。
2、等邊三角形的判定:
、偃齻角都相等的三角形是等邊三角形。
、谟幸粋角是600的等腰三角形是等邊三角形。
3.在直角三角形中,如果一個銳角等于300,那么它所對的直角邊等于斜邊的一半。
1、勾股定理:B直角三角形兩直角邊的平方和等于斜邊的平方。
c數(shù)學(xué)式子:a
∠C=900a2b2c2
ACb
2、神秘的數(shù)組(勾股定理的逆定理):
222
如果三角形的三邊長a、b、c滿足a+b=c,那么這個三角形是直角三角形.數(shù)學(xué)式子:
a2b2c2∠C=900
滿足a+b=c三個數(shù)a、b、c叫做勾股數(shù)。
3.一般的,如果一個數(shù)的平方等于a,那么這個數(shù)叫做a的平方根,也叫做二次方根。
一個正數(shù)的平方根有兩個,他們互為相反數(shù)。
0只有一個平方根,它是0本身。負(fù)數(shù)沒有平方根。
22
一般的,如果一個數(shù)的立方等于a,那么這個數(shù)就叫做a的立方根,也稱為三次方根。正數(shù)的立方根是正數(shù),負(fù)數(shù)的立方根是負(fù)數(shù),0的立方根是0.無限不循環(huán)小數(shù)稱為無理數(shù)。有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù)。常見的無理數(shù)有:
、艧o限不循環(huán)小數(shù):如0.010010001……
⑵開不盡的根號:如3、5、34、37等
、菆A周率:如-3.14、4、近似數(shù)的認(rèn)識:
實(shí)際生產(chǎn)生活中的.許多數(shù)據(jù)都是近似數(shù),例如測量長度,時間,速度所得的結(jié)果都是近似數(shù),且由于測量工具不同,其測量的精確程度也不同。在實(shí)際計算中對于像π這樣的數(shù),也常常需取它們的近似值.請說說生活中應(yīng)用近似數(shù)的例子。
取一個數(shù)的近似值有多種方法,四舍五入是最常用的一種方法。用四舍五入法取一個數(shù)的近似數(shù)時,四舍五入到哪一位,就說這個近似數(shù)精確到哪一位。
例如,圓周率π=3.1415926…
取π≈3,就是精確到個位(或精確到1)
取π≈3.1,就是精確到十分位(或精確到0.1)取π≈3.14,就是精確到百分位(或精確到0.01)取π≈3.142,就是精確到千分位(或精確到0.001)
5、有效數(shù)字:
對一個近似數(shù),從左面第一個不是0的數(shù)字起,到末位數(shù)字止,所有的數(shù)字都稱為這個近似數(shù)的有效數(shù)字。
例如:上面圓周率π的近似值中,3.14有3個有效數(shù)字3,1,4;
3.142有4個有效數(shù)字3,1,4,2.等。
3第四章數(shù)量、位置的變化
數(shù)量、位置的變化、平面直角坐標(biāo)系
1、數(shù)量的變化:
、派钪刑幪幱凶兓臄(shù)量關(guān)系,并且這些變化的數(shù)量之間往往有一定的聯(lián)系;感受用變化的觀點(diǎn)分析數(shù)字信息的重要意義。
、茖(shí)際問題中的數(shù)量常常會發(fā)生變化,表示這種變化通常有3種各具特色的表達(dá)方式表格、圖形、式子,可根據(jù)實(shí)際情況靈活選用。
2、位置的變化:
現(xiàn)實(shí)生活中,人們既關(guān)心事物的數(shù)量變化,也關(guān)心事物的位置變化,如行駛中的車輛、飛行中的火箭、航行中的船只、移動中的臺風(fēng)等位置的變化。
3、平面直角坐標(biāo)系:
、庞嘘P(guān)概念:平面上有公共原點(diǎn)且互相垂直的2條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱直角坐標(biāo)系。水平方向的數(shù)軸稱為x軸或橫軸;豎直方向的數(shù)軸稱為y軸或縱軸。它們統(tǒng)稱坐標(biāo)軸。公共原點(diǎn)O稱為坐標(biāo)原點(diǎn)。
⑵確定點(diǎn)的位置(點(diǎn)坐標(biāo))
、偃羝矫鎯(nèi)有一點(diǎn)P(如圖),我們應(yīng)該如何確定它的位置?
(過點(diǎn)P分別作x、y軸的垂線,將垂足對應(yīng)的數(shù)組合起來形成一對有序?qū)崝?shù),這樣的有序?qū)崝?shù)對叫做點(diǎn)的坐標(biāo),可表示為P(a,b)
、谌粢阎c(diǎn)Q的坐標(biāo)為(m,n),該如何確定點(diǎn)Q的位置?
。ǚ謩e過x、y軸上表示m、n的點(diǎn)作x、y軸的垂線,兩線的交點(diǎn)即為點(diǎn)Q)
4、點(diǎn)坐標(biāo)的特征:
、潘膫象限內(nèi)點(diǎn)坐標(biāo)的特征:
兩條坐標(biāo)軸將平面分成4個區(qū)域稱為象限,按逆時針順序分別記作第一、二、三、四象限。
⑵數(shù)軸上點(diǎn)坐標(biāo)的特征:
x軸上的點(diǎn)的縱坐標(biāo)為0,可表示為(a,0);y軸上的點(diǎn)的橫坐標(biāo)為0,可表示為(0,b)。
、窍笙藿瞧椒志上點(diǎn)坐標(biāo)的特征:
第一、三象限角平分線上點(diǎn)的橫、縱坐標(biāo)相等,可表示為(a,a);
第二、四象限角平分線上點(diǎn)的橫、縱坐標(biāo)互為相反數(shù),可表示為(a,-a)。
、葘ΨQ點(diǎn)坐標(biāo)的特征:
P(a,b)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為(a,-b);P(a,b)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)為(-a,b);P(a,b)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)為(-a,-b)。
第五章一次函數(shù)
一.常量、變量:
在一個變化過程中,數(shù)值發(fā)生變化的量叫做變量;數(shù)值始終不變的量叫做常量。
二、函數(shù)的概念:
函數(shù)的定義:一般的,在一個變化過程中,如果有兩個變量x與y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應(yīng),那么我們就說x是自變量,y是x的函數(shù).
三、函數(shù)中自變量取值范圍的求法:
。1)用整式表示的函數(shù),自變量的取值范圍是全體實(shí)數(shù)。
。2)用分式表示的函數(shù),自變量的取值范圍是使分母不為0的一切實(shí)數(shù)。
。3)用寄次根式表示的函數(shù),自變量的取值范圍是全體實(shí)數(shù)。
用偶次根式表示的函數(shù),自變量的取值范圍是使被開方數(shù)為非負(fù)數(shù)的一切實(shí)數(shù)。
。4)若解析式由上述幾種形式綜合而成,須先求出各部分的取值范圍,然后再求其公共范圍,即為自變量的取值范圍。
。5)對于與實(shí)際問題有關(guān)系的,自變量的取值范圍應(yīng)使實(shí)際問題有意義。
四、函數(shù)圖象的定義:一般的,對于一個函數(shù),如果把自變量與函數(shù)的每對對應(yīng)值分別作為點(diǎn)的橫、縱坐標(biāo),那么在坐標(biāo)平面內(nèi)由這些點(diǎn)組成的圖形,就是這個函數(shù)的圖象.
