亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

初三

初三數(shù)學(xué)上冊知識點

時間:2021-11-21 13:40:31 初三 我要投稿

初三數(shù)學(xué)上冊知識點(精選15篇)

  在我們平凡無奇的學(xué)生時代,是不是聽到知識點,就立刻清醒了?知識點也可以理解為考試時會涉及到的知識,也就是大綱的分支。為了幫助大家更高效的學(xué)習(xí),下面是小編為大家收集的初三數(shù)學(xué)上冊知識點,供大家參考借鑒,希望可以幫助到有需要的朋友。

初三數(shù)學(xué)上冊知識點(精選15篇)

初三數(shù)學(xué)上冊知識點1

  第21章二次根式

  1、二次根式:一般地,式子叫做二次根式。

  注意:

 。1)若這個條件不成立,則不是二次根式;

 。2)是一個重要的非負(fù)數(shù),即; ≥0。

  2、重要公式:

  3、積的算術(shù)平方根:

  積的算術(shù)平方根等于積中各因式的算術(shù)平方根的積;

  4、二次根式的乘法法則:。

  5、二次根式比較大小的方法:

 。1)利用近似值比大;

 。2)把二次根式的系數(shù)移入二次根號內(nèi),然后比大;

 。3)分別平方,然后比大小。

  6、商的算術(shù)平方根:,

  商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根。

  7、二次根式的除法法則:

  分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎健?/p>

  8、最簡二次根式:

 。1)滿足下列兩個條件的二次根式,叫做最簡二次根式,

 、俦婚_方數(shù)的因數(shù)是整數(shù),因式是整式,

  ②被開方數(shù)中不含能開的盡的因數(shù)或因式;

 。2)最簡二次根式中,被開方數(shù)不能含有小數(shù)、分?jǐn)?shù),字母因式次數(shù)低于2,且不含分母;

 。3)化簡二次根式時,往往需要把被開方數(shù)先分解因數(shù)或分解因式;

  (4)二次根式計算的最后結(jié)果必須化為最簡二次根式。

  9、同類二次根式:幾個二次根式化成最簡二次根式后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式。

  10、二次根式的混合運(yùn)算:

 。1)二次根式的混合運(yùn)算包括加、減、乘、除、乘方、開方六種代數(shù)運(yùn)算,以前學(xué)過的,在有理數(shù)范圍內(nèi)的一切公式和運(yùn)算律在二次根式的混合運(yùn)算中都適用;

  (2)二次根式的運(yùn)算一般要先把二次根式進(jìn)行適當(dāng)化簡,例如:化為同類二次根式才能合并;除法運(yùn)算有時轉(zhuǎn)化為分母有理化或約分更為簡便;使用乘法公式等。

  第22章一元二次方程

  1、一元二次方程的一般形式:

  a≠0時,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關(guān)問題時,多數(shù)習(xí)題要先化為一般形式,目的是確定一般形式中的a、 b、 c;其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的代數(shù)式。

  2、一元二次方程的解法:一元二次方程的四種解法要求靈活運(yùn)用,其中直接開平方法雖然簡單,但是適用范圍較小;公式法雖然適用范圍大,但計算較繁,易發(fā)生計算錯誤;因式分解法適用范圍較大,且計算簡便,是首選方法;配方法使用較少。

  3。一元二次方程根的判別式:當(dāng)ax2+bx+c=0

  (a≠0)時,Δ=b2—4ac叫一元二次方程根的判別式。請注意以下等價命題:

  Δ>0 <=>有兩個不等的實根;

  Δ=0 <=>有兩個相等的實根;Δ<0 <=>無實根;

  4。平均增長率問題————————應(yīng)用題的類型題之一(設(shè)增長率為x):

 。1)第一年為a ,第二年為a(1+x) ,第三年為a(1+x)2。

  (2)常利用以下相等關(guān)系列方程:第三年=第三年或第一年+第二年+第三年=總和。

  第23章旋轉(zhuǎn)

  1、概念:

