亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

初三

初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)

時(shí)間:2022-07-25 12:00:20 初三 我要投稿

初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)

  在日復(fù)一日的學(xué)習(xí)中,相信大家一定都接觸過(guò)知識(shí)點(diǎn)吧!知識(shí)點(diǎn)就是掌握某個(gè)問(wèn)題/知識(shí)的學(xué)習(xí)要點(diǎn)。相信很多人都在為知識(shí)點(diǎn)發(fā)愁,下面是小編整理的初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn),供大家參考借鑒,希望可以幫助到有需要的朋友。

初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)

  初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)1

  矩形知識(shí)點(diǎn)

  1、矩形的概念

  有一個(gè)角是直角的平行四邊形叫做矩形。

  2、矩形的性質(zhì)

  (1)具有平行四邊形的一切性質(zhì)

  (2)矩形的四個(gè)角都是直角

  (3)矩形的對(duì)角線相等

  (4)矩形是軸對(duì)稱圖形

  3、矩形的判定

  (1)定義:有一個(gè)角是直角的平行四邊形是矩形

  (2)定理1:有三個(gè)角是直角的四邊形是矩形

  (3)定理2:對(duì)角線相等的平行四邊形是矩形

  4、矩形的面積:S矩形=長(zhǎng)×寬=ab

  正方形知識(shí)點(diǎn)

  1、正方形的概念

  有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。

  2、正方形的性質(zhì)

  (1)具有平行四邊形、矩形、菱形的一切性質(zhì);

  (2)正方形的四個(gè)角都是直角,四條邊都相等;

  (3)正方形的兩條對(duì)角線相等,并且互相垂直平分,每一條對(duì)角線平分一組對(duì)角;

  (4)正方形是軸對(duì)稱圖形,有4條對(duì)稱軸;

  (5)正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形,兩條對(duì)角線把正方形分成四個(gè)全等的小等腰直角三角形;

  (6)正方形的一條對(duì)角線上的一點(diǎn)到另一條對(duì)角線的兩端點(diǎn)的距離相等。

  3、正方形的判定

  (1)判定一個(gè)四邊形是正方形的主要依據(jù)是定義,途徑有兩種:

  先證它是矩形,再證有一組鄰邊相等。

  先證它是菱形,再證有一個(gè)角是直角。

  (2)判定一個(gè)四邊形為正方形的一般順序如下:

  先證明它是平行四邊形;

  再證明它是菱形(或矩形);

  最后證明它是矩形(或菱形)。

  圓知識(shí)點(diǎn)

  圓的面積s=π×r×r

  其中,π是周圍率,約等于3.14

  r是圓的半徑。

  圓的周長(zhǎng)計(jì)算公式為:C=2πR.C代表圓的周長(zhǎng),r代表圓的半徑。圓的面積公式為:S=πR2(R的平方).S代表圓的面積,r為圓的半徑。

  橢圓周長(zhǎng)計(jì)算公式

  橢圓周長(zhǎng)公式:L=2πb+4(a-b)

  橢圓周長(zhǎng)定理:橢圓的周長(zhǎng)等于該橢圓短半軸長(zhǎng)為半徑的圓周長(zhǎng)(2πb)加上四倍的該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的差。

  橢圓面積計(jì)算公式

  橢圓面積公式:S=πab

  橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的乘積。

  以上橢圓周長(zhǎng)、面積公式中雖然沒有出現(xiàn)橢圓周率T,但這兩個(gè)公式都是通過(guò)橢圓周率T推導(dǎo)演變而來(lái)。常數(shù)為體,公式為用。

  對(duì)數(shù)公式

  對(duì)數(shù)公式是數(shù)學(xué)中的一種常見公式,如果a^x=N(a>0,且a≠1),則x叫做以a為底N的對(duì)數(shù),記做x=log(a)(N),其中a要寫于log右下。其中a叫做對(duì)數(shù)的底,N叫做真數(shù)。通常我們將以10為底的對(duì)數(shù)叫做常用對(duì)數(shù),以e為底的對(duì)數(shù)稱為自然對(duì)數(shù)。

  數(shù)學(xué)學(xué)習(xí)技巧

  1.求教與自學(xué)相結(jié)合

  在學(xué)習(xí)過(guò)程中,即要爭(zhēng)取教師的指導(dǎo)和幫助,但是又不能過(guò)分依賴教師,必須自己主動(dòng)地去學(xué)習(xí)、去探索、去獲取,應(yīng)該在自己認(rèn)真學(xué)習(xí)和研究的基礎(chǔ)上去尋求教師和同學(xué)的幫助。

