亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

數(shù)學(xué) 百文網(wǎng)手機(jī)站

八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)

時(shí)間:2022-11-07 10:26:04 數(shù)學(xué) 我要投稿

人教版八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)大全

  在日常過程學(xué)習(xí)中,大家最熟悉的就是知識(shí)點(diǎn)吧?知識(shí)點(diǎn)也不一定都是文字,數(shù)學(xué)的知識(shí)點(diǎn)除了定義,同樣重要的公式也可以理解為知識(shí)點(diǎn)。想要一份整理好的知識(shí)點(diǎn)嗎?以下是小編收集整理的人教版八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)大全,僅供參考,希望能夠幫助到大家。

人教版八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)大全

  八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)1

  多邊形

  1、多邊形的概念:

  在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。組成多邊形的各條線段叫做多邊形的邊;每相鄰兩條邊的公共端點(diǎn)叫做多邊形的頂點(diǎn);多邊形相鄰兩邊組成的角叫多邊形的內(nèi)角,一個(gè)n邊形有n個(gè)內(nèi)角;多邊形的邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。在定義中應(yīng)注意:

 、僖恍┚段(多邊形的邊數(shù)是大于等于3的正整數(shù));

  ②首尾順次相連,二者缺一不可;

 、劾斫鈺r(shí)要特別注意“在同一平面內(nèi)”這個(gè)條件,其目的是為了排除幾個(gè)點(diǎn)不共面的情況,即空間多邊形。

  2、多邊形的分類:

  多邊形可分為凸多邊形和凹多邊形,畫出多邊形的任何一條邊所在的直線,如果整個(gè)多邊形都在這條直線的同一側(cè),則此多邊形為凸多邊形,反之為凹多邊形。

  凸多邊形 凹多邊形 各個(gè)角都相等、各個(gè)邊都相等的多邊形叫做正多邊形。

  3、多邊形的對(duì)角線:

  連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。

  (1)從n邊形一個(gè)頂點(diǎn)可以引(n-3)條對(duì)角線,將多邊形分成(n-2)個(gè)三角形。

  (2)n邊形共有條對(duì)角線。

  4、多邊形的內(nèi)角和外角

  (1)多邊形的內(nèi)角和公式:n邊形的內(nèi)角和為(n-2)×180°(2)多邊形的外角和等于360°,它與邊數(shù)的多少無(wú)關(guān)。

  推論:(1)內(nèi)角和與邊數(shù)成正比:邊數(shù)增加,內(nèi)角和增加;邊數(shù)減少,內(nèi)角和減少。每增加一條邊,內(nèi)角的和就增加180°(反過來也成立),且多邊形的內(nèi)角和必須是180°的整數(shù)倍。

  (2)多邊形最多有三個(gè)內(nèi)角為銳角,最少?zèng)]有銳角(如矩形);多邊形的外角中最多有三個(gè)鈍角,最少?zèng)]有鈍角。

  八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)2

  (一)運(yùn)用公式法:

  我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項(xiàng)式分解因式。于是有:

  a2-b2=(a+b)(a-b)

  a2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

  如果把乘法公式反過來,就可以用來把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。

  (二)平方差公式

  1、平方差公式

  (1)式子:a2-b2=(a+b)(a-b)

  (2)語(yǔ)言:兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積。這個(gè)公式就是平方差公式。

  (三)因式分解

  1、因式分解時(shí),各項(xiàng)如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。

  2、因式分解,必須進(jìn)行到每一個(gè)多項(xiàng)式因式不能再分解為止。

  (四)完全平方公式

  (1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:a2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

  這就是說,兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。

  把a(bǔ)2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。

  上面兩個(gè)公式叫完全平方公式。

  (2)完全平方式的形式和特點(diǎn)

 、夙(xiàng)數(shù):三項(xiàng)

 、谟袃身(xiàng)是兩個(gè)數(shù)的的平方和,這兩項(xiàng)的符號(hào)相同。

 、塾幸豁(xiàng)是這兩個(gè)數(shù)的積的兩倍。

  (3)當(dāng)多項(xiàng)式中有公因式時(shí),應(yīng)該先提出公因式,再用公式分解。

  (4)完全平方公式中的a、b可表示單項(xiàng)式,也可以表示多項(xiàng)式。這里只要將多項(xiàng)式看成一個(gè)整體就可以了。

  (5)分解因式,必須分解到每一個(gè)多項(xiàng)式因式都不能再分解為止。

  八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)3

  分?jǐn)?shù)的加減法

  1、通分與約分雖都是針對(duì)分式而言,但卻是兩種相反的變形。約分是針對(duì)一個(gè)分式而言,而通分是針對(duì)多個(gè)分式而言;約分是把分式化簡(jiǎn),而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來、

  2、通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變。

  3、一般地,通分結(jié)果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備。

  4、通分的依據(jù):分式的基本性質(zhì)。

  5、通分的關(guān)鍵:確定幾個(gè)分式的公分母。

  通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡(jiǎn)公分母。

  6、類比分?jǐn)?shù)的通分得到分式的通分:

  把幾個(gè)異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分。

  7、同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

  同分母的分式加減運(yùn)算,分母不變,把分子相加減,這就是把分式的運(yùn)算轉(zhuǎn)化為整式運(yùn)算。

  8、異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质,然后再加減。

  9、同分母分式相加減,分母不變,只須將分子作加減運(yùn)算,但注意每個(gè)分子是個(gè)整體,要適時(shí)添上括號(hào)。

  10、對(duì)于整式和分式之間的加減運(yùn)算,則把整式看成一個(gè)整體,即看成是分母為1的分式,以便通分。

  11、異分母分式的加減運(yùn)算,首先觀察每個(gè)公式是否最簡(jiǎn)分式,能約分的先約分,使分式簡(jiǎn)化,然后再通分,這樣可使運(yùn)算簡(jiǎn)化。