  把一個圖形繞著某一點O轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),點O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。

  旋轉(zhuǎn)三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方面、旋轉(zhuǎn)角

  2、旋轉(zhuǎn)的性質(zhì):

 。1)旋轉(zhuǎn)前后的兩個圖形是全等形;

 。2)兩個對應(yīng)點到旋轉(zhuǎn)中心的距離相等

  (3)兩個對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角

  3、中心對稱:

  把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱,這個點叫做對稱中心。

  這兩個圖形中的對應(yīng)點叫做關(guān)于中心的對稱點。

  4、中心對稱的性質(zhì):

 。1)關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。

 。2)關(guān)于中心對稱的兩個圖形是全等圖形。

  5、中心對稱圖形:

  把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。

初三數(shù)學(xué)上冊知識點2

  知識點一: 二次根式的概念

  形如a(a0)的式子叫做二次根式。

  注:在二次根式中,被開放數(shù)可以是數(shù),也可以是單項式、多項式、分式等代數(shù)式,但必須注意:因為負(fù)數(shù)沒有平方根,所以a0是a為二次根式的前提條件,如5,(x2+1),

  (x-1) (x1)等是二次根式,而(-2),(-x2-7)等都不是二次根式。

  知識點二:取值范圍

  1. 二次根式有意義的條件:由二次根式的意義可知,當(dāng)a0時a有意義,是二次根式,所以要使二次根式有意義,只要使被開方數(shù)大于或等于零即可。

  2. 二次根式無意義的條件:因負(fù)數(shù)沒有算術(shù)平方根,所以當(dāng)a﹤0時,a沒有意義。

  知識點三:二次根式a(a0)的非負(fù)性

  a(a0)表示a的算術(shù)平方根,也就是說,a(a0)是一個非負(fù)數(shù),即0(a0)。

  注:因為二次根式a表示a的算術(shù)平方根,而正數(shù)的算術(shù)平方根是正數(shù),0的算術(shù)平方根是0,所以非負(fù)數(shù)(a0)的算術(shù)平方根是非負(fù)數(shù),即0(a0),這個性質(zhì)也就是非負(fù)數(shù)的算術(shù)平方根的性質(zhì),和絕對值、偶次方類似。這個性質(zhì)在解答題目時應(yīng)用較多,如若a+b=0,則a=0,b=0;若a+|b|=0,則a=0,b=0;若a+b2=0,則a=0,b=0。

  知識點四:二次根式(a) 的性質(zhì)

  (a)2=a(a0)

  文字語言敘述為:一個非負(fù)數(shù)的算術(shù)平方根的平方等于這個非負(fù)數(shù)。

  注:二次根式的性質(zhì)公式(a)2=a(a0)是逆用平方根的定義得出的結(jié)論。上面的公式也可以反過來應(yīng)用:若a0,則

  a=(a)2,如:2=(2)2,1/2=(1/2)2.

  知識點五:二次根式的性質(zhì)

  a2=|a|

  文字語言敘述為:一個數(shù)的平方的算術(shù)平方根等于這個數(shù)的絕對值。

  注:

  1、化簡a2時,一定要弄明白被開方數(shù)的底數(shù)a是正數(shù)還是負(fù)數(shù),若是正數(shù)或0,則等于a本身,即a2=|a|=a (a若a是負(fù)數(shù),則等于a的相反數(shù)-a,即a2=|a|=-a (a﹤0);

  2、a2中的a的取值范圍可以是任意實數(shù),即不論a取何值,a2一定有意義;

  3、化簡a2時,先將它化成|a|,再根據(jù)絕對值的意義來進(jìn)行化簡。

  知識點六:(a)2與a2的異同點

  1、不同點:(a)2與a2表示的意義是不同的,(a)2表示一個非負(fù)數(shù)a的算術(shù)平方根的平方,而a2表示一個實數(shù)a的平方的算術(shù)平方根;在(a)2中,而a2中a可以是正實數(shù),0,負(fù)實數(shù)。但(a)2與a2都是非負(fù)數(shù),即(a)20,a20。因而它的運(yùn)算的結(jié)果是有差別的,(a)2=a(a0) ,而a2=|a|。

  2、相同點:當(dāng)被開方數(shù)都是非負(fù)數(shù),即a0時,(a)2=a﹤0時,(a)2無意義,而a2=|a|=-a.

