- 相關(guān)推薦
高三數(shù)學(xué)?贾R(shí)點(diǎn)
上學(xué)期間,大家最不陌生的就是知識(shí)點(diǎn)吧!知識(shí)點(diǎn)就是掌握某個(gè)問(wèn)題/知識(shí)的學(xué)習(xí)要點(diǎn)。還在為沒(méi)有系統(tǒng)的知識(shí)點(diǎn)而發(fā)愁嗎?下面是小編幫大家整理的高三數(shù)學(xué)?贾R(shí)點(diǎn) ,僅供參考,大家一起來(lái)看看吧。
高三數(shù)學(xué)?贾R(shí)點(diǎn) 1
1、三類角的求法:
①找出或作出有關(guān)的角。
、谧C明其符合定義,并指出所求作的角。
、塾(jì)算大小(解直角三角形,或用余弦定理)
2、正棱柱——底面為正多邊形的直棱柱
正棱錐——底面是正多邊形,頂點(diǎn)在底面的射影是底面的中心。
正棱錐的計(jì)算集中在四個(gè)直角三角形中:
3、怎樣判斷直線l與圓C的位置關(guān)系?
圓心到直線的距離與圓的半徑比較。
直線與圓相交時(shí),注意利用圓的“垂徑定理”。
4、對(duì)線性規(guī)劃問(wèn)題:
作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的最值。
高三數(shù)學(xué)知識(shí)點(diǎn)歸納
1.滿足二元一次不等式(組)的x和y的取值構(gòu)成有序數(shù)對(duì)(x,y),稱為二元一次不等式(組)的一個(gè)解,所有這樣的有序數(shù)對(duì)(x,y)構(gòu)成的集合稱為二元一次不等式(組)的解集。
2.二元一次不等式(組)的每一個(gè)解(x,y)作為點(diǎn)的坐標(biāo)對(duì)應(yīng)平面上的一個(gè)點(diǎn),二元一次不等式(組)的解集對(duì)應(yīng)平面直角坐標(biāo)系中的一個(gè)半平面(平面區(qū)域)。
3.直線l:Ax+By+C=0(A、B不全為零)把坐標(biāo)平面劃分成兩部分,其中一部分(半個(gè)平面)對(duì)應(yīng)二元一次不等式Ax+By+C>0(或≥0),另一部分對(duì)應(yīng)二元一次不等式Ax+By+C<0(或≤0)。
4.已知平面區(qū)域,用不等式(組)表示它,其方法是:在所有直線外任取一點(diǎn)(如本題的原點(diǎn)(0,0)),將其坐標(biāo)代入Ax+By+C,判斷正負(fù)就可以確定相應(yīng)不等式。
5.一個(gè)二元一次不等式表示的平面區(qū)域是相應(yīng)直線劃分開(kāi)的.半個(gè)平面,一般用特殊點(diǎn)代入二元一次不等式檢驗(yàn)就可以判定,當(dāng)直線不過(guò)原點(diǎn)時(shí)常選原點(diǎn)檢驗(yàn),當(dāng)直線過(guò)原點(diǎn)時(shí),常選(1,0)或(0,1)代入檢驗(yàn),二元一次不等式組表示的平面區(qū)域是它的各個(gè)不等式所表示的平面區(qū)域的公共部分,注意邊界是實(shí)線還是虛線的含義。“線定界,點(diǎn)定域”。
6.滿足二元一次不等式(組)的整數(shù)x和y的取值構(gòu)成的有序數(shù)對(duì)(x,y),稱為這個(gè)二元一次不等式(組)的一個(gè)解。所有整數(shù)解對(duì)應(yīng)的點(diǎn)稱為整點(diǎn)(也叫格點(diǎn)),它們都在這個(gè)二元一次不等式(組)表示的平面區(qū)域內(nèi)。
7.畫二元一次不等式Ax+By+C≥0所表示的平面區(qū)域時(shí),應(yīng)把邊界畫成實(shí)線,畫二元一次不等式Ax+By+C>0所表示的平面區(qū)域時(shí),應(yīng)把邊界畫成虛線。
8.若點(diǎn)P(x0,y0)與點(diǎn)P1(x1,y1)在直線l:Ax+By+C=0的同側(cè),則Ax0+By0+C與Ax1+Byl+C符號(hào)相同;若點(diǎn)P(x0,y0)與點(diǎn)P1(x1,y1)在直線l:Ax+By+C=0的兩側(cè),則Ax0+By0+C與Ax1+Byl+C符號(hào)相反。