  12、作為最后結(jié)果,如果是分式則應(yīng)該是最簡(jiǎn)分式。

  八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)4

  中線

  1、等腰三角形底邊上的中線垂直底邊,平分頂角;

  2、等腰三角形兩腰上的中線相等,并且它們的交點(diǎn)與底邊兩端點(diǎn)距離相等。

  1、兩邊上中線相等的三角形是等腰三角形;

  2、如果一個(gè)三角形的一邊中線垂直這條邊(平分這個(gè)邊的對(duì)角),那么這個(gè)三角形是等腰三角形

  角平分線

  1、等腰三角形頂角平分線垂直平分底邊;

  2、等腰三角形兩底角平分線相等,并且它們的交點(diǎn)到底邊兩端點(diǎn)的距離相等。

  1、如果三角形的頂角平分線垂直于這個(gè)角的對(duì)邊(平分對(duì)邊),那么這個(gè)三角形是等腰三角形;

  2、三角形中兩個(gè)角的平分線相等,那么這個(gè)三角形是等腰三角形。

  高線

  1、等腰三角形底邊上的高平分頂角、平分底邊;

  2、等腰三角形兩腰上的高相等,并且它們的交點(diǎn)和底邊兩端點(diǎn)距離相等。

  1、如果一個(gè)三角形一邊上的高平分這條邊(平分這條邊的對(duì)角),那么這個(gè)三角形是等腰三角形;

  2、有兩條高相等的三角形是等腰三角形。

  八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)5

  四邊形的相關(guān)概念

  1、四邊形

  在同一平面內(nèi),由不在同一直線上的四條線段首尾順次相接組成的圖形叫做四邊形。

  2、四邊形具有不穩(wěn)定性

  3、四邊形的內(nèi)角和定理及外角和定理

  四邊形的內(nèi)角和定理:四邊形的內(nèi)角和等于360°。

  四邊形的外角和定理:四邊形的外角和等于360°。

  推論:多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n?2)?180°;

  多邊形的外角和定理:任意多邊形的外角和等于360°。

  6、設(shè)多邊形的邊數(shù)為n,則多邊形的對(duì)角線共有n(n?3)條。從n邊形的`一個(gè)頂點(diǎn)出2發(fā)能引(n-3)條對(duì)角線,將n邊形分成(n-2)個(gè)三角形。

  八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)6

  一、平面直角坐標(biāo)系:

  在平面內(nèi)有公共原點(diǎn)而且互相垂直的兩條數(shù)軸,構(gòu)成了平面直角坐標(biāo)系。

  二、知識(shí)點(diǎn)與題型總結(jié):

  1、由點(diǎn)找坐標(biāo):

  A點(diǎn)的坐標(biāo)記作A( 2,1 ),規(guī)定:橫坐標(biāo)在前,縱坐標(biāo)在后。

  2、由坐標(biāo)找點(diǎn):例找點(diǎn)B( 3,-2 ) ?

  由坐標(biāo)找點(diǎn)的方法:先找到表示橫坐標(biāo)與縱坐標(biāo)的點(diǎn),然后過這兩點(diǎn)分別作x軸與y軸的垂線,垂線的交點(diǎn)就是該坐標(biāo)對(duì)應(yīng)的點(diǎn)。

  各象限點(diǎn)坐標(biāo)的符號(hào):

 、偃酎c(diǎn)P(x,y)在第一象限,則x > 0,y > 0 ;

 、谌酎c(diǎn)P(x,y)在第二象限,則x < 0,y > 0 ;

  ③若點(diǎn)P(x,y)在第三象限,則x < 0,y < 0 ;

 、苋酎c(diǎn)P(x,y)在第四象限,則x > 0,y < 0 。

  典型例題:

  例1、點(diǎn)P的坐標(biāo)是(2,-3),則點(diǎn)P在第四象限。

  例2、若點(diǎn)P(x,y)的坐標(biāo)滿足xy>0,則點(diǎn)P在第一或三象限。

  例3、若點(diǎn)A的坐標(biāo)為(a^2+1, -2–b^2) ,則點(diǎn)A在第四象限。

  4、坐標(biāo)軸上點(diǎn)的坐標(biāo)符號(hào):

  坐標(biāo)軸上的點(diǎn)不屬于任何象限。

 、 x軸上的點(diǎn)的縱坐標(biāo)為0,表示為(x,0),

 、 y軸上的點(diǎn)的橫坐標(biāo)為0,表示為(0,y),

 、墼c(diǎn)(0,0)既在x軸上,又在y軸上。

  例4、點(diǎn)P(x,y )滿足xy = 0,則點(diǎn)P在x軸上或y軸上。 .

  5、與坐標(biāo)軸平行的兩點(diǎn)連線:

 、偃鬉B‖ x軸,則A、B的縱坐標(biāo)相同;

 、谌鬉B‖ y軸,則A、B的橫坐標(biāo)相同。

  例5、已知點(diǎn)A(10,5),B(50,5),則直線AB的位置特點(diǎn)是(A )

  A、與x軸平行B、與y軸平行C、與x軸相交,但不垂直D、與y軸相交,但不垂直

  6、象限角平分線上的點(diǎn):

 、偃酎c(diǎn)P在第一、三象限角的平分線上,則P( m, m );

  ②若點(diǎn)P在第二、四象限角的平分線上,則P( m, -m )。

  例6、已知點(diǎn)A(2a+1,2+a)在第二象限的平分線上,試求A的坐標(biāo)。

  解:由條件可知:2a+1 +(2+a)=0,解得a = -1,

  ∴ A(-1,1)。

  例7、已知點(diǎn)M(a+1,3a-5)在兩坐標(biāo)軸夾角的平分線上,試求M的坐標(biāo)。

  解:當(dāng)在一、三象限角平分線上時(shí),a+1=3a-5,

  解得:a=3 ∴ M(4,4)

