- 相關(guān)推薦
初二的數(shù)學(xué)學(xué)習(xí)方法有哪些
初二數(shù)學(xué)是初一數(shù)學(xué)的繼續(xù),那么,對(duì)于初二數(shù)學(xué)的學(xué)習(xí),有哪些好方法呢?下面是小編為你搜集到的初二數(shù)學(xué)學(xué)習(xí)方法,希望可以幫助到你。
初二數(shù)學(xué)學(xué)習(xí)方法:該記的記,該背的背
對(duì)數(shù)學(xué)的定義、法則、公式、定理等,理解了的要記住,暫時(shí)不理解的也要記住,在記憶的基礎(chǔ)上、在應(yīng)用它們解決問題時(shí)再加深理解。打一個(gè)比方,數(shù)學(xué)的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數(shù)學(xué)的定義、法則、公式、定理就很難解數(shù)學(xué)題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數(shù)學(xué)題,甚至是解數(shù)學(xué)難題中得心應(yīng)手。
初二數(shù)學(xué)學(xué)習(xí)方法:幾個(gè)重要的數(shù)學(xué)思想
1、“方程”的思想
數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見的等量關(guān)系就是“方程”。
所謂的“方程”思想就是對(duì)于數(shù)學(xué)問題,特別是現(xiàn)實(shí)當(dāng)中碰到的未知量和已知量的錯(cuò)綜復(fù)雜的關(guān)系,善于用“方程”的觀點(diǎn)去構(gòu)建有關(guān)的方程,進(jìn)而用解方程的方法去解決它。
2、“數(shù)形結(jié)合”的思想
初中數(shù)學(xué)的兩個(gè)分支-代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢(shì),越學(xué)下去,“數(shù)”與“形”越密不可分,到了高中,就出現(xiàn)了專門用代數(shù)方法去研究幾何問題的一門課,叫做“解析幾何”。
3、“對(duì)應(yīng)”的思想
“對(duì)應(yīng)”的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對(duì)應(yīng)一個(gè)抽象的數(shù)“1”,將兩只眼睛、一對(duì)耳環(huán)、雙胞胎對(duì)應(yīng)一個(gè)抽象的數(shù)“2”;隨著學(xué)習(xí)的深入,我們還將“對(duì)應(yīng)”擴(kuò)展到對(duì)應(yīng)一種形式,對(duì)應(yīng)一種關(guān)系,等等。
初二數(shù)學(xué)學(xué)習(xí)方法:五到
1.讀的方法。
初一同學(xué)往往不善于讀數(shù)學(xué)書,在讀的過程中,易沿用死記硬背的方法。那么如何有效地讀數(shù)學(xué)書呢?平時(shí)應(yīng)做到:
一是粗讀。先粗略瀏覽教材的枝干,并能粗略掌握本章節(jié)知識(shí)的概貌,重、難點(diǎn);
二是細(xì)讀。對(duì)重要的`概念、性質(zhì)、判定、公式、法則、思想方法等反復(fù)閱讀、體會(huì)、思考,領(lǐng)會(huì)其實(shí)質(zhì)及其因果關(guān)系,并在不理解的地方作上記號(hào)(以便求教);
三是研讀。要研究知識(shí)間的內(nèi)在聯(lián)系,研討書本知識(shí)安排意圖,并對(duì)知識(shí)進(jìn)行分析、歸納、總結(jié),以形成知識(shí)體系,完善認(rèn)知結(jié)構(gòu)。
讀書,先求讀懂,再求讀透,使得自學(xué)能力和實(shí)際應(yīng)用能力得到很好的訓(xùn)練。
2.聽的方法。
“聽”是直接用感官去接受知識(shí),而初一同學(xué)往往對(duì)課程增多、課堂學(xué)習(xí)量加大不適應(yīng),顧此失彼,精力分散,使聽課效果下降。因此應(yīng)在聽課的過程中注意做到:
(1)聽每節(jié)課的學(xué)習(xí)要求;
(2)聽知識(shí)的引入和形成過程;
(3)聽懂教學(xué)中的重、難點(diǎn)(尤其是預(yù)習(xí)中不理解的或有疑問的知識(shí)點(diǎn));
(4)聽例題關(guān)鍵部分的提示及應(yīng)用的數(shù)學(xué)思想方法;
(5)聽好課后小結(jié)。
3.思考的方法。
