亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

范文資料網(wǎng)>書稿范文>總結(jié)>《初中圓的知識(shí)點(diǎn)總結(jié)

初中圓的知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-04-12 14:32:13 總結(jié) 我要投稿
  • 相關(guān)推薦

初中圓的知識(shí)點(diǎn)總結(jié)

  總結(jié)就是把一個(gè)時(shí)間段取得的成績(jī)、存在的問題及得到的經(jīng)驗(yàn)和教訓(xùn)進(jìn)行一次全面系統(tǒng)的總結(jié)的書面材料,它能幫我們理順知識(shí)結(jié)構(gòu),突出重點(diǎn),突破難點(diǎn),為此要我們寫一份總結(jié)。我們?cè)撛趺磳懣偨Y(jié)呢?下面是小編收集整理的初中圓的知識(shí)點(diǎn)總結(jié),歡迎閱讀,希望大家能夠喜歡。

初中圓的知識(shí)點(diǎn)總結(jié)

初中圓的知識(shí)點(diǎn)總結(jié)1

 、僦本和圓無公共點(diǎn),稱相離。 AB與圓O相離,d>r。

 、谥本和圓有兩個(gè)公共點(diǎn),稱相交,這條直線叫做圓的割線。AB與⊙O相交,d

 、壑本和圓有且只有一公共點(diǎn),稱相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。AB與⊙O相切,d=r。(d為圓心到直線的距離)

  平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:

  1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的方程

  如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交。

  如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切。

  如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離。

  2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時(shí)的'兩個(gè)x值x1、x2,并且規(guī)定x1

  當(dāng)x=-C/Ax2時(shí),直線與圓相離;

初中圓的知識(shí)點(diǎn)總結(jié)2

  1.不在同一直線上的三點(diǎn)確定一個(gè)圓。

  2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

  推論1: ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對(duì)的兩條弧 、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

  推論2 :圓的兩條平行弦所夾的弧相等

  3.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。

  4.圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合。

  5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合。

  6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。

  7.同圓或等圓的半徑相等。

  8.到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓。

  9.定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦 相等,所對(duì)的弦的弦心距相等。

  10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。

  11定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對(duì)角。

  12.①直線L和⊙O相交 d 、谥本L和⊙O相切 d=r 、壑本L和⊙O相離 d>r

  13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

  14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑。

  15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)。

  16.推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心。

  17.切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等, 圓心和這一點(diǎn)的連線平分兩條切線的夾角。

  18.圓的外切四邊形的兩組對(duì)邊的和相等 外角等于內(nèi)對(duì)角。

  19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上。

  20.①兩圓外離 d>R+r ②兩圓外切 d=R+r 、.兩圓相交 R-rr) 、.兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)

  21.定理 相交兩圓的連心線垂直平分兩圓的公共弦。

  22.定理 把圓分成n(n≥3): 、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形  ⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形。

  23.定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓。

  24.正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n。

  25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形。

  26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(zhǎng)。

  27.正三角形面積√3a/4 a表示邊長(zhǎng)。

  28.如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4。

  29.弧長(zhǎng)計(jì)算公式:L=n兀R/180。

  30.扇形面積公式:S扇形=n兀R^2/360=LR/2。

  31.內(nèi)公切線長(zhǎng)= d-(R-r) 外公切線長(zhǎng)= d-(R+r)。

  32.定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。

  33.推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的`弧也相等。

  34.推論2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所 對(duì)的弦是直徑。

  35.弧長(zhǎng)公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r。

  1.直接法:根據(jù)選擇題的題設(shè)條件,通過計(jì)算、推理或判斷,最后得到題目的所求。

  2.特殊值法:(特殊值淘汰法)有些選擇題所涉及的數(shù)學(xué)命題與字母的取值范圍有關(guān);

  在解這類選擇題時(shí),可以考慮從取值范圍內(nèi)選取某幾個(gè)特殊值,代入原命題進(jìn)行驗(yàn)證,然后淘汰錯(cuò)誤的,保留正確的。

  3.淘汰法:把題目所給的四個(gè)結(jié)論逐一代回原題的題干中進(jìn)行驗(yàn)證,把錯(cuò)誤的淘汰掉,直至找到正確的答案。

  4.逐步淘汰法:如果我們?cè)谟?jì)算或推導(dǎo)的過程中不是一步到位,而是逐步進(jìn)行,既采用“走一走、瞧一瞧”的策略;