五、用描點(diǎn)法畫函數(shù)的圖象的一般步驟
1、列表(表中給出一些自變量的值及其對應(yīng)的函數(shù)值。)注意:列表時自變量由小到大,相差一樣,有時需對稱。
2、描點(diǎn):(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對應(yīng)的各點(diǎn)。
3、連線:(按照橫坐標(biāo)由小到大的順序把所描的各點(diǎn)用平滑的曲線連接起來)。
六、函數(shù)有三種表示形式:
。1)列表法
(2)圖像法
。3)解析式法
七、正比例函數(shù)與一次函數(shù)的概念:
一般地,形如y=kx(k為常數(shù),且k≠0)的函數(shù)叫做正比例函數(shù).其中k叫做比例系數(shù)。一般地,形如y=kx+b(k,b為常數(shù),且k≠0)的函數(shù)叫做一次函數(shù).當(dāng)b=0時,y=kx+b即為y=kx,所以正比例函數(shù),是一次函數(shù)的特例.八、正比例函數(shù)的圖象與性質(zhì):
。1)圖象:正比例函數(shù)y=kx(k是常數(shù),k≠0))的圖象是經(jīng)過原點(diǎn)的一條直線,我們稱它為直線y=kx。
(2)性質(zhì):當(dāng)k>0時,直線y=kx經(jīng)過第三,一象限,從左向右上升,即隨著x的增大y也增大;當(dāng)k
八年級數(shù)學(xué)上冊知識點(diǎn)總結(jié)5
一、平移
1、定義
在平面內(nèi),將一個圖形整體沿某方向移動一定的距離,這樣的圖形運(yùn)動稱為平移。2、性質(zhì)
平移前后兩個圖形是全等圖形,對應(yīng)點(diǎn)連線平行且相等,對應(yīng)線段平行且相等,對應(yīng)角相等。
二、旋轉(zhuǎn)
1、定義
在平面內(nèi),將一個圖形繞某一定點(diǎn)沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運(yùn)動稱為旋轉(zhuǎn),這個定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。
2、性質(zhì)
旋轉(zhuǎn)前后兩個圖形是全等圖形,對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角等于旋轉(zhuǎn)角。
三、四邊形的相關(guān)概念
1、四邊形
在同一平面內(nèi),由不在同一直線上的四條線段首尾順次相接組成的圖形叫做四邊形。
2、四邊形具有不穩(wěn)定性
3、四邊形的內(nèi)角和定理及外角和定理
四邊形的內(nèi)角和定理:四邊形的內(nèi)角和等于360°。四邊形的外角和定理:四邊形的外角和等于360°。
推論:多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n2)180°;多邊形的外角和定理:任意多邊形的外角和等于360°。6、設(shè)多邊形的邊數(shù)為n,則多邊形的對角線共有
n(n3)2條。從n邊形的一個頂點(diǎn)出
發(fā)能引(n-3)條對角線,將n邊形分成(n-2)個三角形。
四.平行四邊形
1、平行四邊形的定義
兩組對邊分別平行的四邊形叫做平行四邊形。2、平行四邊形的性質(zhì)
。1)平行四邊形的對邊平行且相等。
。2)平行四邊形相鄰的角互補(bǔ),對角相等
。3)平行四邊形的對角線互相平分。
。4)平行四邊形是中心對稱圖形,對稱中心是對角線的交點(diǎn)。
常用點(diǎn):(1)若一直線過平行四邊形兩對角線的交點(diǎn),則這條直線被一組對邊截下的線段的中點(diǎn)是對角線的交點(diǎn),并且這條直線二等分此平行四邊形的面積。
。2)推論:夾在兩條平行線間的平行線段相等。
3、平行四邊形的判定
。1)定義:兩組對邊分別平行的四邊形是平行四邊形(2)定理1:兩組對角分別相等的四邊形是平行四邊形(3)定理2:兩組對邊分別相等的四邊形是平行四邊形(4)定理3:對角線互相平分的四邊形是平行四邊形
。5)定理4:一組對邊平行且相等的四邊形是平行四邊形
4、兩條平行線的距離
兩條平行線中,一條直線上的任意一點(diǎn)到另一條直線的距離,叫做這兩條平行線的距離。
平行線間的距離處處相等。5、平行四邊形的面積
S平行四邊形=底邊長×高=ah
五、矩形
1、矩形的定義
有一個角是直角的平行四邊形叫做矩形。
2、矩形的性質(zhì)
。1)矩形的對邊平行且相等
。2)矩形的四個角都是直角
。3)矩形的對角線相等且互相平分
(4)矩形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(diǎn)(對稱中心到矩形四個頂點(diǎn)的距離相等);對稱軸有兩條,是對邊中點(diǎn)連線所在的直線。
3、矩形的判定
。1)定義:有一個角是直角的平行四邊形是矩形
(2)定理1:有三個角是直角的四邊形是矩形
。3)定理2:對角線相等的平行四邊形是矩形
4、矩形的面積S矩形=長×寬=ab
六、菱形
1、菱形的定義
有一組鄰邊相等的平行四邊形叫做菱形
2、菱形的性質(zhì)
。1)菱形的四條邊相等,對邊平行
。2)菱形的相鄰的角互補(bǔ),對角相等
。3)菱形的對角線互相垂直平分,并且每一條對角線平分一組對角
(4)菱形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(diǎn)(對稱中心到菱形四條邊的距離相等);對稱軸有兩條,是對角線所在的直線。
3、菱形的判定
。1)定義:有一組鄰邊相等的平行四邊形是菱形
。2)定理1:四邊都相等的四邊形是菱形
。3)定理2:對角線互相垂直的平行四邊形是菱形
4、菱形的面積
S菱形=底邊長×高=兩條對角線乘積的一半
七.正方形
1、正方形的定義
有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。
2、正方形的性質(zhì)
。1)正方形四條邊都相等,對邊平行
。2)正方形的四個角都是直角
。3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角
(4)正方形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(diǎn);對稱軸有四條,是對角線所在的直線和對邊中點(diǎn)連線所在的直線。
3、正方形的判定
判定一個四邊形是正方形的主要依據(jù)是定義,途徑有兩種:先證它是矩形,再證它是菱形。先證它是菱形,再證它是矩形。
4、正方形的面積
設(shè)正方形邊長為a,對角線長為bS正方形=a2b22
八、梯形
。ㄒ唬1、梯形的相關(guān)概念
一組對邊平行而另一組對邊不平行的四邊形叫做梯形。
梯形中平行的兩邊叫做梯形的底,通常把較短的底叫做上底,較長的底叫做下底。梯形中不平行的兩邊叫做梯形的腰。梯形的兩底的距離叫做梯形的高。
2、梯形的`判定
。1)定義:一組對邊平行而另一組對邊不平行的四邊形是梯形。
。2)一組對邊平行且不相等的四邊形是梯形。
。ǘ┲苯翘菪蔚亩x:一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分類如下:一般梯形
梯形直角梯形特殊梯形
等腰梯形
。ㄈ┑妊菪
1、等腰梯形的定義
兩腰相等的梯形叫做等腰梯形。
2、等腰梯形的性質(zhì)
。1)等腰梯形的兩腰相等,兩底平行。
。2)等腰梯形同一底上的兩個角相等,同一腰上的兩個角互補(bǔ)。
。3)等腰梯形的對角線相等。
。4)等腰梯形是軸對稱圖形,它只有一條對稱軸,即兩底的垂直平分線。3、等腰梯形的判定
(1)定義:兩腰相等的梯形是等腰梯形
。2)定理:在同一底上的兩個角相等的梯形是等腰梯形
。3)對角線相等的梯形是等腰梯形。(選擇題和填空題可直接用)
。ㄋ模┨菪蔚拿娣e
(1)如圖,S梯形ABCD12(CDAB)DE
。2)梯形中有關(guān)圖形的面積:
、賁ABDSBAC;
、赟AODSBOC;
、跾ADCSBCD八、中心對稱圖形
1、定義
在平面內(nèi),一個圖形繞某個點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點(diǎn)叫做它的對稱中心。
2、性質(zhì)
。1)關(guān)于中心對稱的兩個圖形是全等形。
。2)關(guān)于中心對稱的兩個圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分。