9.從實(shí)際問(wèn)題中抽象出二元一次不等式(組)的步驟是:
(1)根據(jù)題意,設(shè)出變量;
(2)分析問(wèn)題中的變量,并根據(jù)各個(gè)不等關(guān)系列出常量與變量x,y之間的不等式;
(3)把各個(gè)不等式連同變量x,y有意義的實(shí)際范圍合在一起,組成不等式組。
高三數(shù)學(xué)?贾R(shí)點(diǎn) 2
必修一
第一章:集合和函數(shù)的基本概念
這一章的易錯(cuò)點(diǎn),都集中在空集這一概念上,而每次考試基本都會(huì)在選填題上涉及這一概念,一個(gè)不小心就會(huì)丟分。次一級(jí)的知識(shí)點(diǎn)就是集合的韋恩圖、會(huì)畫圖,掌握了這些,集合的“并、補(bǔ)、交、非”也就解決了。
還有函數(shù)的定義域和函數(shù)的單調(diào)性、增減性的概念,這些都是函數(shù)的基礎(chǔ)而且不難理解。在第一輪復(fù)習(xí)中一定要反復(fù)去記這些概念,最好的方法是寫在筆記本上,每天至少看上一遍。
第二章:基本初等函數(shù)
——指數(shù)、對(duì)數(shù)、冪函數(shù)三大函數(shù)的運(yùn)算性質(zhì)及圖像
函數(shù)的幾大要素和相關(guān)考點(diǎn)基本都在函數(shù)圖像上有所體現(xiàn),單調(diào)性、增減性、極值、零點(diǎn)等等。關(guān)于這三大函數(shù)的運(yùn)算公式,多記多用,多做一點(diǎn)練習(xí),基本就沒(méi)問(wèn)題。
函數(shù)圖像是這一章的重難點(diǎn),而且圖像問(wèn)題是不能靠記憶的,必須要理解,要會(huì)熟練的畫出函數(shù)圖像,定義域、值域、零點(diǎn)等等。對(duì)于冪函數(shù)還要搞清楚當(dāng)指數(shù)冪大于一和小于一時(shí)圖像的不同及函數(shù)值的大小關(guān)系,這也是?键c(diǎn)。另外指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的對(duì)立關(guān)系及其相互之間要怎樣轉(zhuǎn)化等問(wèn)題,需要著重回看課本例題。
第三章:函數(shù)的應(yīng)用
這一章主要考是函數(shù)與方程的結(jié)合,其實(shí)就是函數(shù)的零點(diǎn),也就是函數(shù)圖像與X軸的交點(diǎn)。這三者之間的轉(zhuǎn)化關(guān)系是這一章的重點(diǎn),要學(xué)會(huì)在這三者之間靈活轉(zhuǎn)化,以求能最簡(jiǎn)單的解決問(wèn)題。關(guān)于證明零點(diǎn)的方法,直接計(jì)算加得必有零點(diǎn),連續(xù)函數(shù)在x軸上方下方有定義則有零點(diǎn)等等,這些難點(diǎn)對(duì)應(yīng)的證明方法都要記住,多練習(xí)。二次函數(shù)的零點(diǎn)的Δ判別法,這個(gè)需要你看懂定義,多畫多做題。
必修二
第一章:空間幾何
三視圖和直觀圖的繪制不算難,但是從三視圖復(fù)原出實(shí)物從而計(jì)算就需要比較強(qiáng)的空間感,要能從三張平面圖中慢慢在腦海中畫出實(shí)物,這就要求學(xué)生特別是空間感弱的學(xué)生多看書上的例圖,把實(shí)物圖和平面圖結(jié)合起來(lái)看,先熟練地正推,再慢慢的逆推(建議用紙做一個(gè)立方體來(lái)找感覺(jué))。
在做題時(shí)結(jié)合草圖是有必要的,不能單憑想象。后面的錐體、柱體、臺(tái)體的表面積和體積,把公式記牢問(wèn)題就不大。
第二章:點(diǎn)、直線、平面之間的位置關(guān)系
這一章除了面與面的'相交外,對(duì)空間概念的要求不強(qiáng),大部分都可以直接畫圖,這就要求學(xué)生多看圖。自己畫草圖的時(shí)候要嚴(yán)格注意好實(shí)線虛線,這是個(gè)規(guī)范性問(wèn)題。