  2.學(xué)習(xí)與思考相結(jié)合

  在學(xué)習(xí)過(guò)程中,對(duì)課本的內(nèi)容要認(rèn)真研究,提出疑問(wèn),追本究源。對(duì)每一個(gè)概念、公式、定理都要弄清其來(lái)龍去脈、前因后果、內(nèi)在聯(lián)系,以及蘊(yùn)含于推導(dǎo)過(guò)程中的數(shù)學(xué)思想和方法。在解決問(wèn)題時(shí),要盡量采用不同的途徑和方法,要克服那種死守書本、機(jī)械呆板、不知變通的學(xué)習(xí)方法。

  3.學(xué)用結(jié)合,勤于實(shí)踐

  在學(xué)習(xí)過(guò)程中,要準(zhǔn)確地掌握抽象概念的本質(zhì)含義,了解從實(shí)際模型中抽象為理論的演變過(guò)程。對(duì)所學(xué)理論知識(shí),要在更大范圍內(nèi)尋求它的具體實(shí)例,使之具體化,盡量將所學(xué)的理論知識(shí)和思維方法應(yīng)用于實(shí)踐。

  4.博觀約取,由博返約

  課本是獲得知識(shí)的主要來(lái)源,但不是唯一的來(lái)源。在學(xué)習(xí)過(guò)程中,除了認(rèn)真研究課本以外,還要閱讀有關(guān)的課外資料,來(lái)擴(kuò)大知識(shí)領(lǐng)域。同時(shí)在廣泛閱讀的基礎(chǔ)上,進(jìn)行認(rèn)真研究,掌握其知識(shí)結(jié)構(gòu)。

  5.既有模仿,又有創(chuàng)新

  模仿是數(shù)學(xué)學(xué)習(xí)中不可缺少的學(xué)習(xí)方法,但是決不能機(jī)械地模仿,應(yīng)該在消化理解的基礎(chǔ)上,開動(dòng)腦筋,提出自己的見解和看法,而不拘泥于已有的框框,不囿于現(xiàn)成的模式。

  6.及時(shí)復(fù)習(xí)增強(qiáng)記憶

  課堂上學(xué)習(xí)的內(nèi)容,必須當(dāng)天消化,要先復(fù)習(xí),后做練習(xí),復(fù)習(xí)工作必須經(jīng)常進(jìn)行,每一單元結(jié)束后,應(yīng)將所學(xué)知識(shí)進(jìn)行概括整理,使之系統(tǒng)化、深刻化。

  7.總結(jié)學(xué)習(xí)經(jīng)驗(yàn),評(píng)價(jià)學(xué)習(xí)效果

  學(xué)習(xí)中的總結(jié)和評(píng)價(jià)有利于知識(shí)體系的建立、解題規(guī)律的掌握、學(xué)習(xí)方法與態(tài)度的調(diào)整和評(píng)判能力的提高。在學(xué)習(xí)過(guò)程中,應(yīng)注意總結(jié)聽課、閱讀和解題中的收獲和體會(huì)。

  初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)2

  一、等腰三角形

  1、定義:有兩邊相等的三角形是等腰三角形。

  2、性質(zhì):1.等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫成“等邊對(duì)等角”)

  2.等腰三角形的頂角的平分線,底邊上的中線,底邊上的高的重合(“三線合一”)

  3.等腰三角形的兩底角的平分線相等。(兩條腰上的中線相等,兩條腰上的高相等)

  4.等腰三角形底邊上的垂直平分線上的點(diǎn)到兩條腰的距離相等。

  5.等腰三角形的一腰上的高與底邊的夾角等于頂角的一半

  6.等腰三角形底邊上任意一點(diǎn)到兩腰距離之和等于一腰上的高(可用等面積法證)

  7.等腰三角形是軸對(duì)稱圖形,只有一條對(duì)稱軸,頂角平分線所在的直線是它的對(duì)稱軸

  3、判定:在同一三角形中,有兩個(gè)角相等的三角形是等腰三角形(簡(jiǎn)稱:等角對(duì)等邊)。

  特殊的等腰三角形

  等邊三角形

  1、定義:三條邊都相等的三角形叫做等邊三角形,又叫做正三角形。

  (注意:若三角形三條邊都相等則說(shuō)這個(gè)三角形為等邊三角形,而一般不稱這個(gè)三角形為等腰三角形)。

  2、性質(zhì):

