初三數(shù)學下冊期中復習知識
特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,
當y=0時,二次函數(shù)為關于x的一元二次方程(以下稱方程),即ax^2+bx+c=0
此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。函數(shù)與x軸交點的橫坐標即為方程的根。
1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象形狀相同,只是位置不同,
當h0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h0時,則向左平行移動|h|個單位得到.
當h0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;
當h0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當h0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當h0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a0)的圖象:當a0時,開口向上,當a0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=ax^2+bx+c(a0),若a0,當x-b/2a時,y隨x的增大而減小;當x-b/2a時,y隨x的增大而增大.若a0,當x-b/2a時,y隨x的'增大而增大;當x-b/2a時,y隨x的增大而減小.
4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b^2-4ac0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a0)的兩根.這兩點間的距離AB=|x-x|
當△=0.圖象與x軸只有一個交點;
當△0.圖象與x軸沒有交點.當a0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y當a0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y0.
【初三數(shù)學下冊期中復習知識】相關文章:
初三數(shù)學下冊知識點復習期中07-24
初三數(shù)學下冊知識點復習07-26
小學數(shù)學下冊期中復習范文08-23
初二語文下冊期中復習知識08-12
初三數(shù)學的知識要點復習07-11
初三下冊數(shù)學期中的復習要點08-23
語文下冊基礎知識期中復習知識點09-10
初三數(shù)學復習知識點07-20