  當(dāng)在二、四象限角平分線上時(shí),a+1+(3a-5 )=0,

  解得:a=1 ∴ M(2,-2)

  ∴M的坐標(biāo)為(4,4)或(2,-2)

  7、關(guān)于坐標(biāo)軸、原點(diǎn)的對(duì)稱點(diǎn):

 、冱c(diǎn)(a, b )關(guān)于X軸的對(duì)稱點(diǎn)是(a , -b );

 、邳c(diǎn)(a, b )關(guān)于Y軸的對(duì)稱點(diǎn)是( -a , b );

 、埸c(diǎn)(a, b )關(guān)于原點(diǎn)的對(duì)稱點(diǎn)是( -a , -b )。

  例8、已知點(diǎn)A(3a-1,1+a)在第一象限的平分線上,試求A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)。

  解:由條件得:3a-1=1+a解得:a=1,∴ A(2,2),

  ∴ A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)為(-2,-2)。

  8、點(diǎn)到坐標(biāo)軸的距離:

 、冱c(diǎn)( x, y )到x軸的距離是∣y∣;

 、邳c(diǎn)( x, y )到x軸的距離是∣x∣。

  例9、點(diǎn)P到x軸、y軸的距離分別是2,1,則點(diǎn)P的坐標(biāo)可能為?

  答案:(1,2)、(1,-2)、(-1,2)、(-1,-2) 。

  三、知識(shí)拓展與提高:

  例10、在平面直角坐標(biāo)系中,已知兩點(diǎn)A(0,1),B(8,5),點(diǎn)P在x軸上,則PA + PB的最小值是多少?

  解:作點(diǎn)A(0,1)關(guān)于x軸的對(duì)稱點(diǎn)A'(0,-1),連接A'B與x軸交于點(diǎn)P,

  則A'B路徑最短,即PA + PB最小。

  根據(jù)勾股定理得:A'B = √[(1+5)^2 + 8^2] = 10 。

  ∴PA + PB的最小值是10 。

  如何學(xué)好初中數(shù)學(xué)的方法

  多做練習(xí)題

  要想學(xué)好初中數(shù)學(xué),必須多做練習(xí),我們所說的“多做練習(xí)”,不是搞“題海戰(zhàn)術(shù)”。只做不思,不能起到鞏固概念,拓寬思路的作用,而且有“副作用”:把已學(xué)過的知識(shí)攪得一塌糊涂,理不出頭緒,浪費(fèi)時(shí)間又收獲不大,我們所說的“多做練習(xí)”,是要大家在做了一道新穎的題目之后,多想一想:它究竟用到了哪些知識(shí),是否可以多解,其結(jié)論是否還可以加強(qiáng)、推廣等等。

  課后總結(jié)和反思

  在進(jìn)行單元小結(jié)或?qū)W期總結(jié)時(shí),要做到以下幾點(diǎn):一看:看書、看筆記、看習(xí)題,通過看,回憶、熟悉所學(xué)內(nèi)容;二列:列出相關(guān)的知識(shí)點(diǎn),標(biāo)出重點(diǎn)、難點(diǎn),列出各知識(shí)點(diǎn)之間的關(guān)系,這相當(dāng)于寫出總結(jié)要點(diǎn);三做:在此基礎(chǔ)上有目的、有重點(diǎn)、有選擇地解一些各種檔次、類型的習(xí)題,通過解題再反饋,發(fā)現(xiàn)問題、解決問題。

  初中數(shù)學(xué)有理數(shù)知識(shí)點(diǎn)

  1、有理數(shù)的加法運(yùn)算

  同號(hào)兩數(shù)來相加,絕對(duì)值加不變號(hào)。

  異號(hào)相加大減小,大數(shù)決定和符號(hào)。

  互為相反數(shù)求和,結(jié)果是零須記好。

  “大”減“小”是指絕對(duì)值的大小。

  2、有理數(shù)的減法運(yùn)算

  減正等于加負(fù),減負(fù)等于加正。

  有理數(shù)的乘法運(yùn)算符號(hào)法則。

  同號(hào)得正異號(hào)負(fù),一項(xiàng)為零積是零。

  3、有理數(shù)混合運(yùn)算的四種運(yùn)算技巧

  轉(zhuǎn)化法:一是將除法轉(zhuǎn)化為乘法,二是將乘方轉(zhuǎn)化為乘法,三是在乘除混合運(yùn)算中,通常將小數(shù)轉(zhuǎn)化為分?jǐn)?shù)進(jìn)行約分計(jì)算。

  湊整法:在加減混合運(yùn)算中,通常將和為零的兩個(gè)數(shù),分母相同的兩個(gè)數(shù),和為整數(shù)的兩個(gè)數(shù),乘積為整數(shù)的兩個(gè)數(shù)分別結(jié)合為一組求解。

  分拆法:先將帶分?jǐn)?shù)分拆成一個(gè)整數(shù)與一個(gè)真分?jǐn)?shù)的和的形式,然后進(jìn)行計(jì)算。

  巧用運(yùn)算律:在計(jì)算中巧妙運(yùn)用加法運(yùn)算律或乘法運(yùn)算律往往使計(jì)算更簡(jiǎn)便。

  八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)7

  1、刻畫數(shù)據(jù)的集中趨勢(shì)(平均水平)的量:平均數(shù) 、眾數(shù)、中位數(shù)

  2、平均數(shù)

  平均數(shù):一般地,對(duì)于n個(gè)數(shù),我們把它們的和與n之商叫做這n個(gè)數(shù)的算術(shù)平均數(shù),簡(jiǎn)稱平均數(shù)。