 、诺冗吶切蔚膬(nèi)角都相等,且均為60度。

 、频冗吶切蚊恳粭l邊上的中線、高線和每個(gè)角的角平分線互相重合。

  ⑶等邊三角形是軸對(duì)稱圖形,它有三條對(duì)稱軸,對(duì)稱軸是每條邊上的中線、高線或所對(duì)角的平分線所在直線。

  3、判定:

 、湃呄嗟鹊娜切问堑冗吶切。

 、迫齻(gè)內(nèi)角都相等的三角形是等邊三角形。

 、怯幸粋(gè)角是60度的等腰三角形是等邊三角形。

 、扔袃蓚(gè)角等于60度的三角形是等邊三角形。

  二、直角三角形全等

  1、直角三角形全等的判定有5種:

 。1)、兩角及其夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等;(asa)

 。2)、兩邊及其夾角對(duì)應(yīng)相等的兩個(gè)三角形全等;(sas)

  (3)、三邊對(duì)應(yīng)相等的兩個(gè)三角形全等;(sss)

 。4)、兩角及其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等;(aas)

 。5)、斜邊及一條直角邊對(duì)應(yīng)相等的兩個(gè)三角形全等;(hl)

  2、在直角三角形中,如有一個(gè)內(nèi)角等于30,那么它所對(duì)的直角邊等于斜邊的一半

  3、在直角三角形中,斜邊上的中線等于斜邊的一半

  4垂直平分線:垂直于一條線段并且平分這條線段的直線。

  性質(zhì):線段垂直平分線上的點(diǎn)到這一條線段兩個(gè)端點(diǎn)距離相等。

  判定:到一條線段兩端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。

  5、三角形的三邊的垂直平分線交于一點(diǎn),并且這個(gè)點(diǎn)到三個(gè)頂點(diǎn)的距離相等,交點(diǎn)為三角形的外心。

  6、角平分線上的點(diǎn)到角兩邊的距離相等。

  7、在角內(nèi)部的,如果一點(diǎn)到角兩邊的距離相等,則它在該角的平分線上。

  8、角平分線是到角的兩邊距離相等的所有點(diǎn)的集合。

  9、三角形三條角平分線交于一點(diǎn),并且交點(diǎn)到三邊距離相等,交點(diǎn)即為三角形的內(nèi)心。

  10、三角形三條中線交于一點(diǎn),交點(diǎn)為三角形的重心。

  11、三角形三條高線交于一點(diǎn),交點(diǎn)為三角形的垂心。

  三、平行四邊的定義

  1、定義:兩線對(duì)邊分別平行的四邊形叫做平行四邊形,

  2、性質(zhì):

 。1)平行四邊形的對(duì)邊相等;

 。2)對(duì)角相等;

 。3)對(duì)角線互相平分。

  3、判定:

 。1)一組對(duì)邊平行且相等的'四邊形是平行四邊形。

  (2)兩條對(duì)角線互相平分的四邊形是平行四邊形。

 。3)兩組對(duì)邊分別相等的四邊形是平行四邊形。

 。4)兩組對(duì)角分別相等的四邊形是平行四邊形。

 。5)一組對(duì)邊平行,一組對(duì)角相等的四邊形是平行四邊形。

 。6)一組對(duì)邊平行,一條對(duì)角線被另一條對(duì)角線平分的四邊形是平行四邊形。

  兩個(gè)假命題:

 。1)一組對(duì)邊平行,另一組對(duì)邊相等的四邊形是平行四邊形。

  (2)一組對(duì)邊相等,一組對(duì)角相等的四邊形是平行四邊形。

  四、矩形

  1、定義:有一個(gè)角是直角的平行四邊形叫矩形。矩形是特殊的平行四邊形。

  2、性質(zhì):

 。1)具有平行四邊形的性質(zhì);

 。2)對(duì)角線相等;

 。3)四個(gè)角都是直角。

 。4)矩形是軸對(duì)稱圖形,有兩條對(duì)稱軸。

  3、判定:

 。1)有三個(gè)角是直角的四邊形是矩形。

  (2)對(duì)角線相等的平行四邊形是矩形。

  五、菱形

  1、定義:一組鄰邊相等的平行四邊形叫做菱形。

  2、性質(zhì):

 。1)具有平行四邊形的性質(zhì),;

 。2)四條邊都相等;

 。3)兩條對(duì)角線互相垂直,每一條對(duì)角線平分一組對(duì)角。

 。4)菱形是軸對(duì)稱圖形,每條對(duì)角線所在的直線都是對(duì)稱軸。

  3、判定:

 。1)四條邊都相等的四邊形是菱形。

 。2)對(duì)角線互相垂直的平行四邊形是菱形。

  (3)一條對(duì)角線平分一組對(duì)角的平行四邊形是菱形。

  六、正方形

  1、定義:一組鄰邊相等且有一個(gè)角是直角的平行四邊形叫做正方形。

  2、性質(zhì):正方形具有平行四邊形、矩形、菱形的一切性質(zhì)。

  3、判定:

  (1)有一個(gè)內(nèi)角是直角的菱形是正方形;

  (2)有一組鄰邊相等的矩形是正方形;

 。3)對(duì)角線相等的菱形是正方形;

 。4)對(duì)角線互相垂直的矩形是正方形。

  七、梯形定義:

  一組對(duì)邊平行且另一組對(duì)邊不平行的四邊形叫做梯形。

  八、等腰梯形

  1、定義:兩條腰相等的梯形叫做等腰梯形。

  2、性質(zhì):等腰梯形同一底上的兩個(gè)內(nèi)角相等,對(duì)角線相等。

  3、同一底上的兩個(gè)內(nèi)角相等的梯形是等腰梯形。

  九、三角形的中位線

  定義:連接三角形兩邊中點(diǎn)的線段。

  性質(zhì):平行于第三邊,并且等于第三邊的一半。

  十、梯形的中位線

  定義:連接梯形兩腰中點(diǎn)的線段。

  性質(zhì):平行于兩底,并且等于兩底和的一半。

  初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)3

  一、圓周角定理

  在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半。

 、俣ɡ碛腥矫娴囊饬x:

  a.圓心角和圓周角在同一個(gè)圓或等圓中;(相關(guān)知識(shí)點(diǎn):如何證明四點(diǎn)共圓。)

  b.它們對(duì)著同一條弧或者對(duì)的兩條弧是等弧

  c.具備a、b兩個(gè)條件的圓周角都是相等的,且等于圓心角的一半.

 、谝?yàn)閳A心角的度數(shù)與它所對(duì)的弧的度數(shù)相等,所以圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的一半。

  二、圓周角定理的推論

  推論1:同弧或等弧所對(duì)的圓周角相等,同圓或等圓中,相等的圓周角所對(duì)的弧也相等

  推論2:半圓(或直徑)所對(duì)的圓周角等于90°;90°的圓周角所對(duì)的弦是直徑

  推論3:如果三角形一邊的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

  三、推論解釋說(shuō)明

  圓周角定理在九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)中屬于幾何部分的重要內(nèi)容。

  ①推論1是圓中證明角相等最常用的方法,若將推論1中的“同弧或等弧”改為“同弦或等弦”結(jié)論就不成立.因?yàn)橐粭l弦所對(duì)的圓周角有兩個(gè).

 、谕普2中“相等的圓周角所對(duì)的弧也相等”的前提條件是“在同圓或等圓中”

 、蹐A周角定理的推論2的應(yīng)用非常廣泛,要把直徑與90°圓周角聯(lián)系起來(lái),一般來(lái)說(shuō),當(dāng)條件中有直徑時(shí),通常會(huì)作出直徑所對(duì)的圓周角,從而得到直角三角形,為進(jìn)一步解題創(chuàng)造條件

 、芡普3實(shí)質(zhì)是直角三角形的斜邊上的中線等于斜邊的一半的逆定理.

【初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)】相關(guān)文章:

初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)09-17

旋轉(zhuǎn)初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)10-16

初三數(shù)學(xué)上冊(cè)實(shí)數(shù)知識(shí)點(diǎn)歸納09-29

初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)期末歸納07-31

初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)07-30

初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)(精選15篇)11-21

初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)(15篇)11-18

初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)15篇11-17

初三九年級(jí)上冊(cè)數(shù)學(xué)的知識(shí)點(diǎn)歸納04-02