2017廣東高考數(shù)學幾何復習解答題
解答題是高考數(shù)學考試中常考的題型之一,也是高考生重要的提分題型。以下是百分網(wǎng)小編給大家?guī)砀呖紨?shù)學幾何復習解答題,以供參閱。
高考數(shù)學幾何復習解答題
1.如圖,四邊形ABCD與A′ABB′都是正方形,點E是A′A的中點,A′A平面ABCD.
(1)求證:A′C平面BDE;
(2)求證:平面A′AC平面BDE.
解題探究:第一問通過三角形的中位線證明出線線平行,從而證明出線面平行;第二問由A′A與平面ABCD垂直得到線線垂直,再由線線垂直證明出BD與平面A′AC垂直,從而得到平面與平面垂直.
解析:(1)設(shè)AC交BD于M,連接ME.
四邊形ABCD是正方形,
M為AC的中點.
又 E為A′A的中點, ME為A′AC的中位線, ME∥A′C 又 ME⊂平面BDE A′C⊄平面BDE,A′C∥平面BDE.
(2)∵ 四邊形ABCD為正方形, BD⊥AC.
∵ A′A⊥平面ABCD,BD平面ABCD,
A′A⊥BD.
又AC∩A′A=A, BD⊥平面A′AC.
BD⊂平面BDE,
平面A′AC平面BDE.
2.在四棱錐P-ABCD中,平面PAD⊥平面ABCD,ABDC,PAD是等邊三角形,BD=2AD=8,AB=2DC=4.
(1)設(shè)M是PC上的一點,證明:平面MBD平面PAD;
(2)求四棱錐P-ABCD的體積.
命題立意:本題主要考查線面垂直的判定定理、面面垂直的判定定理與性質(zhì)定理以及棱錐的體積的計算等,意在考查考生的邏輯推理能力與計算能力,考查化歸與轉(zhuǎn)化思想.
解析:(1)證明:在ABD中,因為AD=4,BD=8,AB=4,所以AD2+BD2=AB2.
故ADBD.
又平面PAD平面ABCD,平面PAD∩平面ABCD=AD,BD平面ABCD,
所以BD平面PAD,
又BD平面MBD,
所以平面MBD平面PAD.
(2)過點P作OPAD交AD于點O,
因為平面PAD平面ABCD,
所以PO平面ABCD.
因此PO為四棱錐P-ABCD的高.
又PAD是邊長為4的等邊三角形,
所以PO=×4=2.
在四邊形ABCD中,ABDC,AB=2DC,
所以四邊形ABCD是梯形.
在Rt△ADB中,斜邊AB上的高為=,此即為梯形ABCD的高.
所以四邊形ABCD的面積S=×=24.
故四棱錐P-ABCD的體積VP-ABCD=×24×2=16.
高考數(shù)學高頻考點
1.函數(shù)或方程或不等式的題目,先直接思考后建立三者的聯(lián)系。首先考慮定義域,其次使用“三合一定理”。
2.如果在方程或是不等式中出現(xiàn)超越式,優(yōu)先選擇數(shù)形結(jié)合的思想方法;
3.面對含有參數(shù)的初等函數(shù)來說,在研究的時候應該抓住參數(shù)沒有影響到的不變的性質(zhì)。如所過的定點,二次函數(shù)的對稱軸或是……;
4.選擇與填空中出現(xiàn)不等式的題目,優(yōu)選特殊值法;
5.求參數(shù)的取值范圍,應該建立關(guān)于參數(shù)的等式或是不等式,用函數(shù)的定義域或是值域或是解不等式完成,在對式子變形的過程中,優(yōu)先選擇分離參數(shù)的方法;
6.恒成立問題或是它的反面,可以轉(zhuǎn)化為最值問題,注意二次函數(shù)的應用,靈活使用閉區(qū)間上的最值,分類討論的思想,分類討論應該不重復不遺漏;
7.圓錐曲線的題目優(yōu)先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點有關(guān),選擇設(shè)而不求點差法,與弦的中點無關(guān),選擇韋達定理公式法;使用韋達定理必須先考慮是否為二次及根的判別式;
8.求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數(shù)法,如果不知道曲線的形狀,則所用的.步驟為建系、設(shè)點、列式、化簡(注意去掉不符合條件的特殊點);
9.求橢圓或是雙曲線的離心率,建立關(guān)于a、b、c之間的關(guān)系等式即可;
10.三角函數(shù)求周期、單調(diào)區(qū)間或是最值,優(yōu)先考慮化為一次同角弦函數(shù),然后使用輔助角公式解答;解三角形的題目,重視內(nèi)角和定理的使用;與向量聯(lián)系的題目,注意向量角的范圍;