  加權(quán)平均數(shù)。

  3、眾數(shù)

  一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。

  4、中位數(shù)

  一般地,將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個(gè)數(shù)據(jù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。

  第七章 平行線的證明

  1、平行線的性質(zhì)

  一般地,如果兩條線互相平行的直線被第三條直線所截,那么同位角相等,內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ)。

  也可以簡(jiǎn)單的說成:

  兩直線平行,同位角相等;

  兩直線平行,內(nèi)錯(cuò)角相等;

  兩直線平行,同旁內(nèi)角互補(bǔ)。

  2、判定平行線

  兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。

  也可以簡(jiǎn)單說成:

  同位角相等兩直線平行 兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;如果同旁內(nèi)角互補(bǔ),那么這兩條直線平行。

  其他兩條可以簡(jiǎn)單說成:

  內(nèi)錯(cuò)角相等兩直線平行

  同旁內(nèi)角相等兩直線平行

  八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)8

  第十一章三角形

  一、知識(shí)框架:

  知識(shí)概念:

  1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

  2、三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

  3、高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。

  4、中線:在三角形中,連接一個(gè)頂點(diǎn)和它對(duì)邊中點(diǎn)的線段叫做三角形的中線。

  5、角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。

  6、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。

  7、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。

  8、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。

  9、多邊形的外角:多邊形的一邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。

  10、多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。

  11、正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫正多邊形。

  12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面,

  13、公式與性質(zhì):

  ⑴三角形的內(nèi)角和:三角形的內(nèi)角和為180°

 、迫切瓮饨堑男再|(zhì):

  性質(zhì)1:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。

  性質(zhì)2:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。

 、嵌噙呅蝺(nèi)角和公式:邊形的內(nèi)角和等于·180°

  ⑷多邊形的外角和:多邊形的外角和為360°。

  ⑸多邊形對(duì)角線的條數(shù):

 、?gòu)倪呅蔚囊粋(gè)頂點(diǎn)出發(fā)可以引條對(duì)角線,把多邊形分成個(gè)三角形。

  ②邊形共有條對(duì)角線。

  第十二章全等三角形

  一、知識(shí)框架:

  二、知識(shí)概念:

  1、基本定義:

 、湃刃危耗軌蛲耆睾系膬蓚(gè)圖形叫做全等形。

  ⑵全等三角形:能夠完全重合的兩個(gè)三角形叫做全等三角形。

 、菍(duì)應(yīng)頂點(diǎn):全等三角形中互相重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn)。

 、葘(duì)應(yīng)邊:全等三角形中互相重合的邊叫做對(duì)應(yīng)邊。

 、蓪(duì)應(yīng)角:全等三角形中互相重合的角叫做對(duì)應(yīng)角。

  2、基本性質(zhì):

 、湃切蔚姆(wěn)定性:三角形三邊的長(zhǎng)度確定了,這個(gè)三角形的形狀、大小就全確定,這個(gè)性質(zhì)叫做三角形的穩(wěn)定性。

  ⑵全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等。

  3、全等三角形的判定定理:

 、胚呥呥叄ǎ喝厡(duì)應(yīng)相等的兩個(gè)三角形全等。

 、七吔沁叄ǎ簝蛇吅退鼈兊膴A角對(duì)應(yīng)相等的兩個(gè)三角形全等。

 、墙沁吔牵ǎ簝山呛退鼈兊膴A邊對(duì)應(yīng)相等的兩個(gè)三角形全等。

 、冉墙沁叄ǎ簝山呛推渲幸粋(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等。

 、尚边、直角邊():斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等。

  4、角平分線:

 、女嫹ǎ

 、菩再|(zhì)定理:角平分線上的點(diǎn)到角的兩邊的距離相等。

 、切再|(zhì)定理的逆定理:角的內(nèi)部到角的兩邊距離相等的點(diǎn)在角的平分線上。

  5、證明的基本方法:

 、琶鞔_命題中的已知和求證。(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關(guān)系)

 、聘鶕(jù)題意,畫出圖形,并用數(shù)字符號(hào)表示已知和求證。

 、墙(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程。

  第十三章軸對(duì)稱

  一、知識(shí)框架:

  二、知識(shí)概念:

  1、基本概念:

 、泡S對(duì)稱圖形:如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱圖形。

 、苾蓚(gè)圖形成軸對(duì)稱:把一個(gè)圖形沿某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這條直線對(duì)稱。

 、蔷段的垂直平分線:經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線。

  ⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形。相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角。

 、傻冗吶切危喝龡l邊都相等的三角形叫做等邊三角形。

  2、基本性質(zhì):

  ⑴對(duì)稱的性質(zhì):

 、俨还苁禽S對(duì)稱圖形還是兩個(gè)圖形關(guān)于某條直線對(duì)稱,對(duì)稱軸都是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。

 、趯(duì)稱的圖形都全等。

 、凭段垂直平分線的性質(zhì):

 、倬段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等。

 、谂c一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上。

 、顷P(guān)于坐標(biāo)軸對(duì)稱的點(diǎn)的坐標(biāo)性質(zhì)

  八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)9

  因式分解

  1.因式分解:把一個(gè)多項(xiàng)式化為幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解;注意:因式分解與乘法是相反的兩個(gè)轉(zhuǎn)化.

  2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”.

  3.公因式的確定:系數(shù)的公約數(shù)?相同因式的最低次冪.

  注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.

  4.因式分解的公式:

  (1)平方差公式:a2-b2=(a+ b)(a- b);

  (2)完全平方公式:a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.