(3)關(guān)于中心對稱的兩個圖形,對應(yīng)線段平行(或在同一直線上)且相等。
3、判定
如果兩個圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個圖形關(guān)于這一點(diǎn)對稱。
第四章數(shù)量、位置的變化
一、在平面內(nèi),確定物體的位置一般需要兩個數(shù)據(jù)。
二、平面直角坐標(biāo)系及有關(guān)概念
1、平面直角坐標(biāo)系
在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
2、為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(diǎn)(坐標(biāo)軸上的點(diǎn)),不屬于任何一個象限。
3、點(diǎn)的坐標(biāo)的概念
對于平面內(nèi)任意一點(diǎn)P,過點(diǎn)P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應(yīng)的數(shù)a,b分別叫做點(diǎn)P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(a,b)叫做點(diǎn)P的坐標(biāo)。
點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對,當(dāng)ab時,(a,b)和(b,a)是兩個不同點(diǎn)的坐標(biāo)。
平面內(nèi)點(diǎn)的與有序?qū)崝?shù)對是一一對應(yīng)的。
4、不同位置的點(diǎn)的坐標(biāo)的特征(
1)、各象限內(nèi)點(diǎn)的坐標(biāo)的特征點(diǎn)P(x,y)在第一象限x0,y0
點(diǎn)P(x,y)在第二象限x0,y0點(diǎn)P(x,y)在第三象限x0,y0點(diǎn)P(x,y)在第四象限x0,y0
(2)、坐標(biāo)軸上的點(diǎn)的特征
點(diǎn)P(x,y)在x軸上y0,x為任意實(shí)數(shù)點(diǎn)P(x,y)在y軸上x0,y為任意實(shí)數(shù)
點(diǎn)P(x,y)既在x軸上,又在y軸上x,y同時為零,即點(diǎn)P坐標(biāo)為(0,0)即原點(diǎn)
。3)、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一、三象限夾角平分線(直線y=x)上x與y相等點(diǎn)P(x,y)在第二、四象限夾角平分線上x與y互為相反數(shù)
。4)、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)相同。
。5)、關(guān)于x軸、y軸或原點(diǎn)對稱的點(diǎn)的坐標(biāo)的特征
點(diǎn)P與點(diǎn)p’關(guān)于x軸對稱橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于x軸的對稱點(diǎn)為P’(x,-y)
點(diǎn)P與點(diǎn)p’關(guān)于y軸對稱縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于y軸的對稱點(diǎn)為P’(-x,y)
點(diǎn)P與點(diǎn)p’關(guān)于原點(diǎn)對稱橫、縱坐標(biāo)均互為相反數(shù),即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對稱點(diǎn)為P’(-x,-y)
(6)、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離
點(diǎn)P(x,y)到坐標(biāo)軸及原點(diǎn)的距離:
。1)點(diǎn)P(x,y)到x軸的距離等于y
。2)點(diǎn)P(x,y)到y(tǒng)軸的距離等于x
。3)點(diǎn)P(x,y)到原點(diǎn)的距離等于x2y2
三、坐標(biāo)變化與圖形變化的規(guī)律:
坐標(biāo)(x,y)的變化x×a或y×ax×a,y×ax×(-1)或y×(-1)x×(-1),y×(-1)x+a或y+ax+a,y+a圖形的變化被橫向或縱向拉長(壓縮)為原來的a倍放大(縮。樵瓉淼腶倍關(guān)于y軸或x軸對稱關(guān)于原點(diǎn)成中心對稱沿x軸或y軸平移a個單位沿x軸平移a個單位,再沿y軸平移a個單第五章一次函數(shù)
一、函數(shù):
一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
二、自變量取值范圍
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實(shí)數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負(fù)數(shù))、實(shí)際意義幾方面考慮。三、函數(shù)的三種表示法
。1)關(guān)系式(解析)法
兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運(yùn)算符號的等式表示,這種表示法叫做關(guān)系式(解析)法。
。2)列表法
把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
。3)圖象法
用圖象表示函數(shù)關(guān)系的方法叫做圖象法。
四、由函數(shù)關(guān)系式畫其圖像的一般步驟
。1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值
。2)描點(diǎn):以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)
。3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。
五、正比例函數(shù)和一次函數(shù)1、正比例函數(shù)和一次函數(shù)的概念
一般地,若兩個變量x,y間的關(guān)系可以表示成ykxb(k,b為常數(shù),k0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。
特別地,當(dāng)一次函數(shù)ykxb中的b=0時(即ykx)(k為常數(shù),k0),稱y是x的正比例函數(shù)。
2、一次函數(shù)的圖像:所有一次函數(shù)的圖像都是一條直線3、一次函數(shù)、正比例函數(shù)圖像的主要特征:
一次函數(shù)ykxb的圖像是經(jīng)過點(diǎn)(0,b)的直線;正比例函數(shù)ykx的圖像是經(jīng)過原點(diǎn)(0,0)的直線。
k的符號b的符號函數(shù)圖像yb>00xyb0xyb0時,圖像經(jīng)過第一、三象限,y隨x的增大而增大;
。2)當(dāng)k0時,y隨x的增大而增大(2)當(dāng)k(1)平均數(shù):一般地,對于n個數(shù)x1,x2,,xn,我們把個數(shù)的算術(shù)平均數(shù),簡稱平均數(shù),記為x。
。2)加權(quán)平均數(shù):
1n(x1x2xn)叫做這n
3、眾數(shù)
一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。
4、中位數(shù)
一般地,將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。
八年級數(shù)學(xué)上冊知識點(diǎn)總結(jié)6
1、四邊形在同一平面內(nèi),由不在同一直線上的四條線段首尾順次相接組成的圖形叫做四邊形。
2、四邊形具有不穩(wěn)定性
3、四邊形的內(nèi)角和定理及外角和定理
四邊形的內(nèi)角和定理:四邊形的內(nèi)角和等于360°。
四邊形的外角和定理:四邊形的外角和等于360°。
推論:多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n?2)?180°;
多邊形的外角和定理:任意多邊形的外角和等于360°。
6、設(shè)多邊形的邊數(shù)為n,則多邊形的對角線共有n(n?