初三數(shù)學(xué)上冊知識點3

  直角三角形的判定方法:

  判定1:定義,有一個角為90°的三角形是直角三角形。

  判定2:判定定理:以a、b、c為邊的三角形是以c為斜邊的直角三角形。如果三角形的三邊a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形。(勾股定理的逆定理)。

  判定3:若一個三角形30°內(nèi)角所對的邊是某一邊的一半,則這個三角形是以這條長邊為斜邊的直角三角形。

  判定4:兩個銳角互為余角(兩角相加等于90°)的三角形是直角三角形。

  判定5:若兩直線相交且它們的斜率之積互為負(fù)倒數(shù),則兩直線互相垂直。那么

  判定6:若在一個三角形中一邊上的中線等于其所在邊的一半,那么這個三角形為直角三角形。

  判定7:一個三角形30°角所對的邊等于這個三角形斜邊的一半,則這個三角形為直角三角形。(與判定3不同,此定理用于已知斜邊的三角形。)

初三數(shù)學(xué)上冊知識點4

  首先,我們知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb

  我們把兩式相加就得到sin(a+b)+sin(a-b)=2sina*cosb

  所以,sina*cosb=(sin(a+b)+sin(a-b))/2

  同理,若把兩式相減,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2

  同樣的,我們還知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb

  所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosa*cosb

  所以我們就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2

  同理,兩式相減我們就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

  這樣,我們就得到了積化和差的四個公式:

  sina*cosb=(sin(a+b)+sin(a-b))/2

  cosa*sinb=(sin(a+b)-sin(a-b))/2

  cosa*cosb=(cos(a+b)+cos(a-b))/2

  sina*sinb=-(cos(a+b)-cos(a-b))/2

  好,有了積化和差的四個公式以后,我們只需一個變形,就可以得到和差化積的四個公式.

  我們把上述四個公式中的a+b設(shè)為x,a-b設(shè)為y,那么a=(x+y)/2,b=(x-y)/2

  把a(bǔ),b分別用x,y表示就可以得到和差化積的四個公式:

  sinx+siny=2sin((x+y)/2)*cos((x-y)/2)

  sinx-siny=2cos((x+y)/2)*sin((x-y)/2)

  cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

  cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

初三數(shù)學(xué)上冊知識點5

  三角形的外心定義:

  外心:是三角形三條邊的垂直平分線的交點,即外接圓的圓心。

  外心定理:三角形的三邊的垂直平分線交于一點。該點叫做三角形的外心。

  三角形的外心的性質(zhì):

  1、三角形三條邊的垂直平分線的交于一點,該點即為三角形外接圓的圓心;

  2、三角形的外接圓有且只有一個,即對于給定的三角形,其外心是的,但一個圓的內(nèi)接三角形卻有無數(shù)個,這些三角形的外心重合;

  3、銳角三角形的外心在三角形內(nèi);

  鈍角三角形的外心在三角形外;

  直角三角形的外心與斜邊的中點重合。

  在△ABC中

  4、OA=OB=OC=R

  5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA

  6、S△ABC=abc/4R

初三數(shù)學(xué)上冊知識點6

  1.一元二次方程:在整式方程中,只含 個未知數(shù),并且未知數(shù)的最高次數(shù)是 的方程叫做一元二次方程.一元二次方程的一般形式是( ).其中( )叫做二次項,( )叫做一次項,( )叫做常數(shù)項;( )叫做二次項的系數(shù),( )叫做一次項的系數(shù).

  2.易錯知識辨析:

  (1)判斷一個方程是不是一元二次方程,應(yīng)把它進(jìn)行整理,化成一般形式后再進(jìn)行判斷,注意一元二次方程一般形式中 .