  每走一步都與四個(gè)結(jié)論比較一次,淘汰掉不可能的,這樣也許走不到最后一步,三個(gè)錯(cuò)誤的結(jié)論就被全部淘汰掉了。

  5.數(shù)形結(jié)合法:根據(jù)數(shù)學(xué)問題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義;

  使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來,并充分利用這種結(jié)合,尋求解題思路,使問題得到解決。

  常用的數(shù)學(xué)思想方法

  1.數(shù)形結(jié)合思想:就是根據(jù)數(shù)學(xué)問題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義;

  使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來,并充分利用這種結(jié)合,尋求解體思路,使問題得到解決。

  2.聯(lián)系與轉(zhuǎn)化的思想:事物之間是相互聯(lián)系、相互制約的,是可以相互轉(zhuǎn)化的。數(shù)學(xué)學(xué)科的各部分之間也是相互聯(lián)系,可以相互轉(zhuǎn)化的。

  在解題時(shí),如果能恰當(dāng)處理它們之間的相互轉(zhuǎn)化,往往可以化難為易,化繁為簡(jiǎn)。

  如:代換轉(zhuǎn)化、已知與未知的轉(zhuǎn)化、特殊與一般的轉(zhuǎn)化、具體與抽象的轉(zhuǎn)化、部分與整體的轉(zhuǎn)化、動(dòng)與靜的轉(zhuǎn)化等等。

  3.分類討論的思想:在數(shù)學(xué)中,我們常常需要根據(jù)研究對(duì)象性質(zhì)的差異,分各種不同情況予以考查;

  這種分類思考的方法,是一種重要的數(shù)學(xué)思想方法,同時(shí)也是一種重要的解題策略。

  4.待定系數(shù)法:當(dāng)我們所研究的數(shù)學(xué)式子具有某種特定形式時(shí),要確定它,只要求出式子中待確定的字母得值就可以了。

  為此,把已知條件代入這個(gè)待定形式的式子中,往往會(huì)得到含待定字母的方程或方程組,然后解這個(gè)方程或方程組就使問題得到解決。

  5.配方法:就是把一個(gè)代數(shù)式設(shè)法構(gòu)造成平方式,然后再進(jìn)行所需要的變化。

  配方法是初中代數(shù)中重要的變形技巧,配方法在分解因式、解方程、討論二次函數(shù)等問題,都有重要的作用。

  6.換元法:在解題過程中,把某個(gè)或某些字母的式子作為一個(gè)整體,用一個(gè)新的字母表示,以便進(jìn)一步解決問題的一種方法。

  換元法可以把一個(gè)較為復(fù)雜的式子化簡(jiǎn),把問題歸結(jié)為比原來更為基本的問題,從而達(dá)到化繁為簡(jiǎn),化難為易的目的。

  7.分析法:在研究或證明一個(gè)命題時(shí),又結(jié)論向已知條件追溯,既從結(jié)論開始,推求它成立的充分條件,這個(gè)條件的成立還不顯然;

  則再把它當(dāng)作結(jié)論,進(jìn)一步研究它成立的充分條件,直至達(dá)到已知條件為止,從而使命題得到證明。這種思維過程通常稱為“執(zhí)果尋因”

  8.綜合法:在研究或證明命題時(shí),如果推理的方向是從已知條件開始,逐步推導(dǎo)得到結(jié)論,這種思維過程通常稱為“由因?qū)Ч?/p>

  9.演繹法:由一般到特殊的推理方法。

  10.歸納法:由一般到特殊的推理方法。

初中圓的知識(shí)點(diǎn)總結(jié)3

  1.不在同一直線上的三點(diǎn)確定一個(gè)圓。

  2.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

  推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

  ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧

  ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

  推論2圓的兩條平行弦所夾的弧相等

  3.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

  4.圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  7.同圓或等圓的半徑相等

  8.到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

  9.定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

  10.推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。

  11定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的'內(nèi)對(duì)角

  12.①直線L和⊙O相交d

 、谥本L和⊙O相切d=r

 、壑本L和⊙O相離d>r

  13.切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14.切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑

  15.推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

  16.推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  17.切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

  18.圓的外切四邊形的兩組對(duì)邊的和相等外角等于內(nèi)對(duì)角

  19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

  20.①兩圓外離d>R+r

  ②兩圓外切d=R+r

 、蹆蓤A相交R-rr)

 、軆蓤A內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)

  21.定理相交兩圓的連心線垂直平分兩圓的公共弦

  22.定理把圓分成n(n≥3):

 、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

  ⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  23.定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

  24.正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

  25.定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  26.正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)

  27.正三角形面積√3a/4a表示邊長(zhǎng)

  28.如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29.弧長(zhǎng)計(jì)算公式:L=n兀R/180

  30.扇形面積公式:S扇形=n兀R^2/360=LR/2

  31.內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)

  32.定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

  33.推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

  34.推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

  35.弧長(zhǎng)公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r

初中圓的知識(shí)點(diǎn)總結(jié)4

  1、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  2、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  3、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  4、同圓或等圓的半徑相等

  5、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

  6、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線7、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

  8、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

  9、定理不在同一直線上的三點(diǎn)確定一個(gè)圓。

  10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

  11、推論1:①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對(duì)的兩條、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的.另一條弧

  12、推論2:圓的兩條平行弦所夾的弧相等

  13、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

  14、定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

  15、推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

  16、定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

  17、推論:1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

  18、推論:2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

  19、推論:3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

  20、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

  21、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr

  22、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線23、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑24、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)25、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  26、切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等圓心和這一點(diǎn)的連線平分兩條切線的夾角

  27、圓的外切四邊形的兩組對(duì)邊的和相等

  28、弦切角定理:弦切角等于它所夾的弧對(duì)的圓周角

  29、推論:如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等30、相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

  32、切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)

  33、推論:從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等

  34、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

  35、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R—rdR+r(Rr)④兩圓內(nèi)切d=R—r(Rr)⑤兩圓內(nèi)含dR—r(Rr)

  36、定理:相交兩圓的連心線垂直平分兩圓的公共弦

  37、定理:把圓分成n(n≥3):⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  38、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

  39、正n邊形的每個(gè)內(nèi)角都等于(n—2)×180°/n40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  41、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)42、正三角形面積√3a/4a表示邊長(zhǎng)

  43、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k(n—2)180°/n=360°化為(n—2)(k—2)=444、弧長(zhǎng)計(jì)算公式:L=n兀R/180

  45、扇形面積公式:S扇形=n兀R^2/360=LR/246、內(nèi)公切線長(zhǎng)=d—(R—r)外公切線長(zhǎng)=d—(R+r)

初中圓的知識(shí)點(diǎn)總結(jié)5

  一、圓的認(rèn)識(shí)

  1、圓的定義

  (1)在一個(gè)平面內(nèi),線段OA繞它的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周, 另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫做圓。固定的端點(diǎn)O 叫做圓心,線段OA叫做半徑,如右圖所示。

  (2)圓可以看作是平面內(nèi)到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集 合,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。

  說明:圓的位置由圓心確定,圓的大小由半徑確定,半 徑相等的兩個(gè)圓為等圓。

  2、圓的有關(guān)概念

  (1)弦:連結(jié)圓上任意兩點(diǎn)的線段。(如右圖中 的CD)。

  (2)直徑:經(jīng)過圓心的弦(如右圖中的AB)。 直徑等于半徑的2倍。

  (3)。簣A上任意兩點(diǎn)間的部分叫做圓弧。(如 右圖中的CD、CAD)其中大于半圓的弧叫做優(yōu)弧,如CAD,小于半圓的弧叫做劣弧。

  (4)圓心角:如右圖中∠COD就是圓心角。

  3、圓心角、弧、弦、弦心距之間的關(guān)系。

  (1)定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦的弦心距相等。

  (2)推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的"弦心距中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。

  4、過三點(diǎn)的圓。

  (1)定理:不在同一條直線上的三點(diǎn)確定一個(gè)圓。

  (2)三角形的外接圓圓心(外心)是三邊垂直平分線的交點(diǎn)。

  5、垂徑定理。

  垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。 推論:

  (1)①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧;

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對(duì)的兩條弧;