3)條。從n邊形的一個頂點(diǎn)出2
發(fā)能引(n-3)條對角線,將n邊形分成(n-2)個三角形。
1、平行四邊形的定義
兩組對邊分別平行的四邊形叫做平行四邊形。
2、平行四邊形的性質(zhì)
(1)平行四邊形的對邊平行且相等。
(2)平行四邊形相鄰的角互補(bǔ),對角相等
(3)平行四邊形的對角線互相平分。
(4)平行四邊形是中心對稱圖形,對稱中心是對角線的交點(diǎn)。
常用點(diǎn):(1)若一直線過平行四邊形兩對角線的交點(diǎn),則這條直線被一組對邊截下的線段
的中點(diǎn)是對角線的交點(diǎn),并且這條直線二等分此平行四邊形的面積。
(2)推論:夾在兩條平行線間的平行線段相等。
3、平行四邊形的判定
(1)定義:兩組對邊分別平行的四邊形是平行四邊形
(2)定理1:兩組對角分別相等的四邊形是平行四邊形
(3)定理2:兩組對邊分別相等的四邊形是平行四邊形
(4)定理3:對角線互相平分的四邊形是平行四邊形
(5)定理4:一組對邊平行且相等的四邊形是平行四邊形
4、兩條平行線的距離
兩條平行線中,一條直線上的任意一點(diǎn)到另一條直線的距離,叫做這兩條平行線的距離。平行線間的距離處處相等。
5、平行四邊形的面積
S平行四邊形=底邊長×高=ah
一、函數(shù):
一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
二、自變量取值范圍
使函數(shù)有意義的自變量的取值的`全體,叫做自變量的取值范圍。一般從整式(取全體實(shí)數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負(fù)數(shù))、實(shí)際意義幾方面考慮。
三、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)
(1)關(guān)系式(解析)法
兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運(yùn)算符號的等式表示,這種表示法叫做關(guān)系式(解析)法。
(2)列表法
把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
(3)圖象法
用圖象表示函數(shù)關(guān)系的方法叫做圖象法。
四、由函數(shù)關(guān)系式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值
(2)描點(diǎn):以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)
(3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。
五、正比例函數(shù)和一次函數(shù)
1、正比例函數(shù)和一次函數(shù)的概念
一般地,若兩個變量x,y間的關(guān)系可以表示成(k,b為常數(shù),k0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。
特別地,當(dāng)一次函數(shù)中的b=0時(即)(k為常數(shù),k0),稱y是x的正比例函數(shù)。
2、一次函數(shù)的圖像:所有一次函數(shù)的圖像都是一條直線
3、一次函數(shù)、正比例函數(shù)圖像的主要特征:一次函數(shù)的圖像是經(jīng)過點(diǎn)(0,b)的直線;正比例函數(shù)的圖像是經(jīng)過原點(diǎn)(0,0)的直線。
1、二元一次方程
含有兩個未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的整式方程叫做二元一次方程。
2、二元一次方程的解
適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。
3、二元一次方程組
含有兩個未知數(shù)的兩個一次方程所組成的一組方程,叫做二元一次方程組。
4、二元一次方程組的解
二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。
5、二元一次方程組的解法
(1)代入(消元)法(2)加減(消元)法
1、刻畫數(shù)據(jù)的集中趨勢(平均水平)的量:平均數(shù)、眾數(shù)、中位數(shù)
2、平均數(shù)
(2)加權(quán)平均數(shù):
3、眾數(shù)
一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。
4、中位數(shù)
一般地,將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。
八年級數(shù)學(xué)上冊知識點(diǎn)總結(jié)7
一、四邊形性質(zhì)探索
定義:若兩條直線互相平行,則其中一條直線上任意兩點(diǎn)到另一條直線的距離相等,這個距離稱為平行線之間的距離。
平行四邊形:兩組對邊分別平行的四邊形,對邊相等,對角相等,對角線互相平分。兩組對邊分別平行的四邊形是平行四邊形,兩組對邊分別相等的四邊形是平行四邊形,兩條對角線互相平分的四邊形是平行四邊形,一組對邊平行且相等的四邊形是平行四邊形
菱形:一組鄰邊相等的平行四邊形(平行四邊形的性質(zhì))。四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。一組鄰邊相等的平行四邊形是菱形,對角線互相垂直的平行四邊形是菱形,四條邊都相等的四邊形是菱形。
矩形:有一個內(nèi)角是直角的平行四邊形(平行四邊形的性質(zhì))。對角線相等,四個角都是直角。有一個內(nèi)角是直角的.平行四邊形是矩形,對角線相等的平行四邊形是矩形。
正方形:一組鄰邊相等的矩形。正方形具有平行四邊形、菱形、矩形的一切性質(zhì)。一組鄰邊相等的矩形是正方形,一個內(nèi)角是直角的菱形是正方形。
梯形:一組對邊平行而另一組對邊不平行的四邊形。一組對邊平行而另一組對邊不平行的四邊形是梯形。
等腰梯形:兩條腰相等的梯形。同一底上的兩個內(nèi)角相等,對角線相等。兩腰相等的梯形是等腰梯形,同一底上兩個內(nèi)角相等的梯形是等腰梯形。
直角梯形:一條腰和底垂直的梯形。一條腰和底垂直的梯形是直角梯形。
多邊形:在平面內(nèi),由若干條不在同一條直線上的線段首尾順次相連組成的封閉圖形叫做多邊形。n邊形的內(nèi)角和等于(n—2)×180
多邊形內(nèi)角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角。多邊形的外角和都等于360°。三角形、四邊形和六邊形都可以密鋪。
定義:在平面內(nèi),一個圖形繞某個點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點(diǎn)叫做它的對稱中心。
中心對稱圖形上的每一對對應(yīng)點(diǎn)所連成的線段都被對稱中心平分。
二、實(shí)數(shù)
定義:任何有限小數(shù)或無限循環(huán)小數(shù)都是有理數(shù)。無限不循環(huán)小數(shù)叫做無理數(shù)(有理數(shù)總可以用有限小數(shù)或無限循環(huán)小數(shù)表示)
一般地,如果一個正數(shù)x的平方等于a,那么這個正數(shù)x就叫做a的算術(shù)平方根。特別地,我們規(guī)定0的算術(shù)平方根是0。
一般地,如果一個數(shù)x的平方等于a,那么這個數(shù)x就叫做a的平方根(也叫二次方根)一個正數(shù)有兩個平方根;0只有一個平方根,它是0本身;負(fù)數(shù)沒有平方根。求一個數(shù)a的平方根的運(yùn)算,叫做開平方,其中a叫做被開方數(shù)。
一般地,如果一個數(shù)x的立方等于a,那么這個數(shù)x就叫做a的立方根(也叫做三次方根)。正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。求一個數(shù)a的立方根的運(yùn)算,叫做開立方,其中a叫做被開方數(shù)。有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù),即實(shí)數(shù)可以分為有理數(shù)和無理數(shù)。
每一個實(shí)數(shù)都可以用數(shù)軸上的一個點(diǎn)來表示;反過來,數(shù)軸上的每一個點(diǎn)都表示一個實(shí)數(shù)。即實(shí)數(shù)和數(shù)軸上的點(diǎn)是一一對應(yīng)的。
在數(shù)軸上,右邊的點(diǎn)表示的數(shù)比左邊的點(diǎn)表示的數(shù)大。
三、全等三角形
。1)形狀、大小相同的圖形能夠完全重合;
。2)全等形:能夠完全重合的兩個圖形叫做全等形;
(3)全等三角形:能夠完全重合的兩個三角形叫做全等三角形;
。4)平移、翻折、旋轉(zhuǎn)前后的圖形全等;
。5)對應(yīng)頂點(diǎn):全等三角形中相互重合的頂點(diǎn)叫做對應(yīng)頂點(diǎn);
。6)對應(yīng)角:全等三角形中相互重合的角叫做對應(yīng)角;
。7)對應(yīng)邊:全等三角形中相互重合的邊叫做對應(yīng)邊;