  (2)用公式法和因式分解的方法解方程時要先化成一般形式.

  (3)用配方法時二次項系數(shù)要化1.

  (4)用直接開平方的方法時要記得取正、負(fù).

初三數(shù)學(xué)上冊知識點7

  1、 必然事件、不可能事件、隨機(jī)事件的區(qū)別

  2、概率

  一般地,在大量重復(fù)試驗中,如果事件A發(fā)生的頻率 會穩(wěn)定在某個常數(shù)p附近,那么這個常數(shù)p就叫做事件A的概率(probability), 記作P(A)= p.

  注意:(1)概率是隨機(jī)事件發(fā)生的可能性的大小的數(shù)量反映.

  (2)概率是事件在大量重復(fù)試驗中頻率逐漸穩(wěn)定到的值,即可以用大量重復(fù)試驗中事件發(fā)生的頻率去估計得到事件發(fā)生的概率,但二者不能簡單地等同.

  3、求概率的方法

  (1)用列舉法求概率(列表法、畫樹形圖法)

  (2)用頻率估計概率:一大面,可用大量重復(fù)試驗中事件發(fā)生頻率來估計事件發(fā)生的概率.另一方面,大量重復(fù)試驗中事件發(fā)生的頻率穩(wěn)定在某個常數(shù)(事件發(fā)生的概率)附近,說明概率是個定值,而頻率隨不同試驗次數(shù)而有所不同,是概率的近似值,二者不能簡單地等同.

初三數(shù)學(xué)上冊知識點8

  1.定義:兩組對邊分別平行的四邊形叫平行四邊形

  2.平行四邊形的性質(zhì)

  (1)平行四邊形的對邊平行且相等;

  (2)平行四邊形的鄰角互補(bǔ),對角相等;

  (3)平行四邊形的對角線互相平分;

  3.平行四邊形的判定

  平行四邊形是幾何中一個重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個四邊形是平行四邊形是個重點,下面就對平行四邊形的五種判定方法,進(jìn)行劃分:

  第一類:與四邊形的對邊有關(guān)

  (1)兩組對邊分別平行的四邊形是平行四邊形;

  (2)兩組對邊分別相等的四邊形是平行四邊形;

  (3)一組對邊平行且相等的四邊形是平行四邊形;

  第二類:與四邊形的對角有關(guān)

  (4)兩組對角分別相等的四邊形是平行四邊形;

  第三類:與四邊形的對角線有關(guān)

  (5)對角線互相平分的四邊形是平行四邊形

初三數(shù)學(xué)上冊知識點9

  不等式的概念

  1、不等式:用不等號表示不等關(guān)系的式子,叫做不等式。

  2、不等式的解集:對于一個含有未知數(shù)的不等式,任何一個適合這個不等式的未知數(shù)的值,都叫做這個不等式的解。

  3、對于一個含有未知數(shù)的不等式,它的所有解的集合叫做這個不等式的解的集合,簡稱這個不等式的解集。

  4、求不等式的解集的過程,叫做解不等式。

  5、用數(shù)軸表示不等式的方法。

  不等式基本性質(zhì)

  1、不等式兩邊都加上或減去同一個數(shù)或同一個整式,不等號的方向不變。

  2、不等式兩邊都乘以或除以同一個正數(shù),不等號的方向不變。

  3、不等式兩邊都乘以或除以同一個負(fù)數(shù),不等號的方向改變。

  4、說明:①在一元一次不等式中,不像等式那樣,等號是不變的,是隨著加或乘的運(yùn)算改變。②如果不等式乘以0,那么不等號改為等號所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。

  一元一次不等式

  1、一元一次不等式的概念:一般地,不等式中只含有一個未知數(shù),未知數(shù)的次數(shù)是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。