 、燮椒窒宜鶎(duì)的一條弦的'直徑,垂直平分弦,并且平分弦所對(duì) 的另一條弧。

  (2)圓的兩條平行弦所夾的弧相等。

  6、與圓相關(guān)的角

  (1)與圓相關(guān)的角的定義

 、賵A心角:頂點(diǎn)在圓心的角叫做圓心角。

 、趫A周角:頂點(diǎn)在圓上且兩邊都和圓相交的角叫做圓周角。

  ③弦切角:頂點(diǎn)在圓上,一邊和圓相交,另一連軸和圓相切的角叫做弦切角。

  (2)與圓相關(guān)的角的性質(zhì)

  ①圓心角的度數(shù)等于它所對(duì)的弦的度數(shù);

 、谝粭l弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半;

  ③同弧或等弧所對(duì)的圓周角相等;

 、馨雸A(或直徑)所對(duì)的圓周角相等;

 、菹仪薪堑扔谒鶌A的弧所對(duì)的圓周角;

 、迌蓚(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等;

 、邎A的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角。

  二、與圓有關(guān)的位置關(guān)系

  1、點(diǎn)與圓的位置關(guān)系

  如果圓的半徑為r,某一點(diǎn)到圓心的距離為d,那么:

  (1)點(diǎn)在圓外dr。

  (2)點(diǎn)在圓上dr。

  (3)點(diǎn)在圓內(nèi)dr。

  2、直線和圓的位置關(guān)系

  設(shè)r為圓的半徑,d為圓心到直線的距離:

  (1)直線和圓相離dr,直線與圓沒有交點(diǎn);

  (2)直線和圓相切dr,直線與圓有唯一交點(diǎn);

  (3)直線和圓相交dr,直線與圓有兩個(gè)交點(diǎn)。

  3、圓的切線

  (1)定義:和圓有唯一公共點(diǎn)的直線叫做圓的切線,唯一公共點(diǎn)叫做切點(diǎn)。

  (2)切線的判定定理,經(jīng)過半徑的外端且垂于這條半徑的直線是圓的切線。

  (3)切線的性質(zhì)定理及推論。

  定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑。 推論:

 、俳(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn);

  ②經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心。

  4、兩圓的位置關(guān)系

  設(shè)R、r為兩圓的半徑,d為圓心距

  (1)兩圓外離dR+r;

  (2)兩圓外切dR+r;

  (3)兩圓相交R。

  (4)兩圓內(nèi)切d。

  (5)兩圓內(nèi)含dr

  (注意:如果為d=0,則兩圓為同心圓。) R-r(R>r)。

  5、兩圓連心線的性質(zhì)

  (1)相交兩圓的連心線,垂直平分公共弦,且平分兩條外公切線所夾的角。(注:平分兩外公切線所夾的角,通過角平分線的判定“到角的兩邊距離相等的點(diǎn),在這個(gè)角的平分線上”,很易證明。)

  (2)相切兩圓的連心線必經(jīng)過切點(diǎn)。

  (3)相離兩圓的連心線平分內(nèi)公切線的夾角和外公切線的夾角。

  6、兩圓公切線的性質(zhì)

  (1)如果兩圓有兩條外公切線,則兩外公切線長(zhǎng)相等。

  (2)如果兩圓有兩條內(nèi)公切線,則兩內(nèi)公切線長(zhǎng)相等。

  7、與圓有關(guān)的比例線段問題的一般思考方法

  (1)直接應(yīng)用相交弦、切割線定理及其推論;

  (2)找相似三角形,當(dāng)證明有關(guān)線段的比例式或等積式不能直接運(yùn)用基本定理推導(dǎo)時(shí),通常是由“三點(diǎn)定形法”證三角形相似,其一般思路為等積式→比例式→中間比→相似三角形。

  8、與圓相關(guān)的常用輔助線

  (1)有弦,可作弦心距;

  (2)有直徑,可作直徑所對(duì)的圓周角;

  (3)有切點(diǎn),可作過切點(diǎn)的半徑;

  (4)兩圓相交,可作公共弦;

  (5)兩圓相切,可作公切線;

  (6)有半圓,可作整圓。

  記憶口訣:有弦可作弦心距,中心圓心相連;兩圓相切公切線,兩圓相交公共弦;遇到切點(diǎn)作半徑,圓與圓心連心;遇到直徑相直角,直角相對(duì)點(diǎn)共圓。(注:“心連心”為連心線。)