。8)全等表示方法:用“@”表示,讀作“全等于”(注意:記兩個三角形全等時,把表示對應(yīng)頂點(diǎn)的字母寫在對應(yīng)的位置上)
。9)全等三角形的性質(zhì):
①全等三角形的對應(yīng)邊相等;
、谌热切蔚膶(yīng)角相等。
八年級數(shù)學(xué)上冊知識點(diǎn)總結(jié)8
第十一章全等三角形
1、全等三角形的性質(zhì):全等三角形對應(yīng)邊相等、對應(yīng)角相等。
2、全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對邊對應(yīng)相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL)。
3、角平分線的性質(zhì):角平分線平分這個角,角平分線上的點(diǎn)到角兩邊的距離相等
4、角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。
5、證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書寫證明格式(順序和對應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題)。
第十二章軸對稱
1、如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2、軸對稱圖形的對稱軸,是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。
3、角平分線上的點(diǎn)到角兩邊距離相等。
4、線段垂直平分線上的任意一點(diǎn)到線段兩個端點(diǎn)的距離相等。
5、與一條線段兩個端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。
6、軸對稱圖形上對應(yīng)線段相等、對應(yīng)角相等。
7、畫一圖形關(guān)于某條直線的軸對稱圖形的步驟:找到關(guān)鍵點(diǎn),畫出關(guān)鍵點(diǎn)的對應(yīng)點(diǎn),按照原圖順序依次連接各點(diǎn)。
8、點(diǎn)(x,y)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為(x,—y)
點(diǎn)(x,y)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)為(—x,y)
點(diǎn)(x,y)關(guān)于原點(diǎn)軸對稱的點(diǎn)的坐標(biāo)為(—x,—y)
9、等腰三角形的性質(zhì):等腰三角形的兩個底角相等,(等邊對等角)
等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。
10、等腰三角形的判定:等角對等邊。
11、等邊三角形的三個內(nèi)角相等,等于60°,
12、等邊三角形的判定:三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形。
有兩個角是60°的三角形是等邊三角形。
13、直角三角形中,30°角所對的直角邊等于斜邊的一半。
14、直角三角形斜邊上的中線等于斜邊的一半
第十三章實(shí)數(shù)
※算術(shù)平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作。0的算術(shù)平方根為0;從定義可知,只有當(dāng)a≥0時,a才有算術(shù)平方根。
※平方根:一般地,如果一個數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。
※正數(shù)有兩個平方根(一正一負(fù))它們互為相反數(shù);0只有一個平方根,就是它本身;負(fù)數(shù)沒有平方根。
※正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。
數(shù)a的相反數(shù)是—a,一個正實(shí)數(shù)的絕對值是它本身,一個負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0
第十四章一次函數(shù)
1、畫函數(shù)圖象的一般步驟:一、列表(一次函數(shù)只用列出兩個點(diǎn)即可,其他函數(shù)一般需要列出5個以上的點(diǎn),所列點(diǎn)是自變量與其對應(yīng)的函數(shù)值),二、描點(diǎn)(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)函數(shù)的值為縱坐標(biāo),描出表格中的個點(diǎn),一般畫一次函數(shù)只用兩點(diǎn)),三、連線(依次用平滑曲線連接各點(diǎn))。
2、根據(jù)題意寫出函數(shù)解析式:關(guān)鍵找到函數(shù)與自變量之間的等量關(guān)系,列出等式,既函數(shù)解析式。
3、若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時,稱y是x的正比例函數(shù)。
4、正比列函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過原點(diǎn)(0,0)的一條直線。
5、正比列函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過原點(diǎn)的直線,當(dāng)k>0時,直線y=kx經(jīng)過第一、三象限,y隨x的增大而增大,當(dāng)k<0時,直線y=kx經(jīng)過第二、四象限,y隨x的增大而減小,在一次函數(shù)y=kx+b中:k="">0時,y隨x的增大而增大;當(dāng)k<0時,y隨x的增大而減小。
6、已知兩點(diǎn)坐標(biāo)求函數(shù)解析式(待定系數(shù)法求函數(shù)解析式):
把兩點(diǎn)帶入函數(shù)一般式列出方程組
求出待定系數(shù)
把待定系數(shù)值再帶入函數(shù)一般式,得到函數(shù)解析式
7、會從函數(shù)圖象上找到一元一次方程的解(既與x軸的交點(diǎn)坐標(biāo)橫坐標(biāo)值),一元一次不等式的解集,二元一次方程組的解(既兩函數(shù)直線交點(diǎn)坐標(biāo)值)
第十五章整式的乘除與因式分解
1、同底數(shù)冪的.乘法
※同底數(shù)冪的乘法法則:(m,n都是正數(shù))是冪的運(yùn)算中最基本的法則,在應(yīng)用法則運(yùn)算時,要注意以下幾點(diǎn):
①法則使用的前提條件是:冪的底數(shù)相同而且是相乘時,底數(shù)a可以是一個具體的數(shù)字式字母,也可以是一個單項(xiàng)或多項(xiàng)式;
、谥笖(shù)是1時,不要誤以為沒有指數(shù);
、鄄灰獙⑼讛(shù)冪的乘法與整式的加法相混淆,對乘法,只要底數(shù)相同指數(shù)就可以相加;而對于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;
、墚(dāng)三個或三個以上同底數(shù)冪相乘時,法則可推廣為(其中m、n、p均為正數(shù));
、莨竭可以逆用:(m、n均為正整數(shù))
2、冪的乘方與積的乘方
※1、冪的乘方法則:(m,n都是正數(shù))是冪的乘法法則為基礎(chǔ)推導(dǎo)出來的,但兩者不能混淆。
※2、底數(shù)有負(fù)號時,運(yùn)算時要注意,底數(shù)是a與(—a)時不是同底,但可以利用乘方法則化成同底,如將(—a)3化成—a3。
※3、底數(shù)有時形式不同,但可以化成相同。
※4、要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
※5、積的乘方法則:積的乘方,等于把積每一個因式分別乘方,再把所得的冪相乘,即(n為正整數(shù))。
※6、冪的乘方與積乘方法則均可逆向運(yùn)用。
3、整式的乘法
※(1)單項(xiàng)式乘法法則:單項(xiàng)式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個因式。
單項(xiàng)式乘法法則在運(yùn)用時要注意以下幾點(diǎn):
、俜e的系數(shù)等于各因式系數(shù)積,先確定符號,再計算絕對值。這時容易出現(xiàn)的錯誤的是,將系數(shù)相乘與指數(shù)相加混淆;
②相同字母相乘,運(yùn)用同底數(shù)的乘法法則;
、壑辉谝粋單項(xiàng)式里含有的字母,要連同它的指數(shù)作為積的一個因式;
、軉雾(xiàng)式乘法法則對于三個以上的單項(xiàng)式相乘同樣適用;
、輪雾(xiàng)式乘以單項(xiàng)式,結(jié)果仍是一個單項(xiàng)式。
※(2)單項(xiàng)式與多項(xiàng)式相乘
單項(xiàng)式乘以多項(xiàng)式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
單項(xiàng)式與多項(xiàng)式相乘時要注意以下幾點(diǎn):