  5.因式分解的注意事項(xiàng):

  (1)選擇因式分解方法的一般次序是:一提取、二公式、三分組、四十字;

  (2)使用因式分解公式時(shí)要特別注意公式中的字母都具有整體性;

  (3)因式分解的最后結(jié)果要求分解到每一個(gè)因式都不能分解為止;

  (4)因式分解的最后結(jié)果要求每一個(gè)因式的首項(xiàng)符號(hào)為正;

  (5)因式分解的最后結(jié)果要求加以整理;

  (6)因式分解的最后結(jié)果要求相同因式寫成乘方的形式.

  6.因式分解的解題技巧:(1)換位整理,加括號(hào)或去括號(hào)整理;(2)提負(fù)號(hào);(3)全變號(hào);(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分?jǐn)?shù)系數(shù);(9)展開部分括號(hào)或全部括號(hào);(10)拆項(xiàng)或補(bǔ)項(xiàng).

  7.完全平方式:能化為(m+n)2的多項(xiàng)式叫完全平方式;對(duì)于二次三項(xiàng)式x2+px+q,有“ x2+px+q是完全平方式? ”.

  分式

  1.分式:一般地,用A、B表示兩個(gè)整式,A÷B就可以表示為的形式,如果B中含有字母,式子叫做分式.

  2.有理式:整式與分式統(tǒng)稱有理式;即.

  3.對(duì)于分式的兩個(gè)重要判斷:(1)若分式的分母為零,則分式無(wú)意義,反之有意義;(2)若分式的分子為零,而分母不為零,則分式的值為零;注意:若分式的分子為零,而分母也為零,則分式無(wú)意義.

  4.分式的基本性質(zhì)與應(yīng)用:

  (1)若分式的分子與分母都乘以(或除以)同一個(gè)不為零的整式,分式的值不變;

  (2)注意:在分式中,分子、分母、分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變;

  即

  (3)繁分式化簡(jiǎn)時(shí),采用分子分母同乘小分母的最小公倍數(shù)的方法,比較簡(jiǎn)單.

  5.分式的約分:把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分;注意:分式約分前經(jīng)常需要先因式分解.

  6.最簡(jiǎn)分式:一個(gè)分式的分子與分母沒有公因式,這個(gè)分式叫做最簡(jiǎn)分式;注意:分式計(jì)算的最后結(jié)果要求化為最簡(jiǎn)分式.

  7.分式的乘除法法則:.

  8.分式的乘方:.

  9.負(fù)整指數(shù)計(jì)算法則:

  (1)公式:a0=1(a≠0), a-n= (a≠0);

  (2)正整指數(shù)的運(yùn)算法則都可用于負(fù)整指數(shù)計(jì)算;

  (3)公式:,;

  (4)公式:(-1)-2=1,(-1)-3=-1.

  10.分式的通分:根據(jù)分式的基本性質(zhì),把幾個(gè)異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先確定最簡(jiǎn)公分母.

  11.最簡(jiǎn)公分母的確定:系數(shù)的最小公倍數(shù)?相同因式的次冪.

  12.同分母與異分母的分式加減法法則:.

  13.含有字母系數(shù)的一元一次方程:在方程ax+b=0(a≠0)中,x是未知數(shù),a和b是用字母表示的已知數(shù),對(duì)x來說,字母a是x的系數(shù),叫做字母系數(shù),字母b是常數(shù)項(xiàng),我們稱它為含有字母系數(shù)的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知數(shù),用x、y、z等表示未知數(shù).

  14.公式變形:把一個(gè)公式從一種形式變換成另一種形式,叫做公式變形;注意:公式變形的本質(zhì)就是解含有字母系數(shù)的方程.特別要注意:字母方程兩邊同時(shí)乘以含字母的代數(shù)式時(shí),一般需要先確認(rèn)這個(gè)代數(shù)式的值不為0.

  15.分式方程:分母里含有未知數(shù)的方程叫做分式方程;注意:以前學(xué)過的,分母里不含未知數(shù)的方程是整式方程.

  16.分式方程的增根:在解分式方程時(shí),為了去分母,方程的兩邊同乘以了含有未知數(shù)的代數(shù)式,所以可能產(chǎn)生增根,故分式方程必須驗(yàn)增根;注意:在解方程時(shí),方程的兩邊一般不要同時(shí)除以含未知數(shù)的代數(shù)式,因?yàn)榭赡軄G根.

  17.分式方程驗(yàn)增根的方法:把分式方程求出的根代入最簡(jiǎn)公分母(或分式方程的每個(gè)分母),若值為零,求出的根是增根,這時(shí)原方程無(wú)解;若值不為零,求出的根是原方程的解;注意:由此可判斷,使分母的值為零的未知數(shù)的值可能是原方程的增根.

  18.分式方程的應(yīng)用:列分式方程解應(yīng)用題與列整式方程解應(yīng)用題的方法一樣,但需要增加“驗(yàn)增根”的程序.

  數(shù)的開方

  1.平方根的定義:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方數(shù),(2)已知x求a叫乘方,已知a求x叫開方,乘方與開方互為逆運(yùn)算.

  2.平方根的性質(zhì):

  (1)正數(shù)的平方根是一對(duì)相反數(shù);

  (2)0的平方根還是0;

  (3)負(fù)數(shù)沒有平方根.

  3.平方根的表示方法:a的平方根表示為和.注意:可以看作是一個(gè)數(shù),也可以認(rèn)為是一個(gè)數(shù)開二次方的運(yùn)算.

  4.算術(shù)平方根:正數(shù)a的正的平方根叫a的算術(shù)平方根,表示為.注意:0的算術(shù)平方根還是0.

  5.三個(gè)重要非負(fù)數(shù):a2≥0 ,|a|≥0,≥0 .注意:非負(fù)數(shù)之和為0,說明它們都是0.

  6.兩個(gè)重要公式:

  (1) ; (a≥0)

  (2) .

  7.立方根的定義:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方數(shù);(2)a的立方根表示為;即把a(bǔ)開三次方.