  2、解一元一次不等式的一般步驟:1去分母2去括號3移項4合并同類項5將x項的系數(shù)化為1。

  一元一次不等式組

  1、一元一次不等式組的概念:幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。

  2、幾個一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。

  3、求不等式組的解集的過程,叫做解不等式組。

  4、當(dāng)任何數(shù)x都不能使不等式同時成立,我們就說這個不等式組無解或其解為空集。

  5、一元一次不等式組的解法

  1分別求出不等式組中各個不等式的解集。

  2利用數(shù)軸求出這些不等式的解集的公共部分,即這個不等式組的解集。

  6、不等式與不等式組

  不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。④不等式的兩邊都乘以或除以同一個負(fù)數(shù),不等號方向相反。

  7、不等式的解集:

 、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。

  ②一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。

  ③求不等式解集的過程叫做解不等式。

初三數(shù)學(xué)上冊知識點10

  1、 二次函數(shù)的一般形式:y=ax2+bx+c。(a0)

  2、 關(guān)于二次函數(shù)的幾個概念:二次函數(shù)的圖象是拋物線,所以也叫拋物線y=ax2+bx+c;拋物線關(guān)于對稱軸對稱且以對稱軸為界,一半圖象上坡,另一半圖象下坡;其中c叫二次函數(shù)在y軸上的截距, 即二次函數(shù)圖象必過(0,c)點。

  3、 y=ax2 (a0)的特性:當(dāng)y=ax2+bx+c (a0)中的b=0且c=0時二次函數(shù)為y=ax2 (a這個二次函數(shù)是一個特殊的二次函數(shù),有下列特性:(1)圖象關(guān)于y軸對稱;(2)頂點(0,0);

  4、求二次函數(shù)的解析式:已知二次函數(shù)圖象上三點的坐標(biāo),可設(shè)解析式y(tǒng)=ax2+bx+c,并把這三點的坐標(biāo)代入,解關(guān)于a、b、c的三元一次方程組,求出a、b、c的值, 從而求出解析式———————待定系數(shù)法。

  5、二次函數(shù)的頂點式: y=a(x—h)2+k (a 由頂點式可直接得出二次函數(shù)的頂點坐標(biāo)(h, k),對稱軸方程 x=h 和函數(shù)的最值 y最值= k。

初三數(shù)學(xué)上冊知識點11

  1、必然事件、不可能事件、隨機(jī)事件的區(qū)別

  2、概率

  一般地,在大量重復(fù)試驗中,如果事件A發(fā)生的頻率

  會穩(wěn)定在某個常數(shù)p附近,那么這個常數(shù)p就叫做事件A的概率(probability), 記作P(A)=p.

  注意:(1)概率是隨機(jī)事件發(fā)生的可能性的大小的數(shù)量反映。

  (2)概率是事件在大量重復(fù)試驗中頻率逐漸穩(wěn)定到的值,即可以用大量重復(fù)試驗中事件發(fā)生的頻率去估計得到事件發(fā)生的概率,但二者不能簡單地等同。

  3、求概率的方法

  (1)用列舉法求概率(列表法、畫樹形圖法)

  (2)用頻率估計概率:一大面,可用大量重復(fù)試驗中事件發(fā)生頻率來估計事件發(fā)生的概率。另一方面,大量重復(fù)試驗中事件發(fā)生的頻率穩(wěn)定在某個常數(shù)(事件發(fā)生的概率)附近,說明概率是個定值,而頻率隨不同試驗次數(shù)而有所不同,是概率的近似值,二者不能簡單地等同.

初三數(shù)學(xué)上冊知識點12

  矩形知識點

  1、矩形的概念

  有一個角是直角的平行四邊形叫做矩形。

  2、矩形的性質(zhì)

  (1)具有平行四邊形的一切性質(zhì)

  (2)矩形的四個角都是直角

  (3)矩形的對角線相等

  (4)矩形是軸對稱圖形

  3、矩形的判定

  (1)定義:有一個角是直角的平行四邊形是矩形(2)定理1:有三個角是直角的四邊形是矩形

  (3)定理2:對角線相等的平行四邊形是矩形

  4、矩形的面積:S矩形=長×寬=ab

  正方形知識點

  1、正方形的概念

  有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。

  2、正方形的性質(zhì)