、賳雾(xiàng)式與多項(xiàng)式相乘,積是一個多項(xiàng)式,其項(xiàng)數(shù)與多項(xiàng)式的項(xiàng)數(shù)相同;
、谶\(yùn)算時要注意積的符號,多項(xiàng)式的每一項(xiàng)都包括它前面的符號;
、墼诨旌线\(yùn)算時,要注意運(yùn)算順序。
※(3)多項(xiàng)式與多項(xiàng)式相乘
多項(xiàng)式與多項(xiàng)式相乘,先用一個多項(xiàng)式中的每一項(xiàng)乘以另一個多項(xiàng)式的每一項(xiàng),再把所得的積相加。
多項(xiàng)式與多項(xiàng)式相乘時要注意以下幾點(diǎn):
、俣囗(xiàng)式與多項(xiàng)式相乘要防止漏項(xiàng),檢查的方法是:在沒有合并同類項(xiàng)之前,積的項(xiàng)數(shù)應(yīng)等于原兩個多項(xiàng)式項(xiàng)數(shù)的積;
②多項(xiàng)式相乘的結(jié)果應(yīng)注意合并同類項(xiàng);
③對含有同一個字母的一次項(xiàng)系數(shù)是1的兩個一次二項(xiàng)式相乘,其二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)等于兩個因式中常數(shù)項(xiàng)的和,常數(shù)項(xiàng)是兩個因式中常數(shù)項(xiàng)的積。對于一次項(xiàng)系數(shù)不為1的兩個一次二項(xiàng)式(mx+a)和(nx+b)相乘可以得
4、平方差公式
¤1、平方差公式:兩數(shù)和與這兩數(shù)差的積,等于它們的平方差,
※即。
¤其結(jié)構(gòu)特征是:
、俟阶筮吺莾蓚二項(xiàng)式相乘,兩個二項(xiàng)式中第一項(xiàng)相同,第二項(xiàng)互為相反數(shù);
、诠接疫吺莾身(xiàng)的平方差,即相同項(xiàng)的平方與相反項(xiàng)的平方之差。
5、完全平方公式
¤1、完全平方公式:兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍。
¤即;
¤口決:首平方,尾平方,2倍乘積在中央;
¤2、結(jié)構(gòu)特征:
①公式左邊是二項(xiàng)式的完全平方;
②公式右邊共有三項(xiàng),是二項(xiàng)式中二項(xiàng)的平方和,再加上或減去這兩項(xiàng)乘積的2倍。
¤3、在運(yùn)用完全平方公式時,要注意公式右邊中間項(xiàng)的符號,以及避免出現(xiàn)這樣的錯誤。
添括號法則:添正不變號,添負(fù)各項(xiàng)變號,去括號法則同樣
6、同底數(shù)冪的除法
※1、同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即(a≠0,m、n都是正數(shù),且m>n)。
※2、在應(yīng)用時需要注意以下幾點(diǎn):
、俜▌t使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0。
、谌魏尾坏扔0的數(shù)的0次冪等于1,即,如,(—2.0=1),則00無意義。
、廴魏尾坏扔0的數(shù)的—p次冪(p是正整數(shù)),等于這個數(shù)的p的次冪的倒數(shù),即(a≠0,p是正整數(shù)),而0—1,0—3都是無意義的;當(dāng)a>0時,a—p的值一定是正的;當(dāng)a<0時,a—p的值可能是正也可能是負(fù)的,如,
④運(yùn)算要注意運(yùn)算順序。
7、整式的除法
¤1、單項(xiàng)式除法單項(xiàng)式
單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式;
¤2、多項(xiàng)式除以單項(xiàng)式
多項(xiàng)式除以單項(xiàng)式,先把這個多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加,其特點(diǎn)是把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成單項(xiàng)式除以單項(xiàng)式,所得商的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同,另外還要特別注意符號。
8、分解因式
※1、把一個多項(xiàng)式化成幾個整式的積的形式,這種變形叫做把這個多項(xiàng)式分解因式。
※2、因式分解與整式乘法是互逆關(guān)系。
因式分解與整式乘法的區(qū)別和聯(lián)系:
。1)整式乘法是把幾個整式相乘,化為一個多項(xiàng)式;
。2)因式分解是把一個多項(xiàng)式化為幾個因式相乘。
八年級數(shù)學(xué)上冊知識點(diǎn)總結(jié)9
中線
1、等腰三角形底邊上的中線垂直底邊,平分頂角;
2、等腰三角形兩腰上的中線相等,并且它們的交點(diǎn)與底邊兩端點(diǎn)距離相等。
1、兩邊上中線相等的三角形是等腰三角形;
2、如果一個三角形的一邊中線垂直這條邊(平分這個邊的'對角),那么這個三角形是等腰三角形
角平分線
1、等腰三角形頂角平分線垂直平分底邊;
2、等腰三角形兩底角平分線相等,并且它們的交點(diǎn)到底邊兩端點(diǎn)的距離相等。
1、如果三角形的頂角平分線垂直于這個角的對邊(平分對邊),那么這個三角形是等腰三角形;
2、三角形中兩個角的平分線相等,那么這個三角形是等腰三角形。
高線
1、等腰三角形底邊上的高平分頂角、平分底邊;
2、等腰三角形兩腰上的高相等,并且它們的交點(diǎn)和底邊兩端點(diǎn)距離相等。
1、如果一個三角形一邊上的高平分這條邊(平分這條邊的對角),那么這個三角形是等腰三角形;
2、有兩條高相等的三角形是等腰三角形。
八年級數(shù)學(xué)上冊知識點(diǎn)總結(jié)10
因式分解
1.因式分解:把一個多項(xiàng)式化為幾個整式的積的形式,叫做把這個多項(xiàng)式因式分解;注意:因式分解與乘法是相反的兩個轉(zhuǎn)化.
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”.
3.公因式的確定:系數(shù)的公約數(shù)?相同因式的最低次冪.
注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式:a2-b2=(a+ b)(a- b);
(2)完全平方公式:a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.
5.因式分解的注意事項(xiàng):
(1)選擇因式分解方法的一般次序是:一提取、二公式、三分組、四十字;
(2)使用因式分解公式時要特別注意公式中的字母都具有整體性;
(3)因式分解的最后結(jié)果要求分解到每一個因式都不能分解為止;
(4)因式分解的最后結(jié)果要求每一個因式的首項(xiàng)符號為正;
(5)因式分解的最后結(jié)果要求加以整理;
(6)因式分解的最后結(jié)果要求相同因式寫成乘方的形式.
6.因式分解的解題技巧:(1)換位整理,加括號或去括號整理;(2)提負(fù)號;(3)全變號;(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分?jǐn)?shù)系數(shù);(9)展開部分括號或全部括號;(10)拆項(xiàng)或補(bǔ)項(xiàng).
7.完全平方式:能化為(m+n)2的多項(xiàng)式叫完全平方式;對于二次三項(xiàng)式x2+px+q,有“ x2+px+q是完全平方式? ”.
分式
1.分式:一般地,用A、B表示兩個整式,A÷B就可以表示為的形式,如果B中含有字母,式子叫做分式.
2.有理式:整式與分式統(tǒng)稱有理式;即.
3.對于分式的兩個重要判斷:(1)若分式的分母為零,則分式無意義,反之有意義;(2)若分式的分子為零,而分母不為零,則分式的值為零;注意:若分式的分子為零,而分母也為零,則分式無意義.
4.分式的基本性質(zhì)與應(yīng)用:
(1)若分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變;
(2)注意:在分式中,分子、分母、分式本身的符號,改變其中任何兩個,分式的值不變;
即
(3)繁分式化簡時,采用分子分母同乘小分母的最小公倍數(shù)的方法,比較簡單.
5.分式的.約分:把一個分式的分子與分母的公因式約去,叫做分式的約分;注意:分式約分前經(jīng)常需要先因式分解.
6.最簡分式:一個分式的分子與分母沒有公因式,這個分式叫做最簡分式;注意:分式計算的最后結(jié)果要求化為最簡分式.
7.分式的乘除法法則:.
8.分式的乘方:.
9.負(fù)整指數(shù)計算法則:
(1)公式:a0=1(a≠0), a-n= (a≠0);
(2)正整指數(shù)的運(yùn)算法則都可用于負(fù)整指數(shù)計算;
(3)公式:,;
(4)公式:(-1)-2=1,(-1)-3=-1.
10.分式的通分:根據(jù)分式的基本性質(zhì),把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先確定最簡公分母.
11.最簡公分母的確定:系數(shù)的最小公倍數(shù)?相同因式的次冪.