  8.立方根的性質(zhì):

  (1)正數(shù)的立方根是一個(gè)正數(shù);

  (2)0的立方根還是0;

  (3)負(fù)數(shù)的立方根是一個(gè)負(fù)數(shù).

  9.立方根的特性:.

  10.無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫做無(wú)理數(shù).注意:?和開方開不盡的數(shù)是無(wú)理數(shù).

  11.實(shí)數(shù):有理數(shù)和無(wú)理數(shù)統(tǒng)稱實(shí)數(shù).

  12.實(shí)數(shù)的分類:(1) (2) .

  13.數(shù)軸的性質(zhì):數(shù)軸上的點(diǎn)與實(shí)數(shù)一一對(duì)應(yīng).

  14.無(wú)理數(shù)的近似值:實(shí)數(shù)計(jì)算的結(jié)果中若含有無(wú)理數(shù)且題目無(wú)近似要求,則結(jié)果應(yīng)該用無(wú)理數(shù)表示;如果題目有近似要求,則結(jié)果應(yīng)該用無(wú)理數(shù)的近似值表示.注意:(1)近似計(jì)算時(shí),中間過程要多保留一位;(2)要求記憶:.

  三角形

  幾何A級(jí)概念:(要求深刻理解、熟練運(yùn)用、主要用于幾何證明)

  1.三角形的角平分線定義:

  三角形的一個(gè)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線.(如圖)幾何表達(dá)式舉例:

  (1) ∵AD平分∠BAC

  ∴∠BAD=∠CAD

  (2) ∵∠BAD=∠CAD

  ∴AD是角平分線

  2.三角形的中線定義:

  在三角形中,連結(jié)一個(gè)頂點(diǎn)和它的對(duì)邊的中點(diǎn)的線段叫做三角形的中線.(如圖)

  幾何表達(dá)式舉例:

  (1) ∵AD是三角形的中線

  ∴ BD = CD

  (2) ∵ BD = CD

  ∴AD是三角形的中線

  3.三角形的高線定義:

  從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊畫垂線,頂點(diǎn)和垂足間的線段叫做三角形的高線.

  (如圖)

  幾何表達(dá)式舉例:

  (1) ∵AD是ΔABC的高

  ∴∠ADB=90°

  (2) ∵∠ADB=90°

  ∴AD是ΔABC的高

  ※4.三角形的三邊關(guān)系定理:

  三角形的兩邊之和大于第三邊,三角形的兩邊之差小于第三邊.(如圖)

  幾何表達(dá)式舉例:

  (1) ∵AB+BC>AC

  ∴……………

  (2) ∵ AB-BC<ac< p="">

  ∴……………

  5.等腰三角形的定義:

  有兩條邊相等的三角形叫做等腰三角形. (如圖)

  幾何表達(dá)式舉例:

  (1) ∵ΔABC是等腰三角形

  ∴ AB = AC

  (2) ∵AB = AC

  ∴ΔABC是等腰三角形

  6.等邊三角形的定義:

  有三條邊相等的三角形叫做等邊三角形. (如圖)

  幾何表達(dá)式舉例:

  (1)∵ΔABC是等邊三角形

  ∴AB=BC=AC

  (2) ∵AB=BC=AC

  ∴ΔABC是等邊三角形

  7.三角形的內(nèi)角和定理及推論:

  (1)三角形的內(nèi)角和180°;(如圖)

  (2)直角三角形的兩個(gè)銳角互余;(如圖)

  (3)三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;(如圖)

  ※(4)三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角.

  (1) (2) (3)(4)幾何表達(dá)式舉例:

  (1) ∵∠A+∠B+∠C=180°

  ∴…………………

  (2) ∵∠C=90°

  ∴∠A+∠B=90°

  (3) ∵∠ACD=∠A+∠B

  ∴…………………

  (4) ∵∠ACD >∠A

  ∴…………………

  8.直角三角形的定義:

  有一個(gè)角是直角的三角形叫直角三角形.(如圖)

  幾何表達(dá)式舉例:

  (1) ∵∠C=90°

  ∴ΔABC是直角三角形

  (2) ∵ΔABC是直角三角形

  ∴∠C=90°

  9.等腰直角三角形的定義:

  兩條直角邊相等的直角三角形叫等腰直角三角形.(如圖)

  幾何表達(dá)式舉例:

  (1) ∵∠C=90° CA=CB

  ∴ΔABC是等腰直角三角形

  (2) ∵ΔABC是等腰直角三角形

  ∴∠C=90° CA=CB

  10.全等三角形的性質(zhì):

  (1)全等三角形的對(duì)應(yīng)邊相等;(如圖)

  (2)全等三角形的對(duì)應(yīng)角相等.(如圖)

  幾何表達(dá)式舉例:

  (1) ∵ΔABC≌ΔEFG

  ∴ AB = EF ………

  (2) ∵ΔABC≌ΔEFG

  ∴∠A=∠E ………

  11.全等三角形的判定:

  “SAS”“ASA”“AAS”“SSS”“HL”. (如圖)

  (3)幾何表達(dá)式舉例:

  (1) ∵ AB = EF

  ∵ ∠B=∠F

  又∵ BC = FG

  ∴ΔABC≌ΔEFG

  (2) ………………

  (3)在RtΔABC和RtΔEFG中

  ∵ AB=EF

  又∵ AC = EG

  ∴RtΔABC≌RtΔEFG

  12.角平分線的性質(zhì)定理及逆定理:

  (1)在角平分線上的點(diǎn)到角的兩邊距離相等;(如圖)

  (2)到角的兩邊距離相等的點(diǎn)在角平分線上.(如圖)

  幾何表達(dá)式舉例:

  (1)∵OC平分∠AOB

  又∵CD⊥OA CE⊥OB

  ∴ CD = CE

  (2) ∵CD⊥OA CE⊥OB

  又∵CD = CE

  ∴OC是角平分線

  13.線段垂直平分線的定義:

  垂直于一條線段且平分這條線段的直線,叫做這條線段的垂直平分線.(如圖)

  幾何表達(dá)式舉例:

  (1) ∵EF垂直平分AB

  ∴EF⊥AB OA=OB

  (2) ∵EF⊥AB OA=OB

  ∴EF是AB的垂直平分線

  14.線段垂直平分線的性質(zhì)定理及逆定理:

  (1)線段垂直平分線上的點(diǎn)和這條線段的兩個(gè)端點(diǎn)的距離相等;(如圖)

  (2)和一條線段的兩個(gè)端點(diǎn)的距離相等的點(diǎn),在這條線段的垂直平分線上.(如圖)

  幾何表達(dá)式舉例:

  (1) ∵M(jìn)N是線段AB的垂直平分線

  ∴ PA = PB

  (2) ∵PA = PB

  ∴點(diǎn)P在線段AB的垂直平分線上

  15.等腰三角形的性質(zhì)定理及推論:

  (1)等腰三角形的兩個(gè)底角相等;(即等邊對(duì)等角)(如圖)

  (2)等腰三角形的“頂角平分線、底邊中線、底邊上的高”三線合一;(如圖)

  (3)等邊三角形的各角都相等,并且都是60°.(如圖)

  (1) (2) (3)幾何表達(dá)式舉例:

  (1) ∵AB = AC

  ∴∠B=∠C

  (2) ∵AB = AC

  又∵∠BAD=∠CAD

  ∴BD = CD

  AD⊥BC

  ………………

  (3) ∵ΔABC是等邊三角形

  ∴∠A=∠B=∠C =60°

  16.等腰三角形的判定定理及推論:

  (1)如果一個(gè)三角形有兩個(gè)角都相等,那么這兩個(gè)角所對(duì)邊也相等;(即等角對(duì)等邊)(如圖)

  (2)三個(gè)角都相等的三角形是等邊三角形;(如圖)

  (3)有一個(gè)角等于60°的等腰三角形是等邊三角形;(如圖)

  (4)在直角三角形中,如果有一個(gè)角等于30°,那么它所對(duì)的直角邊是斜邊的一半.(如圖)

  (1) (2)(3) (4)幾何表達(dá)式舉例:

  (1) ∵∠B=∠C

  ∴ AB = AC

  (2) ∵∠A=∠B=∠C

  ∴ΔABC是等邊三角形

  (3) ∵∠A=60°

  又∵AB = AC

  ∴ΔABC是等邊三角形

  (4) ∵∠C=90°∠B=30°

  ∴AC = AB

  17.關(guān)于軸對(duì)稱的定理

  (1)關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形;(如圖)

  (2)如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線.(如圖)

  幾何表達(dá)式舉例:

  (1) ∵ΔABC、ΔEGF關(guān)于MN軸對(duì)稱

  ∴ΔABC≌ΔEGF

  (2) ∵ΔABC、ΔEGF關(guān)于MN軸對(duì)稱

  ∴OA=OE MN⊥AE

  18.勾股定理及逆定理:

  (1)直角三角形的兩直角邊a、b的平方和等于斜邊c的平方,即a2+b2=c2;(如圖)

  (2)如果三角形的三邊長(zhǎng)有下面關(guān)系: a2+b2=c2,那么這個(gè)三角形是直角三角形.(如圖)

  幾何表達(dá)式舉例:

  (1) ∵ΔABC是直角三角形

  ∴a2+b2=c2

  (2) ∵a2+b2=c2

  ∴ΔABC是直角三角形

  19.RtΔ斜邊中線定理及逆定理:

  (1)直角三角形中,斜邊上的中線是斜邊的一半;(如圖)

  (2)如果三角形一邊上的中線是這邊的一半,那么這個(gè)三角形是直角三角形.(如圖)

  幾何表達(dá)式舉例:

  (1) ∵ΔABC是直角三角形

  ∵D是AB的中點(diǎn)

  ∴CD = AB

  (2) ∵CD=AD=BD

  ∴ΔABC是直角三角形

  幾何B級(jí)概念:(要求理解、會(huì)講、會(huì)用,主要用于填空和選擇題)

  一基本概念:

  三角形、不等邊三角形、銳角三角形、鈍角三角形、三角形的外角、全等三角形、角平分線的集合定義、原命題、逆命題、逆定理、尺規(guī)作圖、輔助線、線段垂直平分線的集合定義、軸對(duì)稱的定義、軸對(duì)稱圖形的定義、勾股數(shù).

  二常識(shí):

  1.三角形中,第三邊長(zhǎng)的判斷:另兩邊之差<第三邊<另兩邊之和.

  2.三角形中,有三條角平分線、三條中線、三條高線,它們都分別交于一點(diǎn),其中前兩個(gè)交點(diǎn)都在三角形內(nèi),而第三個(gè)交點(diǎn)可在三角形內(nèi),三角形上,三角形外.注意:三角形的角平分線、中線、高線都是線段.

  3.如圖,三角形中,有一個(gè)重要的面積等式,即:若CD⊥AB,BE⊥CA,則CD?AB=BE?CA.

  4.三角形能否成立的條件是:最長(zhǎng)邊<另兩邊之和.

  5.直角三角形能否成立的條件是:最長(zhǎng)邊的平方等于另兩邊的平方和.

  6.分別含30°、45°、60°的直角三角形是特殊的直角三角形.

  7.如圖,雙垂圖形中,有兩個(gè)重要的性質(zhì),即:

  (1) AC?CB=CD?AB ; (2)∠1=∠B,∠2=∠A .