“思”指同學(xué)的思維。數(shù)學(xué)是思維的體操,學(xué)習(xí)離不開思維,數(shù)學(xué)更離不開思維活動(dòng),善于思考則學(xué)得活,效率高;不善于思考則學(xué)得死,效果差。可見,科學(xué)的思維方法是掌握好知識(shí)的前提。七年級(jí)學(xué)生的思維往往還停留在小學(xué)的思維中,思維狹窄。因此在學(xué)習(xí)中要做到:
(1)敢于思考、勤于思考、隨讀隨思、隨聽隨思。在看書、聽講、練習(xí)時(shí)要多思考;
(2)善于思考。會(huì)抓住問題的關(guān)鍵、知識(shí)的重點(diǎn)進(jìn)行思考;
(3)反思。要善于從回顧解題策略、方法的優(yōu)劣進(jìn)行分析、歸納、總結(jié)。
4.問的方法。
孔子曰:“敏而好學(xué),不恥不問!睈垡蛩固拐f過:“提出問題比解決問題更重要!眴柲芙饣螅瑔柲苤,任何學(xué)科的學(xué)習(xí)無不是從問題開始的。但七年級(jí)同學(xué)往往不善于問,不懂得如何問。因此,同學(xué)在平時(shí)學(xué)習(xí)中應(yīng)掌握問問題的一些方法,主要有:
(1)追問法。即在某個(gè)問題得到回答后,順其思路對(duì)問題緊追不舍,刨根到底繼續(xù)發(fā)問;
(2)反問法。根據(jù)教材和教師所講的內(nèi)容,從相反的方向把問題提出來;
(3)類比提問法。據(jù)某些相似的概念、定理、性質(zhì)等的相互關(guān)系,通過比較和類推提出問題;
(4)聯(lián)系實(shí)際提問法。結(jié)合某些知識(shí)點(diǎn),通過對(duì)實(shí)際生活中一些現(xiàn)象的觀察和分析提出問題。
此外,在提問時(shí)不僅要問其然,還要問其所以然。
5.記筆記的方法。
很大一部分學(xué)生認(rèn)為數(shù)學(xué)沒有筆記可記,有記筆記的學(xué)生也是記得不夠合理。通常是教師在黑板上所寫的都記下來,用“記”代替“聽”和“思”。
有的筆記雖然記得很全,但收效甚微。因此,學(xué)生作筆記時(shí)應(yīng)做到以下幾點(diǎn):
(1)在“聽”,“思”中有選擇地記錄;
(2)記學(xué)習(xí)內(nèi)容的要點(diǎn),記自己有疑問的疑點(diǎn),記書中沒有的知識(shí)及教師補(bǔ)充的知識(shí)點(diǎn);
(3)記解題思路、思想方法;
(4)記課堂小結(jié)。并使學(xué)生明確筆記是為補(bǔ)充“聽”“思”的不足,是為最后復(fù)習(xí)準(zhǔn)備的,好的筆記能使復(fù)習(xí)達(dá)到事倍功半的效果。
數(shù)學(xué)學(xué)習(xí)的誤區(qū)
誤區(qū)一:課上聽懂知識(shí)就掌握了
在數(shù)學(xué)學(xué)習(xí)過程中,常常出現(xiàn)這種現(xiàn)象,學(xué)生在課堂上聽懂了,但課后解題特別是遇到新題型時(shí)便無所適從。這就說明上課聽懂是一回事,而達(dá)到能應(yīng)用知識(shí)解決問題是另一回事。波里亞說得好:“教師在課堂上講什么當(dāng)然重要,然而學(xué)生想什么更是千百倍的重要。”
教師所舉例題是范例也是思維訓(xùn)練的手段,作為學(xué)生不應(yīng)該只學(xué)會(huì)題中的知識(shí),更要學(xué)會(huì)領(lǐng)悟出解題思路與技巧,以及蘊(yùn)藏其中的數(shù)學(xué)思想方法。
對(duì)策一:自己重做一遍例題對(duì)策二:?jiǎn)栕约海簽槭裁催@樣思考問題。
對(duì)策三:條件、結(jié)論換一下行嗎?
對(duì)策四:有其他結(jié)論嗎?
對(duì)策五:我能得到什么解題規(guī)律?
誤區(qū)二:多做題目總能遇到考試題
有這種想法的人總會(huì)感到失望。每一份綜合試卷,出卷人總要避免舊題、陳題,盡量從新的角度,新的層面上設(shè)計(jì)問題。但是考查的知識(shí)點(diǎn)和數(shù)學(xué)思想方法是恒久不變的。所以多做題,不會(huì)碰巧和考題零距離親密接觸,反而會(huì)把自己陷入無邊無際的題海之中。解決問題的辦法是從知識(shí)點(diǎn)和思想方法的角度分別對(duì)所解題目進(jìn)行歸類,總結(jié)解題經(jīng)驗(yàn)的同時(shí),確認(rèn)自己是否真正掌握并確認(rèn)復(fù)習(xí)的重點(diǎn)。
對(duì)策一:讓自己花點(diǎn)時(shí)間整理最近解題的題型與思路。
對(duì)策二:這道題和以前的某一題差不多嗎?