關(guān)于這一章的內(nèi)容,牢記直線與直線、面與面、直線與面相交、垂直、平行的幾大定理及幾大性質(zhì),同時(shí)能用圖形語(yǔ)言、文字語(yǔ)言、數(shù)學(xué)表達(dá)式表示出來(lái)。只要這些全部過(guò)關(guān)這一章就解決了一大半。這一章的難點(diǎn)在于二面角這個(gè)概念,大多同學(xué)即使知道有這個(gè)概念,也無(wú)法理解怎么在二面里面做出這個(gè)角。對(duì)這種情況只有從定義入手,先要把定義記牢,再多做多看,這個(gè)沒(méi)有什么捷徑可走。
第三章:直線與方程
這一章主要講斜率與直線的位置關(guān)系,只要搞清楚直線平行、垂直的斜率表示問(wèn)題就錯(cuò)不了。需要注意的是當(dāng)直線垂直時(shí)斜率不存在的情況是考試中的?键c(diǎn)。另外直線方程的幾種形式所涉及到的一般公式,會(huì)用就行,要求不高。點(diǎn)與點(diǎn)的距離、點(diǎn)與直線的距離、直線與直線的距離,只要直接套用公式就行,沒(méi)什么難點(diǎn)。
第四章:圓與方程
能熟練地把一般式方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,通常的考試形式是等式的一邊含根號(hào),另一邊不含,這時(shí)就要注意開(kāi)方后定義域或值域的限制。通過(guò)點(diǎn)到點(diǎn)的距離、點(diǎn)到直線的距離、圓半徑的大小關(guān)系來(lái)判斷點(diǎn)與圓、直線與圓、圓與圓的位置關(guān)系。另外注意圓的對(duì)稱性引起的相切、相交等的多種情況,自己把幾種對(duì)稱的形式羅列出來(lái),多思考就不難理解了。
必修三
總的來(lái)說(shuō)這一本書難度不大,只是比較繁瑣,需要有耐心的去畫圖去計(jì)算。
程序框圖與三種算法語(yǔ)句的結(jié)合,及框圖的算法表示,不要用常規(guī)的語(yǔ)言來(lái)理解,否則你會(huì)在這樣的題型中栽跟頭。
秦九韶算法是重點(diǎn),要牢記算法的公式。
統(tǒng)計(jì)就是對(duì)一堆數(shù)據(jù)的處理,考試也是以計(jì)算為主,會(huì)從條形圖中計(jì)算出中位數(shù)等數(shù)字特征,對(duì)于回歸問(wèn)題,只要記住公式,也就是個(gè)計(jì)算問(wèn)題。
概率,主要就只幾何概型、古典概型。幾何概型只要會(huì)找表示所求事件的長(zhǎng)度面積等,古典概型只要能表示出全部事件就可以。
必修四
第一章:三角函數(shù)
考試必在這一塊出題,且題量不小!誘導(dǎo)公式和基本三角函數(shù)圖像的一些性質(zhì),沒(méi)有太大難度,只要會(huì)畫圖就行。難度都在三角函數(shù)形函數(shù)的振幅、頻率、周期、相位、初相上,及根據(jù)最值計(jì)算A、B的值和周期,及恒等變化時(shí)的圖像及性質(zhì)變化,這部分的知識(shí)點(diǎn)內(nèi)容較多,需要多花時(shí)間,不要再定義上死扣,要從圖像和例題入手。
第二章:平面向量
向量的運(yùn)算性質(zhì)及三角形法則、平行四邊形法則的難度都不大,只要在計(jì)算的時(shí)候記住要“同起點(diǎn)的向量”這一條就OK了。向量共線和垂直的數(shù)學(xué)表達(dá),是計(jì)算當(dāng)中經(jīng)常用到的公式。向量的共線定理、基本定理、數(shù)量積公式。分點(diǎn)坐標(biāo)公式是重點(diǎn)內(nèi)容,也是難點(diǎn)內(nèi)容,要花心思記憶。
第三章:三角恒等變換
這一章公式特別多,像差倍半角公式這類內(nèi)容常會(huì)出現(xiàn),所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫好后貼在桌子上,天天都要看。要提一點(diǎn),就是三角恒等變換是有一定規(guī)律的,記憶的時(shí)候可以集合三角函數(shù)去記。
必修五
第一章:解三角形
掌握正弦、余弦公式及其變式、推論、三角面積公式即可。
第二章:數(shù)列