  8.三角形中,最多有一個(gè)內(nèi)角是鈍角,但最少有兩個(gè)外角是鈍角.

  9.全等三角形中,重合的點(diǎn)是對(duì)應(yīng)頂點(diǎn),對(duì)應(yīng)頂點(diǎn)所對(duì)的角是對(duì)應(yīng)角,對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊.

  10.等邊三角形是特殊的等腰三角形.

  11.幾何習(xí)題中,“文字?jǐn)⑹鲱}”需要自己畫圖,寫已知、求證、證明.

  12.符合“AAA”“SSA”條件的三角形不能判定全等.

  13.幾何習(xí)題經(jīng)常用四種方法進(jìn)行分析:(1)分析綜合法;(2)方程分析法;(3)代入分析法;(4)圖形觀察法.

  14.幾何基本作圖分為:(1)作線段等于已知線段;(2)作角等于已知角;(3)作已知角的平分線;(4)過已知點(diǎn)作已知直線的垂線;(5)作線段的中垂線;(6)過已知點(diǎn)作已知直線的平行線.

  15.會(huì)用尺規(guī)完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等邊三角形”、“等腰直角三角形”的作圖.

  16.作圖題在分析過程中,首先要畫出草圖并標(biāo)出字母,然后確定先畫什么,后畫什么;注意:每步作圖都應(yīng)該是幾何基本作圖.

  17.幾何畫圖的類型:(1)估畫圖;(2)工具畫圖;(3)尺規(guī)畫圖.

  ※18.幾何重要圖形和輔助線:

  (1)選取和作輔助線的原則:

 、贅(gòu)造特殊圖形,使可用的定理增加;

 、谝慌e多得;

 、劬酆项}目中的分散條件,轉(zhuǎn)移線段,轉(zhuǎn)移角;

  ④作輔助線必須符合幾何基本作圖.

  (2)已知角平分線.(若BD是角平分線)

 、僭贐A上截取BE=BC構(gòu)造全等,轉(zhuǎn)移線段和角;

 、谶^D點(diǎn)作DE‖BC交AB于E,構(gòu)造等腰三角形.

  (3)已知三角形中線(若AD是BC的中線)

 、龠^D點(diǎn)作DE‖AC交AB于E,構(gòu)造中位線;

 、谘娱L(zhǎng)AD到E,使DE=AD

  連結(jié)CE構(gòu)造全等,轉(zhuǎn)移線段和角;

 、 ∵AD是中線

  ∴SΔABD= SΔADC

  (等底等高的三角形等面積)

  (4)已知等腰三角形ABC中,AB=AC

  ①作等腰三角形ABC底邊的中線AD

  (頂角的平分線或底邊的高)構(gòu)造全

  等三角形;

 、谧鞯妊切蜛BC一邊的平行線DE,構(gòu)造

  新的等腰三角形.

  (5)其它

 、僮鞯冗吶切蜛BC

  一邊的平行線DE,構(gòu)造新的等邊三角形;

 、谧鰿E‖AB,轉(zhuǎn)移角;

  ③延長(zhǎng)BD與AC交于E,不規(guī)則圖形轉(zhuǎn)化為規(guī)則圖形;

 、芏噙呅无D(zhuǎn)化為三角形;

 、菅娱L(zhǎng)BC到D,使CD=BC,連結(jié)AD,直角三角形轉(zhuǎn)化為等腰三角形;

 、奕鬭‖b,AC,BC是角平

  分線,則∠C=90°.

  八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)10

  1 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

  2邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等

  3 角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  4 推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  5 邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

  7 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

  8 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

  9 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

  10 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角)

  11 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

  12 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

  13 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  14 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

  15 推論1 三個(gè)角都相等的三角形是等邊三角形

  16 推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形

  17 在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

  18 直角三角形斜邊上的中線等于斜邊上的一半

  19 定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

  20 逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

  初二數(shù)學(xué)求定義域口訣

  求定義域有講究,四項(xiàng)原則須留意。

  負(fù)數(shù)不能開平方,分母為零無(wú)意義。

  指是分?jǐn)?shù)底正數(shù),數(shù)零沒有零次。

  限制條件不唯一,滿足多個(gè)不等式。

  求定義域要過關(guān),四項(xiàng)原則須注意。

  負(fù)數(shù)不能開平方,分母為零無(wú)意義。

  分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒有零次。

  限制條件不唯一,不等式組求解集。

  初中提高數(shù)學(xué)成績(jī)?cè)E竅

  很多初中生認(rèn)為自己只要上數(shù)學(xué)課聽得懂就夠了,但是一做到綜合題就蒙了,基礎(chǔ)題會(huì)做,但是會(huì)馬虎。這類問題都是學(xué)生在課堂上都以為自己聽得懂就夠了。

  初中同學(xué)要首先對(duì)數(shù)學(xué)做一個(gè)認(rèn)知,聽得懂≠會(huì)做,會(huì)做≠拿的到分。聽得懂只占你數(shù)學(xué)成績(jī)的20%,僅僅聽得懂只說明你理解能力還可以,不說明你能拿到很高的數(shù)學(xué)成績(jī)。

  只有聽的懂理解了加上練,再加上多練,達(dá)到最后又快又準(zhǔn)的做出來,這時(shí)候的數(shù)學(xué)成績(jī)才會(huì)有長(zhǎng)足的進(jìn)步。

【八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

數(shù)學(xué)八年級(jí)上冊(cè)知識(shí)點(diǎn)12-07

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10-31

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)11-24

蘇教版八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10-16

數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)08-02

初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)07-03

初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)07-17

八年級(jí)上冊(cè)重要的數(shù)學(xué)知識(shí)點(diǎn)11-02

數(shù)學(xué)八年級(jí)上冊(cè)“近似數(shù)”知識(shí)點(diǎn)07-26