對(duì)策三:此題的知識(shí)點(diǎn)我是否熟悉了?
對(duì)策四:最近有哪幾題的圖形相近?能否歸類?
對(duì)策五:這一題的解題思想在以前題目中也用到了,讓我把它們找出來!
誤區(qū)三鉆研難題基礎(chǔ)題就簡(jiǎn)單了
有一個(gè)學(xué)生曾對(duì)我說:“我喜歡做難題,鉆研數(shù)學(xué)難題能讓我感到思維中的快樂,簡(jiǎn)單的題目沒有什么意思!睉(yīng)該說這位同學(xué)已經(jīng)體會(huì)到了數(shù)學(xué)學(xué)習(xí)的快樂,他對(duì)數(shù)學(xué)開始有自己的理解,可是奇怪的是他的數(shù)學(xué)成績(jī)總達(dá)不到滿意的高分,考完試后他總是后悔有一些地方不細(xì)心或沒注意。其實(shí)這也在一定程度上反映出我們數(shù)學(xué)學(xué)習(xí)中的浮躁?duì)顩r,老師愛講難題、綜合題,學(xué)生想做綜合題、難題,在忽視基礎(chǔ)的同時(shí),迷失了數(shù)學(xué)學(xué)習(xí)的方向。
對(duì)策一:告訴自己數(shù)學(xué)思維不等于復(fù)雜思維,數(shù)學(xué)的美往往體現(xiàn)在一些小題目中。
對(duì)策二:“簡(jiǎn)約而不簡(jiǎn)單”在平常題中體會(huì)數(shù)學(xué)思維的樂趣。
對(duì)策三:“一滴朝露也能折射出太陽的光輝!弊屛覐幕A(chǔ)題中找到綜合題的影子。
對(duì)策四:這道題真的簡(jiǎn)單嗎?
對(duì)策五:我是一名優(yōu)秀的學(xué)生,我能在平凡中體現(xiàn)出我的優(yōu)秀。
誤區(qū)四思想有點(diǎn)高不可攀
一談到數(shù)學(xué)思想方法,有些學(xué)生會(huì)認(rèn)為深不可測(cè)、高不可攀。其實(shí)每一道數(shù)學(xué)題之中都包含著數(shù)學(xué)思想方法,例如把分式方程化為整式方程就應(yīng)用了轉(zhuǎn)化思想,列方程解應(yīng)用題體現(xiàn)了方程思想,平面直角坐標(biāo)系中圖象與解析式反映了數(shù)形結(jié)合思想,圖形的翻折與旋轉(zhuǎn)則表現(xiàn)了運(yùn)動(dòng)變換思想等等。數(shù)學(xué)思想方法是指導(dǎo)解題的十分重要的方針,有利于培養(yǎng)學(xué)生思維的廣闊性、深刻性、靈活性和組織性。在初三數(shù)學(xué)的學(xué)習(xí)過程中,自己不妨把圖形動(dòng)一動(dòng)、變一變,把條件和結(jié)論作一些其它方面的聯(lián)想,數(shù)學(xué)化地思考問題。中考題的壓軸題往往是在串聯(lián)幾個(gè)知識(shí)點(diǎn)的同時(shí)考查學(xué)生猜想與探究、函數(shù)與運(yùn)動(dòng)、變換與分類等能力,這在能力層面上提出了較高的要求。
對(duì)策一:數(shù)學(xué)思想方法并不神秘,它蘊(yùn)藏在題目之中。
對(duì)策二:了解一些數(shù)學(xué)思想,找到幾道典型題。
對(duì)策三:解題完畢問自己“我運(yùn)用了什么數(shù)學(xué)思想方法”?