  (1)具有平行四邊形、矩形、菱形的一切性質(zhì);

  (2)正方形的四個角都是直角,四條邊都相等;

  (3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角;

  (4)正方形是軸對稱圖形,有4條對稱軸;

  (5)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,兩條對角線把正方形分成四個全等的小等腰直角三角形;

  (6)正方形的一條對角線上的一點到另一條對角線的兩端點的距離相等。

  3、正方形的判定

  (1)判定一個四邊形是正方形的主要依據(jù)是定義,途徑有兩種:

  先證它是矩形,再證有一組鄰邊相等。

  先證它是菱形,再證有一個角是直角。

  (2)判定一個四邊形為正方形的一般順序如下:

  先證明它是平行四邊形;

  再證明它是菱形(或矩形);

  最后證明它是矩形(或菱形)。

  圓知識點

  圓的面積s=π×r×r

  其中,π是周圍率,約等于3.14

  r是圓的半徑。

  圓的周長計算公式為:C=2πR.C代表圓的周長,r代表圓的半徑。圓的面積公式為:S=πR2(R的平方).S代表圓的面積,r為圓的半徑。

  橢圓周長計算公式

  橢圓周長公式:L=2πb+4(a-b)

  橢圓周長定理:橢圓的周長等于該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。

  橢圓面積計算公式

  橢圓面積公式:S=πab

  橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。

  以上橢圓周長、面積公式中雖然沒有出現(xiàn)橢圓周率T,但這兩個公式都是通過橢圓周率T推導(dǎo)演變而來。常數(shù)為體,公式為用。

  對數(shù)公式

  對數(shù)公式是數(shù)學(xué)中的一種常見公式,如果a^x=N(a>0,且a≠1),則x叫做以a為底N的對數(shù),記做x=log(a)(N),其中a要寫于log右下。其中a叫做對數(shù)的底,N叫做真數(shù)。通常我們將以10為底的對數(shù)叫做常用對數(shù),以e為底的對數(shù)稱為自然對數(shù)。

  數(shù)學(xué)學(xué)習(xí)技巧

  1.求教與自學(xué)相結(jié)合

  在學(xué)習(xí)過程中,即要爭取教師的指導(dǎo)和幫助,但是又不能過分依賴教師, 必須自己主動地去學(xué)習(xí)、去探索、去獲取,應(yīng)該在自己認(rèn)真學(xué)習(xí)和研究的基礎(chǔ)上去尋求教師和同學(xué)的幫助。

  2.學(xué)習(xí)與思考相結(jié)合

  在學(xué)習(xí)過程中,對課本的內(nèi)容要認(rèn)真研究,提出疑問,追本究源。對每一個概念、公式、定理都要弄清其來龍去脈、前因后果、內(nèi)在聯(lián)系,以及蘊(yùn)含于推導(dǎo)過程中的數(shù)學(xué)思想和方法。在解決問題時,要盡量采用不同的途徑和方法,要克服那種死守書本、機(jī)械呆板、不知變通的學(xué)習(xí)方法。

  3.學(xué)用結(jié)合,勤于實踐

  在學(xué)習(xí)過程中,要準(zhǔn)確地掌握抽象概念的本質(zhì)含義,了解從實際模型中抽象為理論的演變過程。對所學(xué)理論知識,要在更大范圍內(nèi)尋求它的具體實例,使之具體化,盡量將所學(xué)的理論知識和思維方法應(yīng)用于實踐。

  4.博觀約取,由博返約

  課本是獲得知識的主要來源,但不是唯一的來源。在學(xué)習(xí)過程中,除了認(rèn)真研究課本以外,還要閱讀有關(guān)的課外資料,來擴(kuò)大知識領(lǐng)域。同時在廣泛閱讀的基礎(chǔ)上,進(jìn)行認(rèn)真研究,掌握其知識結(jié)構(gòu)。