12.同分母與異分母的分式加減法法則:.
13.含有字母系數(shù)的一元一次方程:在方程ax+b=0(a≠0)中,x是未知數(shù),a和b是用字母表示的已知數(shù),對x來說,字母a是x的系數(shù),叫做字母系數(shù),字母b是常數(shù)項(xiàng),我們稱它為含有字母系數(shù)的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知數(shù),用x、y、z等表示未知數(shù).
14.公式變形:把一個公式從一種形式變換成另一種形式,叫做公式變形;注意:公式變形的本質(zhì)就是解含有字母系數(shù)的方程.特別要注意:字母方程兩邊同時乘以含字母的代數(shù)式時,一般需要先確認(rèn)這個代數(shù)式的值不為0.
15.分式方程:分母里含有未知數(shù)的方程叫做分式方程;注意:以前學(xué)過的,分母里不含未知數(shù)的方程是整式方程.
16.分式方程的增根:在解分式方程時,為了去分母,方程的兩邊同乘以了含有未知數(shù)的代數(shù)式,所以可能產(chǎn)生增根,故分式方程必須驗(yàn)增根;注意:在解方程時,方程的兩邊一般不要同時除以含未知數(shù)的代數(shù)式,因?yàn)榭赡軄G根.
17.分式方程驗(yàn)增根的方法:把分式方程求出的根代入最簡公分母(或分式方程的每個分母),若值為零,求出的根是增根,這時原方程無解;若值不為零,求出的根是原方程的解;注意:由此可判斷,使分母的值為零的未知數(shù)的值可能是原方程的增根.
18.分式方程的應(yīng)用:列分式方程解應(yīng)用題與列整式方程解應(yīng)用題的方法一樣,但需要增加“驗(yàn)增根”的程序.
學(xué)好數(shù)學(xué)的方法有哪些
1學(xué)好初中數(shù)學(xué)課前預(yù)習(xí)是重點(diǎn)
數(shù)學(xué)解題思路和能力的培養(yǎng)主要在于課堂上,所以想要學(xué)好初中數(shù)學(xué)一定要重視數(shù)學(xué)的學(xué)習(xí)效率和提前預(yù)習(xí)。只有提前預(yù)習(xí)才知道自己哪里不會,這樣在課堂上才會注意力集中不走神。同時在初中數(shù)學(xué)的課上,學(xué)生也要緊跟老師的解題思路,注意自己的解題思路和老師的有什么不同。尤其是基礎(chǔ)知識和最基本的技能學(xué)習(xí),課上數(shù)學(xué)老師講完后,初中生要在課后及時復(fù)習(xí),爭取老師講完每一節(jié)的知識后,學(xué)生都不要留下疑問。
2獨(dú)立完成初中數(shù)學(xué)作業(yè)
在完成老師布置的作業(yè)時,初中生要學(xué)會自己能夠獨(dú)立完成,想要學(xué)好初中數(shù)學(xué)就要勤于思考,千萬不能偷懶。平時對于自己弄不懂的題目和解題思路,不要放棄,靜下心來認(rèn)真分析和研究,盡量做到自己能夠解決,實(shí)在是想不出來在問同學(xué)或者老師。對于初中數(shù)學(xué)的每一個學(xué)習(xí)階段,都要學(xué)會進(jìn)行整理和歸納。
建立數(shù)學(xué)思維方式
到了初中,數(shù)學(xué)出現(xiàn)了很多新的知識點(diǎn),也是重點(diǎn)考點(diǎn)和關(guān)鍵難點(diǎn),比如系統(tǒng)性的開始學(xué)習(xí)幾何知識,首次引入函數(shù)的概念并求解一般的線性函數(shù)問題,這些對于初中生來說既是全新的,又是有一定難度的。這就需要學(xué)生創(chuàng)新數(shù)學(xué)思維方式,緊跟教材進(jìn)度和課堂進(jìn)度,訓(xùn)練自己的數(shù)學(xué)思維尤其的幾何圖形的感覺,以及對函數(shù)的深刻理解。
八年級上冊數(shù)學(xué)第一章知識點(diǎn)歸納
一、全等形
1、定義:能夠完全重合的兩個圖形叫做全等圖形,簡稱全等形。
2、一個圖形經(jīng)過翻折、平移和旋轉(zhuǎn)等變換后所得到的圖形一定與原圖形全等。反之,兩個全等的圖形經(jīng)過上述變換后一定能夠互相重合。
二、全等多邊形
1、定義:
能夠完全重合的多邊形叫做全等多邊形;ハ嘀睾系狞c(diǎn)叫做對應(yīng)頂點(diǎn),互相重合的邊叫做對應(yīng)邊,互相重合的角叫做對應(yīng)角。
2、性質(zhì):
(1)全等多邊形的對應(yīng)邊相等,對應(yīng)角相等。
(2)全等多邊形的面積相等。
三、全等三角形
1、全等符號:"≌"。如圖,不是為:△ABC≌△A′B′C′。讀作:三角形ABC全等于三角形A′B′C′。
2、全等三角形的判定定理:
(1)有兩邊和它們的夾角對應(yīng)相等的兩三角形全等。(即SAS,"邊角邊");
(2)有兩角和它們的夾邊對應(yīng)相等的兩三角形全等。(即ASA,"角邊角")
(3)有兩角和其中一角的對邊對應(yīng)相等的兩三角形全等。(即AAS,"角角邊")
(4)有三邊對應(yīng)相等的兩三角形全等。(即SSS,"邊邊邊")
(5)有斜邊和一條直角邊對應(yīng)相等的兩直角三角形全等。(即HL,"斜邊直角邊")
3、全等三角形的性質(zhì):
(1)全等三角形的對應(yīng)邊相等、對應(yīng)角相等;
(2)全等三角形的周長相等、面積相等;
(3)全等三角形對應(yīng)邊上的中線、高,對應(yīng)角的平分線都相等。
4、全等三角形的作用:
(1)用于直接證明線段相等,角相等。
(2)用于證明直線的平行關(guān)系、垂直關(guān)系等。
(3)用于測量人不能的到達(dá)的路程的長短等。
(4)用于間接證明特殊的圖形。(如證明等腰三角形、等邊三角形、平行四邊形、矩形、菱形、正方形和梯形等)。
(5)用于解決有關(guān)等積等問題。
八年級數(shù)學(xué)上冊知識點(diǎn)總結(jié)11
(有理數(shù)總可以用有限小數(shù)或無限循環(huán)小數(shù)表示)
一般地,如果一個正數(shù)x的平方等于a,那么這個正數(shù)x就叫做a的算術(shù)平方根。
特別地,我們規(guī)定0的算術(shù)平方根是0。
一般地,如果一個數(shù)x的平方等于a,那么這個數(shù)x就叫做a的平方根(也叫二次方根)
一個正數(shù)有兩個平方根;0只有一個平方根,它是0本身;負(fù)數(shù)沒有平方根。
求一個數(shù)a的平方根的運(yùn)算,叫做開平方,其中a叫做被開方數(shù)。
一般地,如果一個數(shù)x的立方等于a,那么這個數(shù)x就叫做a的立方根(也叫做三次方根)。
正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。
求一個數(shù)a的立方根的運(yùn)算,叫做開立方,其中a叫做被開方數(shù)。
有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù),即實(shí)數(shù)可以分為有理數(shù)和無理數(shù)。
每一個實(shí)數(shù)都可以用數(shù)軸上的一個點(diǎn)來表示;反過來,數(shù)軸上的每一個點(diǎn)都表示一個實(shí)數(shù)。即實(shí)數(shù)和數(shù)軸上的點(diǎn)是一一對應(yīng)的。
在數(shù)軸上,右邊的點(diǎn)表示的數(shù)比左邊的點(diǎn)表示的數(shù)大。
實(shí)數(shù)知識點(diǎn)
平方根:
、偃绻粋正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。
②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。