對(duì)策四:解題前問自己從什么角度去思考?(方程角度、運(yùn)動(dòng)角度、函數(shù)角度、分類討論角度等)
對(duì)策五:請(qǐng)老師介紹一些數(shù)學(xué)思想方法。
高中數(shù)學(xué)學(xué)習(xí)有妙法
往往有同學(xué)進(jìn)入高中以后不能適應(yīng)數(shù)學(xué)學(xué)習(xí),進(jìn)而影響到學(xué)習(xí)的積極性,甚至成績(jī)一落千丈。為什么會(huì)這樣呢?讓我們先看看高中數(shù)學(xué)和初中數(shù)學(xué)有些什么樣的轉(zhuǎn)變吧。
一、高中數(shù)學(xué)的特點(diǎn)
1、理論加強(qiáng)
2、課程增多
3、難度增大
4、要求提高
二、掌握數(shù)學(xué)思想
高中數(shù)學(xué)從學(xué)習(xí)方法和思想方法上更接近于高等數(shù)學(xué)。學(xué)好它,需要我們從方法論的高度來掌握它。我們?cè)谘芯繑?shù)學(xué)問題時(shí)要經(jīng)常運(yùn)用唯物辯證的思想去解決數(shù)學(xué)問題。數(shù)學(xué)思想,實(shí)質(zhì)上就是唯物辯證法在數(shù)學(xué)中的運(yùn)用的反映。中學(xué)數(shù)學(xué)學(xué)習(xí)要重點(diǎn)掌握的的數(shù)學(xué)思想有以上幾個(gè):集合與對(duì)應(yīng)思想,初步公理化思想,數(shù)形結(jié)合思想,運(yùn)動(dòng)思想,轉(zhuǎn)化思想,變換思想。
例如,數(shù)列、一次函數(shù)、解析幾何中的直線幾個(gè)概念都可以用函數(shù)(特殊的對(duì)應(yīng))的概念來統(tǒng)一。又比如,數(shù)、方程、不等式、數(shù)列幾個(gè)概念也都可以統(tǒng)一到函數(shù)概念。
再看看下面這個(gè)運(yùn)用“矛盾”的觀點(diǎn)來解題的例子。
已知?jiǎng)狱c(diǎn)Q在圓x2+y2=1上移動(dòng),定點(diǎn)P(2,0),求線段PQ中點(diǎn)的軌跡。
分析此題,圖中P、Q、M三點(diǎn)是互相制約的,而Q點(diǎn)的運(yùn)動(dòng)將帶動(dòng)M點(diǎn)的運(yùn)動(dòng);主要矛盾是點(diǎn)Q的運(yùn)動(dòng),而點(diǎn)Q的運(yùn)動(dòng)軌跡遵循方程x02+y02=1;次要矛盾關(guān)系:M是線段PQ的中點(diǎn),可以用中點(diǎn)公式將M的坐標(biāo)(x,y)用點(diǎn)Q的坐標(biāo)表示出來。
x=(x0+2)/2
y=y0/2
顯然,用代入的方法,消去題中的x0、y0就可以求得所求軌跡。
數(shù)學(xué)思想方法與解題技巧是不同的,在證明或求解中,運(yùn)用歸納、演繹、換元等方法解題問題可以說是解題的技術(shù)性問題,而數(shù)學(xué)思想是解題時(shí)帶有指導(dǎo)性的普遍思想方法。在解一道題時(shí),從整體考慮,應(yīng)如何著手,有什么途徑?就是在數(shù)學(xué)思想方法的指導(dǎo)下的普遍性問題。
有了數(shù)學(xué)思想以后,還要掌握具體的方法,比如:換元、待定系數(shù)、數(shù)學(xué)歸納法、分析法、綜合法、反證法等等。只有在解題思想的指導(dǎo)下,靈活地運(yùn)用具體的解題方法才能真正地學(xué)好數(shù)學(xué),僅僅掌握具體的操作方法,而沒有從解題思想的角度考慮問題,往往難于使數(shù)學(xué)學(xué)習(xí)進(jìn)入更高的層次,會(huì)為今后進(jìn)入大學(xué)深造帶來很有麻煩。
在具體的方法中,常用的有:觀察與實(shí)驗(yàn),聯(lián)想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
要打贏一場(chǎng)戰(zhàn)役,不可能只是勇猛沖殺、一不怕死二不怕苦就可以打贏的,必須制訂好事關(guān)全局的戰(zhàn)術(shù)和策略問題。解數(shù)學(xué)題時(shí),也要注意解題思維策略問題,經(jīng)常要思考:選擇什么角度來進(jìn)入,應(yīng)遵循什么原則性的東西。一般地,在解題中所采取的總體思路,是帶有原則性的思想方法,是一種宏觀的指導(dǎo),一般性的解決方案。
中學(xué)數(shù)學(xué)中經(jīng)常用到的數(shù)學(xué)思維策略有:以簡(jiǎn)馭繁、數(shù)形結(jié)全、進(jìn)退互用、化生為熟、正難則反、倒順相還、動(dòng)靜轉(zhuǎn)換、分合相輔。
如果有了正確的數(shù)學(xué)思想方法,采取了恰當(dāng)?shù)臄?shù)學(xué)思維策略,又有了豐富的經(jīng)驗(yàn)和扎實(shí)的基本功,一定可以學(xué)好高中數(shù)學(xué)。
三、學(xué)習(xí)方法的改進(jìn)
身處應(yīng)試教育的怪圈,每個(gè)教師和學(xué)生都不由自主地陷入“題!敝,教師拍心某種題型沒講,高考時(shí)做不出,學(xué)生怕少做一道題,萬一考了損失太慘重,在這樣一種氛圍中,往往忽視了學(xué)習(xí)方法的培養(yǎng),每個(gè)學(xué)生都有自己的方法,但什么樣的學(xué)習(xí)方法才是正確的方法呢?是不是一定要“博覽群題”才能提高水平呢?