  5.既有模仿,又有創(chuàng)新

  模仿是數(shù)學(xué)學(xué)習(xí)中不可缺少的學(xué)習(xí)方法,但是決不能機(jī)械地模仿,應(yīng)該在消化理解的基礎(chǔ)上,開動腦筋,提出自己的`見解和看法,而不拘泥于已有的框框,不囿于現(xiàn)成的模式。

  6.及時復(fù)習(xí)增強(qiáng)記憶

  課堂上學(xué)習(xí)的內(nèi)容,必須當(dāng)天消化,要先復(fù)習(xí),后做練習(xí),復(fù)習(xí)工作必須經(jīng)常進(jìn)行,每一單元結(jié)束后,應(yīng)將所學(xué)知識進(jìn)行概括整理,使之系統(tǒng)化、深刻化。

  7.總結(jié)學(xué)習(xí)經(jīng)驗,評價學(xué)習(xí)效果

  學(xué)習(xí)中的總結(jié)和評價有利于知識體系的建立、解題規(guī)律的掌握、學(xué)習(xí)方法與態(tài)度的調(diào)整和評判能力的提高。在學(xué)習(xí)過程中,應(yīng)注意總結(jié)聽課、閱讀和解題中的收獲和體會。

初三數(shù)學(xué)上冊知識點13

 。ㄈ切沃形痪的定理)

  三角形的中位線平行于三角形的第三邊,并且等于第三邊的一半。

  (平行四邊形的性質(zhì))

 、倨叫兴倪呅蔚膶呄嗟;

 、谄叫兴倪呅蔚膶窍嗟龋

 、燮叫兴倪呅蔚膶蔷互相平分。

 。ň匦蔚男再|(zhì))

  ①矩形具有平行四邊形的一切性質(zhì);

 、诰匦蔚乃膫角都是直角;

 、劬匦蔚膶蔷相等。

  正方形的判定與性質(zhì)

  1、判定方法:

  1鄰邊相等的矩形;

  2鄰邊垂直的菱形;

  3對角線垂直的矩形;

  4對角線相等的菱形;

  2、性質(zhì):

  1邊:四邊相等,對邊平行;

  2角:四個角都相等都是直角,鄰角互補(bǔ);

  3對角線互相平分、垂直、相等,且每長對角線平分一組內(nèi)角。

  等腰三角形的判定定理

  (等腰三角形的判定方法)

  1、有兩條邊相等的三角形是等腰三角形。

  2、判定定理:如果一個三角形有兩個角相等,那么這個三角形是等腰三角形簡稱:等角對等邊。

  角平分線:把一個角平分的射線叫該角的角平分線。

  定義中有幾個要點要注意一下的,學(xué)習(xí)方法,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點

  性質(zhì)定理:角平分線上的點到該角兩邊的距離相等

  判定定理:到角的兩邊距離相等的點在該角的角平分線上

  標(biāo)準(zhǔn)差與方差

  極差是什么:一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差叫做極差,即極差=值—最小值。

  計算器——求標(biāo)準(zhǔn)差與方差的一般步驟:

  1、打開計算器,按“ON”鍵,按“MODE”“2”進(jìn)入統(tǒng)計SD狀態(tài)。

  2、在開始數(shù)據(jù)輸入之前,請務(wù)必按“SHIFT”“CLR”“1”“=”鍵清除統(tǒng)計存儲器。

  3、輸入數(shù)據(jù):按數(shù)字鍵輸入數(shù)值,然后按“M+”鍵,就能完成一個數(shù)據(jù)的輸入。如果想對此輸入同樣的數(shù)據(jù)時,還可在步驟3后按“SHIET”“;”,后輸入該數(shù)據(jù)出現(xiàn)的頻數(shù),再按“M+”鍵。

  4、當(dāng)所有的數(shù)據(jù)全部輸入結(jié)束后,按“SHIFT”“2”,選擇的是“標(biāo)準(zhǔn)差”,就可以得到所求數(shù)據(jù)的標(biāo)準(zhǔn)差;