11.數(shù)列的題目與和有關(guān),優(yōu)選和通公式,優(yōu)選作差的方法;注意歸納、猜想之后證明;猜想的方向是兩種特殊數(shù)列;解答的時候注意使用通項公式及前n項和公式,體會方程的思想;
12.立體幾何第一問如果是為建系服務的,一定用傳統(tǒng)做法完成,如果不是,可以從第一問開始就建系完成;注意向量角與線線角、線面角、面面角都不相同,熟練掌握它們之間的三角函數(shù)值的轉(zhuǎn)化;錐體體積的計算注意系數(shù)1/3,而三角形面積的計算注意系數(shù)1/2;與球有關(guān)的題目也不得不防,注意連接“心心距”創(chuàng)造直角三角形解題;
13.導數(shù)的題目常規(guī)的一般不難,但要注意解題的層次與步驟,如果要用構(gòu)造函數(shù)證明不等式,可從已知或是前問中找到突破口,必要時應該放棄;重視幾何意義的應用,注意點是否在曲線上;
14.概率的題目如果出解答題,應該先設(shè)事件,然后寫出使用公式的理由,當然要注意步驟的多少決定解答的詳略;如果有分布列,則概率和為1是檢驗正確與否的重要途徑;
15.遇到復雜的式子可以用換元法,使用換元法必須注意新元的取值范圍,有勾股定理型的已知,可使用三角換元來完成;
高考數(shù)學函數(shù)復習講義
1、映射
(1)映射:設(shè)A、B是兩個集合,如果按照某種映射法則f,對于集合A中的任一個元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B.
注意點:(1)對映射定義的理解.(2)判斷一個對應是映射的方法.一對多不是映射,多對一是映射
2、函數(shù)
構(gòu)成函數(shù)概念的三要素 ①定義域②對應法則③值域
兩個函數(shù)是同一個函數(shù)的條件:三要素有兩個相同
二、函數(shù)的解析式與定義域
1、求函數(shù)定義域的主要依據(jù):
(1)分式的分母不為零;
(2)偶次方根的被開方數(shù)不小于零,零取零次方?jīng)]有意義;
(3)對數(shù)函數(shù)的真數(shù)必須大于零;
(4)指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;
三、函數(shù)的值域
1求函數(shù)值域的方法
、僦苯臃ǎ簭淖宰兞縳的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡單的復合函數(shù);
②換元法:利用換元法將函數(shù)轉(zhuǎn)化為二次函數(shù)求值域,適合根式內(nèi)外皆為一次式;
、叟袆e式法:運用方程思想,依據(jù)二次方程有根,求出y的取值范圍;適合分母為二次且 ∈R的分式;
、芊蛛x常數(shù):適合分子分母皆為一次式(x有范圍限制時要畫圖);
⑤單調(diào)性法:利用函數(shù)的單調(diào)性求值域;
、迗D象法:二次函數(shù)必畫草圖求其值域;
、呃脤μ柡瘮(shù)
、鄮缀我饬x法:由數(shù)形結(jié)合,轉(zhuǎn)化距離等求值域.主要是含絕對值函數(shù)
四.函數(shù)的奇偶性
1.定義:設(shè)y=f(x),x∈A,如果對于任意 ∈A,都有 ,則稱y=f(x)為偶函數(shù).
如果對于任意 ∈A,都有 ,則稱y=f(x)為奇
函數(shù).
2.性質(zhì):
、賧=f(x)是偶函數(shù) y=f(x)的圖象關(guān)于 軸對稱,y=f(x)是奇函數(shù) y=f(x)的圖象關(guān)于原點對稱,
、谌艉瘮(shù)f(x)的定義域關(guān)于原點對稱,則f(0)=0
③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇[兩函數(shù)的定義域D1 ,D2,D1∩D2要關(guān)于原點對稱]
3.奇偶性的判斷
、倏炊x域是否關(guān)于原點對稱 ②看f(x)與f(-x)的關(guān)系
五、函數(shù)的單調(diào)性
1、函數(shù)單調(diào)性的定義:
2 設(shè) 是定義在M上的函數(shù),若f(x)與g(x)的單調(diào)性相反,則 在M上是減函數(shù);若f(x)與g(x)的單調(diào)性相同,則 在M上是增函數(shù).
【廣東高考數(shù)學幾何復習解答題】相關(guān)文章:
高考數(shù)學幾何答題技巧08-25
高考數(shù)學立體幾何答題技巧01-26
2018廣東高考數(shù)學平面解析幾何復習方法08-15
2018廣東高考數(shù)學答題順序08-29