  9、圓外切三角形和四邊形的性質(zhì)

  (1)如右圖,△ABC是⊙O的外切三角形,D、E、F為切點(diǎn),則AD=AF=AB+AC-BD。

  同理:直角三角形內(nèi)切圓半徑R=a+b-c。(其中a、b為直角邊,c為斜邊)

  (2)圓外切四邊形兩組對(duì)邊和相等,即如右圖,四邊形ABCD是⊙O的外切四邊形,則 AB+CD=AD+BC。

  三、圓中的計(jì)算問題

  1、圓的有關(guān)計(jì)算

  (1)圓周長(zhǎng):c=2pR。

  (2)弧長(zhǎng):l=npR; 1802。

  (3)圓面積:S=pR;1npR2。

  (4)扇形面積:S扇形=lR=;2360。

  (5)弓形面積:S弓形=S扇形±SD。

  2、圓柱

  圓柱的側(cè)面展開圖是矩形,這個(gè)矩形的長(zhǎng)等于圓柱的底面周長(zhǎng)c,寬是圓柱的母線長(zhǎng)l,如果圓柱的底面半徑是r,則S圓柱側(cè)=cl=2prl。

  3、圓錐

  圓錐的側(cè)面展開圖是扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面周長(zhǎng)c,半徑等于圓錐母線長(zhǎng)l,若圓錐的底面半徑為r,這個(gè)扇形的圓心角為a,則a=r1360,S圓錐側(cè)=cl=prl。

初中圓的知識(shí)點(diǎn)總結(jié)6

  1.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形;同圓或等圓的半徑相等。

  2.到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓。

  3.定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等。

  4.圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合。

  5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合;圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。

  6.不在同一直線上的三點(diǎn)確定一個(gè)圓。

  7.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧。

  推論1:

 、倨椒窒(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧;

 、谙业'垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧;

 、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧。

  推論2:圓的兩條平行弦所夾的弧相等。

  8.推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。

  9.定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角。

  10.經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心。

  11.切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

  12.切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑。

  13.經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

  14.切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。

  15.圓的外切四邊形的兩組對(duì)邊的和相等外角等于內(nèi)對(duì)角。

  16.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上。

  17.

 、賰蓤A外離d>R+r

  ②兩圓外切d=R+r

 、蹆蓤A相交d>R-r)

  ④兩圓內(nèi)切d=R-r(R>r)

 、輧蓤A內(nèi)含d=r)

  18.定理把圓分成n(n≥3):

  ⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

 、平(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形。

  19.定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓。

  20.弧長(zhǎng)計(jì)算公式:L=n兀R/180;扇形面積公式:S扇形=n兀R^2/360=LR/2。

  21.內(nèi)公切線長(zhǎng)= d-(R-r)外公切線長(zhǎng)= d-(R+r)。

  22.定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。

  23.推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。

  24.推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。

初中圓的知識(shí)點(diǎn)總結(jié)7

  考點(diǎn)一、圓的相關(guān)概念

  1、圓的定義

  在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫做圓,固定的端點(diǎn)O叫做圓心,線段OA叫做半徑。

  2、圓的幾何表示

  以點(diǎn)O為圓心的圓記作“⊙O”,讀作“圓O”

  考點(diǎn)二、弦、弧等與圓有關(guān)的定義

 。1)弦

  連接圓上任意兩點(diǎn)的線段叫做弦。(如圖中的AB)

 。2)直徑

  經(jīng)過圓心的弦叫做直徑。(如途中的CD)

  直徑等于半徑的2倍。

  (3)半圓

  圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫做半圓。

  (4)弧、優(yōu)弧、劣弧

  圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧。

  弧用符號(hào)“⌒”表示,以A,B為端點(diǎn)的弧記作“”,讀作“圓弧AB”或“弧AB”。

  大于半圓的弧叫做優(yōu)。ǘ嘤萌齻(gè)字母表示);小于半圓的弧叫做劣弧(多用兩個(gè)字母表示)

  考點(diǎn)三、垂徑定理及其推論(重要)

  垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧。

  推論1:(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧。

 。2)弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧。

 。3)平分弦所對(duì)的一條弧的直徑垂直平分弦,并且平分弦所對(duì)的另一條弧。

  *推論2:圓的兩條平行弦所夾的弧相等。

  考點(diǎn)四、圓的對(duì)稱性

  1、圓的軸對(duì)稱性

  圓是軸對(duì)稱圖形,經(jīng)過圓心的每一條直線都是它的對(duì)稱軸。

  2、圓的中心對(duì)稱性

  圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。

  考點(diǎn)五、弧、弦、弦心距、圓心角之間的關(guān)系定理

  1、圓心角

  頂點(diǎn)在圓心的.角叫做圓心角。

  2、弦心距

  從圓心到弦的距離叫做弦心距。

  3、弧、弦、弦心距、圓心角之間的關(guān)系定理

  在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦想等,所對(duì)的弦的弦心距相等。

  推論:在同圓或等圓中,如果兩個(gè)圓的圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。

  考點(diǎn)六、圓周角定理及其推論

  1、圓周角

  頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫做圓周角。

  2、圓周角定理(重要)

  一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。

  推論1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。

  推論2(△):半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。

  考點(diǎn)七、點(diǎn)和圓的位置關(guān)系

  設(shè)⊙O的半徑是r,點(diǎn)P到圓心O的距離為d

  則有:dr點(diǎn)P在⊙O外。

  考點(diǎn)八、直線與圓的位置關(guān)系

  直線和圓有三種位置關(guān)系,具體如下:

  (1)相交:直線和圓有兩個(gè)公共點(diǎn)時(shí),叫做直線和圓相交,這時(shí)直線叫做圓的割線,公共點(diǎn)叫做交點(diǎn);

  (2)相切:直線和圓有唯一公共點(diǎn)時(shí),叫做直線和圓相切,這時(shí)直線叫做圓的切線,(3)相離:直線和圓沒有公共點(diǎn)時(shí),叫做直線和圓相離。 如果⊙O的半徑為r,圓心O到直線l的距離為d,那么:

  直線l與⊙O相交dr;

  考點(diǎn)九、圓內(nèi)接四邊形

  圓的內(nèi)接四邊形定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ)(重要),外角等于它的內(nèi)對(duì)角。 即:在⊙O中, ∵四邊ABCD是內(nèi)接四邊形

  ∴CBAD180 BD180

  DAEC

  考點(diǎn)十、切線的性質(zhì)與判定定理

  1、切線的判定定理:過半徑外端且垂直于半徑的直線是切線;

  兩個(gè)條件:過半徑外端且垂直半徑,二者缺一不可 即:∵M(jìn)NOA且MN過半徑OA外端 ∴MN是⊙O的切線 2、性質(zhì)定理:切線垂直于過切點(diǎn)的半徑(如上圖)(記住理解即可,不會(huì)考證明題)

  考點(diǎn)十一、切線長(zhǎng)定理

  切線長(zhǎng)定理: 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)

  相等,這點(diǎn)和圓心的連線平分兩條切線的夾角。

  即:∵PA、PB是的兩條切線 ∴PAPB;PO平分BPA(用三角形全等證明)

  考點(diǎn)十二、弧長(zhǎng)和扇形面積

  1、弧長(zhǎng)公式

  半徑為R的圓中,n°的圓心角所對(duì)的弧長(zhǎng)l的計(jì)算公式:

  2、扇形面積公式

  其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長(zhǎng)。

  3、圓錐的側(cè)面積

  其中l(wèi)是圓錐的母線長(zhǎng),r是圓錐的地面半徑。

  考點(diǎn)十三、圓冪定理(一般不會(huì)考)

  1、相交弦定理:圓內(nèi)兩弦相交,交點(diǎn)分得的兩條線段的乘積相等。

  即:在⊙O中,∵弦AB、CD相交于點(diǎn)P,∴PAPBPCPD

  2、切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)。

  即:在⊙O中,∵PA是切線,PB是割線

  ∴ PA2PCPB

  3、割線定理:從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等(如上圖)。

  即:在⊙O中,∵PB、PE是割線 ∴PCPBPDPE

初中圓的知識(shí)點(diǎn)總結(jié)8

  一、圓

  1、圓的有關(guān)性質(zhì)

  在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線段OA叫半徑。

  由圓的意義可知:

  圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長(zhǎng)的點(diǎn)都在圓上。

  就是說:圓是到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。

  圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結(jié)圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡(jiǎn)稱弧。

  圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu);小于半圓的弧叫劣弧。由弦及其所對(duì)的弧組成的圓形叫弓形。

  圓心相同,半徑不相等的兩個(gè)圓叫同心圓。

  能夠重合的兩個(gè)圓叫等圓。

  同圓或等圓的半徑相等。

  在同圓或等圓中,能夠互相重合的弧叫等弧。

  二、過三點(diǎn)的圓

  l、過三點(diǎn)的圓

  過三點(diǎn)的圓的作法:利用中垂線找圓心

  定理不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。

  經(jīng)過三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內(nèi)接三角形。

  2、反證法

  反證法的三個(gè)步驟:

 、偌僭O(shè)命題的結(jié)論不成立;

  ②從這個(gè)假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;

 、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。

  例如:求證三角形中最多只有一個(gè)角是鈍角。

  證明:設(shè)有兩個(gè)以上是鈍角

  則兩個(gè)鈍角之和>180°

  與三角形內(nèi)角和等于180°矛盾。

  ∴不可能有二個(gè)以上是鈍角。

  即最多只能有一個(gè)是鈍角。

  三、垂直于弦的直徑

  圓是軸對(duì)稱圖形,經(jīng)過圓心的每一條直線都是它的對(duì)稱軸。

  垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。

  推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)兩條弧。

  弦的`垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧。

  平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一個(gè)條弧。

  推理2:圓兩條平行弦所夾的弧相等。

  四、圓心角、弧、弦、弦心距之間的關(guān)系

  圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。

  實(shí)際上,圓繞圓心旋轉(zhuǎn)任意一個(gè)角度,都能夠與原來的圖形重合。

  頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

  定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦心距相等。

  推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。

  五、圓周角

  頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。

  推理1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。

  推理2:半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。

  推理3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。

  由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。

初中圓的知識(shí)點(diǎn)總結(jié)9

  1、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  2、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合3、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合4、同圓或等圓的半徑相等

  5、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓6、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線7、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

  8、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

  9、定理不在同一直線上的三點(diǎn)確定一個(gè)圓。

  10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧11、推論1:

 、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對(duì)的兩條、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對(duì)的兩條弧

 、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧12、推論2:圓的兩條平行弦所夾的弧相等13、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

  14、定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的'弦的弦心距相等

  15、推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

  16、定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

  17、推論:1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

  18、推論:2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

  19、推論:3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

  20、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

  21、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr

  22、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線23、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑24、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)25、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  26、切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等圓心和這一點(diǎn)的連線平分兩條切線的夾角

  27、圓的外切四邊形的兩組對(duì)邊的和相等

  28、弦切角定理:弦切角等于它所夾的弧對(duì)的圓周角

  29、推論:如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等30、相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

  32、切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)

  33、推論:從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等

  34、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上35、①兩圓外離dR+r②兩圓外切d=R+r

 、蹆蓤A相交R-rdR+r(Rr)④兩圓內(nèi)切d=R-r(Rr)⑤兩圓內(nèi)含dR-r(Rr)

  36、定理:相交兩圓的連心線垂直平分兩圓的公共弦37、定理:把圓分成n(n≥3):

  ⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

 、平(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  38、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

  39、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  41、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)42、正三角形面積√3a/4a表示邊長(zhǎng)

  43、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k(n-2)180°/n=360°化為(n-2)(k-2)=444、弧長(zhǎng)計(jì)算公式:L=n兀R/180

  45、扇形面積公式:S扇形=n兀R^2/360=LR/246、內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)

【初中圓的知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

初中幾何知識(shí)點(diǎn)總結(jié)04-04

初中函數(shù)知識(shí)點(diǎn)總結(jié)03-11

初中物理知識(shí)點(diǎn)總結(jié)02-06

初中數(shù)學(xué)圓教案04-17

初中數(shù)學(xué)《圓 》教案12-30

初中語文知識(shí)點(diǎn)總結(jié)01-31

初中電學(xué)公式知識(shí)點(diǎn)總結(jié)02-21

初中數(shù)學(xué)幾何知識(shí)點(diǎn)總結(jié)01-20

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)04-30