等差、等比數(shù)列的通項(xiàng)公式、前n項(xiàng)及一些性質(zhì)常出現(xiàn)于填空、解答題中,這部分內(nèi)容學(xué)起來(lái)比較簡(jiǎn)單,但考驗(yàn)對(duì)其推導(dǎo)、計(jì)算、活用的層面較深,因此要仔細(xì)?荚囶}中,通項(xiàng)公式、前n項(xiàng)和的內(nèi)容出現(xiàn)頻次較多,這類題看到后要帶有目的的去推導(dǎo)就沒(méi)問(wèn)題了。
第三章:不等式
這一章一般用線性規(guī)劃的形式來(lái)考察學(xué)生,這種題通常是和實(shí)際問(wèn)題聯(lián)系的,所以要會(huì)讀題,從題中找不等式,畫出線性規(guī)劃圖,然后再根據(jù)實(shí)際問(wèn)題的限制要求來(lái)求最值。
高三數(shù)學(xué)?贾R(shí)點(diǎn) 3
1.不等式的定義
在客觀世界中,量與量之間的`不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號(hào)連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號(hào)的式子,叫做不等式.
2.比較兩個(gè)實(shí)數(shù)的大小
兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來(lái)定義的,有a-b>0?;a-b=0?;a-b<0?.
另外,若b>0,則有>1?;=1?;<1?.
概括為:作差法,作商法,中間量法等.
3.不等式的性質(zhì)
(1)對(duì)稱性:a>b?;
(2)傳遞性:a>b,b>c?;
(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
(5)可乘方:a>b>0?(n∈N,n≥2);
(6)可開(kāi)方:a>b>0?(n∈N,n≥2).
高三數(shù)學(xué)?贾R(shí)點(diǎn) 4
(1)先看“充分條件和必要條件”
當(dāng)命題“若p則q”為真時(shí),可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。但為什么說(shuō)q是p的必要條件呢?事實(shí)上,與“p=>q”等價(jià)的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說(shuō),q對(duì)于p是必不可少的`,因而是必要的。
(2)再看“充要條件”
若有p=>q,同時(shí)q=>p,則p既是q的充分條件,又是必要條件。簡(jiǎn)稱為p是q的充要條件。記作p<=>q
(3)定義與充要條件
數(shù)學(xué)中,只有A是B的充要條件時(shí),才用A去定義B,因此每個(gè)定義中都包含一個(gè)充要條件。如“兩組對(duì)邊分別平行的四邊形叫做平行四邊形”這一定義就是說(shuō),一個(gè)四邊形為平行四邊形的充要條件是它的兩組對(duì)邊分別平行。
顯然,一個(gè)定理如果有逆定理,那么定理、逆定理合在一起,可以用一個(gè)含有充要條件的語(yǔ)句來(lái)表示!俺湟獥l件”有時(shí)還可以改用“當(dāng)且僅當(dāng)”來(lái)表示,其中“當(dāng)”表示“充分”!皟H當(dāng)”表示“必要”。
(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。
【高三數(shù)學(xué)?贾R(shí)點(diǎn)】相關(guān)文章:
高考數(shù)學(xué)?贾R(shí)點(diǎn)最新10-27
小升初?颊Z(yǔ)文知識(shí)點(diǎn)05-31
小升初語(yǔ)文?嫉闹R(shí)點(diǎn)09-11
小升初數(shù)學(xué)立體圖形?贾R(shí)點(diǎn)歸納09-03
2016年中考數(shù)學(xué)?嫉8個(gè)知識(shí)點(diǎn)09-12
地理?贾R(shí)點(diǎn)總結(jié)大全12-01
高考化學(xué)與生活?贾R(shí)點(diǎn)07-05