現(xiàn)實(shí)告訴我們,大膽改進(jìn)學(xué)習(xí)方法,這是一個(gè)非常重大的問題。
。ㄒ唬⿲W(xué)會(huì)聽、讀
我們每天在學(xué)校里都在聽老師講課,閱讀課本或者資料,但我們聽和讀對(duì)不對(duì)呢?
讓我們從聽(聽講、課堂學(xué)習(xí))和讀(閱讀課本和相關(guān)資料)兩方面來談?wù)劙伞?/p>
學(xué)生學(xué)習(xí)的知識(shí),往往是間接的知識(shí),是抽象化、形式化的知識(shí),這些知識(shí)是在前人探索和實(shí)踐的基礎(chǔ)上提煉出來的,一般不包含探索和思維的過程。因此必須聽好老師講課,集中注意力,積極思考問題。弄清講得內(nèi)容是什么?怎么分析?理由是什么?采用什么方法?還有什么疑問?只有這樣,才可能對(duì)教學(xué)內(nèi)容有所理解。
聽講的過程不是一個(gè)被動(dòng)參預(yù)的過程,在聽講的前提下,還要展開來分析:這里用了什么思想方法,這樣做的目的是什么?為什么老師就能想到最簡(jiǎn)捷的方法?這個(gè)題有沒有更直接的方法?
“學(xué)而不思則罔,思而不學(xué)則殆”,在聽講的過程中一定要有積極的思考和參預(yù),這樣才能達(dá)到最高的學(xué)習(xí)效率。
閱讀數(shù)學(xué)教材也是掌握數(shù)學(xué)知識(shí)的非常重要的方法。只有真正閱讀和數(shù)學(xué)教材,才能較好地掌握數(shù)學(xué)語言,提高自學(xué)能力。一定要改變只做題不看書,把課本當(dāng)成查公式的辭典的不良傾向。閱讀課本,也要爭(zhēng)取老師的指導(dǎo)。閱讀當(dāng)天的內(nèi)容或一個(gè)單元一章的內(nèi)容,都要通盤考慮,要有目標(biāo)。
比如,學(xué)習(xí)反正弦函數(shù),從知識(shí)上來講,通過閱讀,應(yīng)弄請(qǐng)以下幾個(gè)問題:
(1)是不是每個(gè)函數(shù)都有反函數(shù),如果不是,在什么情況下函數(shù)有反函數(shù)?
。2)正弦函數(shù)在什么情況下有反函數(shù)?若有,其反函數(shù)如何表示?
(3)正弦函數(shù)的圖象與反正弦函數(shù)的圖象是什么關(guān)系?
。4)反正弦函數(shù)有什么性質(zhì)?
。5)如何求反正弦函數(shù)的值?
(二)學(xué)會(huì)思考
1、善于發(fā)現(xiàn)問題和提出問題
2、善于反思與反求
【初二的數(shù)學(xué)學(xué)習(xí)方法有哪些】相關(guān)文章:
初二數(shù)學(xué)的學(xué)習(xí)方法有哪些06-28
數(shù)學(xué)有哪些好的學(xué)習(xí)方法06-28
小學(xué)數(shù)學(xué)的學(xué)習(xí)方法有哪些06-28
數(shù)學(xué)學(xué)習(xí)方法有哪些06-28
考研數(shù)學(xué)復(fù)習(xí)有哪些學(xué)習(xí)方法06-09
初三數(shù)學(xué)有哪些學(xué)習(xí)方法06-27
初中數(shù)學(xué)英語的學(xué)習(xí)方法有哪些06-27