、垡粋正數(shù)有2個平方根/0的平方根為0/負(fù)數(shù)沒有平方根。
、芮笠粋數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。
立方根:
、偃绻粋數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。
、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。
、矍笠粋數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。
實(shí)數(shù):
、賹(shí)數(shù)分有理數(shù)和無理數(shù)。
、谠趯(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的'意義完全一樣。
、勖恳粋實(shí)數(shù)都可以在數(shù)軸上的一個點(diǎn)來表示。
打好基礎(chǔ)
數(shù)學(xué)基礎(chǔ)包括基礎(chǔ)知識和基本技能。基礎(chǔ)知識是指數(shù)學(xué)公式,定理,原理和概念之間的內(nèi)在和外在聯(lián)系。基本技能指的是計算技巧,繪圖技巧以及使用公式解決問題。技能等等。只要掌握了基礎(chǔ)知識和基本技能,學(xué)生就可以靈活運(yùn)用數(shù)學(xué)知識來解決各種問題。
注意新舊知識之間的聯(lián)系
數(shù)學(xué)知識是初中的基礎(chǔ)。學(xué)生可以合理地分配時間在初中復(fù)習(xí)這部分知識,同時學(xué)習(xí)新知識。新知識的學(xué)習(xí)通常是通過舊知識或以前學(xué)習(xí)知識的延續(xù)來引入的。因此,在學(xué)習(xí)數(shù)學(xué)的過程中,學(xué)生應(yīng)注意接觸新舊知識,鞏固和提高對數(shù)學(xué)知識的掌握程度。
善于總結(jié)和整理
要想把數(shù)學(xué)學(xué)好的話,我們在學(xué)習(xí)之后,對于重點(diǎn)內(nèi)容,我們一定要善于總結(jié)和整理,不斷的強(qiáng)化記憶一下重點(diǎn)知識點(diǎn)。
加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。③一個數(shù)與0相加不變。
減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號得正,異號得負(fù),絕對值相乘。②任何數(shù)與0相乘得0。③乘積為1的兩個有理數(shù)互為倒數(shù)。
除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。②0不能作除數(shù)。
乘方:求N個相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
高中數(shù)學(xué)學(xué)習(xí)方法
1怎么才能提高高考數(shù)學(xué)成績
一、看課本補(bǔ)基礎(chǔ)
基礎(chǔ)很差,那就不要總想著有什么捷徑,不要給自己找理由去偷懶,積累的過程從來就沒有捷徑,看課本補(bǔ)上基礎(chǔ),是一個緩慢但卻最實(shí)際最靠譜的方法,特別是高三第一輪復(fù)習(xí)的時候,對于概念,公式,如何推導(dǎo)公式等一定要重點(diǎn)弄懂,還有每個知識點(diǎn)后面的例題,至于有同學(xué)會問那些課后習(xí)題需要做么?我覺得應(yīng)該沒有那么多時間,而且那些針對性也不強(qiáng),畢竟有些必修課本是面向全部學(xué)生,沒有分文理科的。
二、跟著老師步驟去看課本補(bǔ)基礎(chǔ)
在第一輪復(fù)習(xí)的時候,很多同學(xué)會覺得很多知識點(diǎn)都不懂并且還會有不知從哪里去看課本好,這時老師復(fù)習(xí)節(jié)奏很重要,你就不要自己計劃今天要復(fù)習(xí)課本哪里,第一輪復(fù)習(xí)可以跟著老師步驟,老師講到哪,就去看這部分知識點(diǎn)的內(nèi)容,具體按照上一步驟。
2提高高考數(shù)學(xué)成績的技巧
背例題
這個是一個比較冷門但是效果奇好的提高數(shù)學(xué)成績的方法。這個辦法就是,遇到你不會的題目,如果怎么都做不出來,你就不用花時間弄懂它了,把它背下來,但是不要什么題都背,要背那種中等難度的題,高難的題一般以后也用不上,簡單的你自己就會做。這樣做一段時間,你會發(fā)現(xiàn)你節(jié)省了很多時間,遇到不會的題你也會往里面“套答案”了。
課后復(fù)習(xí)
高中數(shù)學(xué)一定要注意的一點(diǎn)就是時效性,一定要在課后及時復(fù)習(xí),這樣做的原因就是如果你隔幾天在看,你會發(fā)現(xiàn)你的知識點(diǎn)已經(jīng)忘記的差不多了,這個時候你在復(fù)習(xí),就產(chǎn)不多相當(dāng)于又重新在學(xué)一次,所以“趁熱打鐵”這個成語同樣適用于高中數(shù)學(xué)的學(xué)習(xí)。其次,我們復(fù)習(xí)過得知識也不是一勞永逸的,每周、每個月都最好總結(jié)一下。這樣有利于形成我們的知識網(wǎng)絡(luò),更加方便記憶。
3提高高考數(shù)學(xué)成績的竅門
仔細(xì)研讀教材
對于高考的數(shù)學(xué)來說,高考的出題一直是源自教材的,所以在高三學(xué)生復(fù)習(xí)的過程中,需要認(rèn)真閱讀數(shù)學(xué)的教材,并且將教材中的知識、概念、例題、等知識點(diǎn)加以分析,在數(shù)學(xué)的知識點(diǎn)中,有很多知識點(diǎn)網(wǎng)絡(luò)的交匯處是歷年高考的高頻考點(diǎn),想要考好數(shù)學(xué)的學(xué)生可以將數(shù)學(xué)課本中的知識串成串,連成線,匯成面,并且將高考中出現(xiàn)的各個知識點(diǎn)加以練習(xí)并相互結(jié)合。
找到適合自己學(xué)習(xí)數(shù)學(xué)的方式
每個高三學(xué)生的學(xué)習(xí)情況都不一樣,所以針對于他們的訓(xùn)練方式也不同。但是對于訓(xùn)練的目標(biāo)有很多相同之處。所以在高三學(xué)生學(xué)習(xí)數(shù)學(xué)備考的時候應(yīng)該合理安排訓(xùn)練。首先就需要高三學(xué)生弄清楚自己的需要,無論是數(shù)學(xué)的試卷還是專題,都需要自己一點(diǎn)一點(diǎn)來做。
并且弄清楚自己那些知識點(diǎn)存在著問題,就要多做一些此類知識點(diǎn)。其次就是要制定一個合理的目標(biāo),學(xué)習(xí)要為了自己的成績而學(xué),不是為了老師和家長而學(xué)習(xí),在做題之前首先要制定一個目標(biāo),通過一些訓(xùn)練的方式來提高自己的數(shù)學(xué)做題的準(zhǔn)確率。
【八年級數(shù)學(xué)上冊知識點(diǎn)總結(jié)】相關(guān)文章:
初三數(shù)學(xué)上冊知識點(diǎn)總結(jié)11-18
初三數(shù)學(xué)上冊知識點(diǎn)總結(jié)06-19
八年級上冊數(shù)學(xué)知識點(diǎn)03-15
人教版八年級數(shù)學(xué)上冊知識點(diǎn)總結(jié)大全11-07
人教版八年級數(shù)學(xué)上冊知識點(diǎn)10-08
八年級數(shù)學(xué)上冊知識點(diǎn)歸納07-07
人教版八年級上冊數(shù)學(xué)知識點(diǎn)11-30