  5、標(biāo)準(zhǔn)差的平方就是方差。

初三數(shù)學(xué)上冊知識點14

  單項式與多項式

  僅含有一些數(shù)和字母的乘法包括乘方運(yùn)算的式子叫做單項式單獨(dú)的一個數(shù)或字母也是單項式。

  單項式中的數(shù)字因數(shù)叫做這個單項式或字母因數(shù)的數(shù)字系數(shù),簡稱系數(shù)。

  當(dāng)一個單項式的系數(shù)是1或—1時,“1”通常省略不寫。

  一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。

  如果在幾個單項式中,不管它們的系數(shù)是不是相同,只要他們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么,這幾個單項式就叫做同類單項式,簡稱同類項所有的常數(shù)都是同類項。

  1、多項式

  有有限個單項式的代數(shù)和組成的式子,叫做多項式。

  多項式里每個單項式叫做多項式的項,不含字母的項,叫做常數(shù)項。

  單項式可以看作是多項式的特例

  把同類單項式的系數(shù)相加或相減,而單項式中的字母的乘方指數(shù)不變。

  在多項式中,所含的不同未知數(shù)的個數(shù),稱做這個多項式的元數(shù)經(jīng)過合并同類項后,多項式所含單項式的個數(shù),稱為這個多項式的項數(shù)所含個單項式中次項的次數(shù),就稱為這個多項式的次數(shù)。

  2、多項式的值

  任何一個多項式,就是一個用加、減、乘、乘方運(yùn)算把已知數(shù)和未知數(shù)連接起來的式子。

  3、多項式的恒等

  對于兩個一元多項式fx、gx來說,當(dāng)未知數(shù)x同取任一個數(shù)值a時,如果它們所得的值都是相等的,即fa=ga,那么,這兩個多項式就稱為是恒等的記為fx==gx,或簡記為fx=gx。

  性質(zhì)1如果fx==gx,那么,對于任一個數(shù)值a,都有fa=ga。

  性質(zhì)2如果fx==gx,那么,這兩個多項式的個同類項系數(shù)就一定對應(yīng)相等。

  4、一元多項式的根

  一般地,能夠使多項式fx的值等于0的未知數(shù)x的值,叫做多項式fx的根。

  多項式的加、減法,乘法

  1、多項式的加、減法

  2、多項式的乘法

  單項式相乘,用它們系數(shù)作為積的系數(shù),對于相同的字母因式,則連同它的指數(shù)作為積的一個因式。

  3、多項式的乘法

  多項式與多項式相乘,先用一個多項式等每一項乘以另一個多項式的各項,再把所得的積相加。

  常用乘法公式

  公式I平方差公式

  a+ba—b=a^2—b^2

  兩個數(shù)的和與這兩個數(shù)的差的積等于這兩個數(shù)的平方差。

初三數(shù)學(xué)上冊知識點15

  I.定義與定義表達(dá)式

  一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

  a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大,則稱y為x的二次函數(shù)。

  二次函數(shù)表達(dá)式的右邊通常為二次三項式。

  II.二次函數(shù)的三種表達(dá)式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

  頂點式:y=a(x-h)^2+k [拋物線的頂點P(h,k)]

  交點式:y=a(x-x)(x-x ) [僅限于與x軸有交點A(x ,0)和 B(x,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

  III.二次函數(shù)的圖像

  在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

【初三數(shù)學(xué)上冊知識點(精選15篇)】相關(guān)文章:

初三數(shù)學(xué)上冊知識點11-16

旋轉(zhuǎn)初三數(shù)學(xué)上冊知識點10-16

初三數(shù)學(xué)上冊知識點總結(jié)09-17

初三數(shù)學(xué)上冊知識點期末歸納07-31

初三數(shù)學(xué)上冊知識點(15篇)11-18

初三數(shù)學(xué)上冊知識點15篇11-17

初三上冊數(shù)學(xué)知識點07-30

初三數(shù)學(xué)上冊實數(shù)知識點歸納09-29

初三數(shù)學(xué)上冊知識點(匯編15篇)11-20