【薦】初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15篇
總結(jié)是在某一特定時(shí)間段對(duì)學(xué)習(xí)和工作生活或其完成情況,包括取得的成績、存在的問題及得到的經(jīng)驗(yàn)和教訓(xùn)加以回顧和分析的書面材料,它能幫我們理順知識(shí)結(jié)構(gòu),突出重點(diǎn),突破難點(diǎn),因此十分有必須要寫一份總結(jié)哦。總結(jié)你想好怎么寫了嗎?下面是小編整理的初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié),僅供參考,歡迎大家閱讀。
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
1二次函數(shù)的定義
一般地,形如y=ax2+bx+c(a,b,c為常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù).如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函數(shù).
注意:(1)二次函數(shù)是關(guān)于自變量的二次式,二次項(xiàng)系數(shù)a必須是非零實(shí)數(shù),即a≠0,而b,c是任意實(shí)數(shù),二次函數(shù)的表達(dá)式是一個(gè)整式;
(2)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0),自變量x的取值范圍是全體實(shí)數(shù);
(3)當(dāng)b=c=0時(shí),二次函數(shù)y=ax2是最簡單的二次函數(shù);
(4)一個(gè)函數(shù)是否是二次函數(shù),要化簡整理后,對(duì)照定義才能下結(jié)論,例如y=x2-x(x-1)化簡后變?yōu)閥=x,故它不是二次函數(shù).
2二次函數(shù)解析式的.幾種形式
(1)一般式:y=ax2+bx+c (a,b,c為常數(shù),a≠0).
(2)頂點(diǎn)式:y=a(x-h)2+k(a,h,k為常數(shù),a≠0).
(3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點(diǎn)的橫坐標(biāo),即一元二次方程ax2+bx+c=0的兩個(gè)根,a≠0.
說明:(1)任何一個(gè)二次函數(shù)通過配方都可以化為頂點(diǎn)式y(tǒng)=a(x-h)2+k,拋物線的頂點(diǎn)坐標(biāo)是(h,k),h=0時(shí),拋物線y=ax2+k的頂點(diǎn)在y軸上;當(dāng)k=0時(shí),拋物線a(x-h)2的頂點(diǎn)在x軸上;當(dāng)h=0且k=0時(shí),拋物線y=ax2的頂點(diǎn)在原點(diǎn)
3二次函數(shù)y=ax2+c的圖象與性質(zhì)
(1)拋物線y=ax2+c的形狀由a決定,位置由c決定.
(2)二次函數(shù)y=ax2+c的圖象是一條拋物線,頂點(diǎn)坐標(biāo)是(0,c),對(duì)稱軸是y軸.
當(dāng)a>0時(shí),圖象的開口向上,有最低點(diǎn)(即頂點(diǎn)),當(dāng)x=0時(shí),y最小值=c.在y軸左側(cè),y隨x的增大而減小;在y軸右側(cè),y隨x增大而增大.
當(dāng)a<0時(shí),圖象的開口向下,有最高點(diǎn)(即頂點(diǎn)),當(dāng)x=0時(shí),y最大值=c.在y軸左側(cè),y隨x的增大而增大;在y軸右側(cè),y隨x增大而減小.
(3)拋物線y=ax2+c與y=ax2的關(guān)系.
拋物線y=ax2+c與y=ax2形狀相同,只有位置不同.拋物線y=ax2+c可由拋物線y=ax2沿y軸向上或向下平行移動(dòng)|c|個(gè)單位得到.當(dāng)c>0時(shí),向上平行移動(dòng),當(dāng)c<0時(shí),向下平行移動(dòng).
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
1、弧長公式
n°的圓心角所對(duì)的弧長l的計(jì)算公式為L=nπr/180
2、扇形面積公式,其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長.
S=﹙n/360﹚πR2=1/2×lR
3、圓錐的側(cè)面積,其中l(wèi)是圓錐的母線長,r是圓錐的地面半徑.
S=1/2×l×2πr=πrl
4、弦切角定理
弦切角:圓的切線與經(jīng)過切點(diǎn)的弦所夾的角,叫做弦切角.
弦切角定理:弦切角等于弦與切線夾的弧所對(duì)的圓周角.
一、選擇題
1.(20xxo珠海,第4題3分)已知圓柱體的底面半徑為3cm,髙為4cm,則圓柱體的側(cè)面積為()
A.24πcm2B.36πcm2C.12cm2D.24cm2
考點(diǎn):圓柱的`計(jì)算.
分析:圓柱的側(cè)面積=底面周長×高,把相應(yīng)數(shù)值代入即可求解.
解答:解:圓柱的側(cè)面積=2π×3×4=24π.
故選A.
點(diǎn)評(píng):本題考查了圓柱的計(jì)算,解題的關(guān)鍵是弄清圓柱的側(cè)面積的計(jì)算方法.
2.(20xxo廣西賀州,第11題3分)如圖,以AB為直徑的⊙O與弦CD相交于點(diǎn)E,且AC=2,AE=,CE=1.則弧BD的長是()
A.B.C.D.
考點(diǎn):垂徑定理;勾股定理;勾股定理的逆定理;弧長的計(jì)算.
分析:連接OC,先根據(jù)勾股定理判斷出△ACE的形狀,再由垂徑定理得出CE=DE,故=,由銳角三角函數(shù)的定義求出∠A的度數(shù),故可得出∠BOC的度數(shù),求出OC的長,再根據(jù)弧長公式即可得出結(jié)論.
解答:解:連接OC,
∵△ACE中,AC=2,AE=,CE=1,
∴AE2+CE2=AC2,
∴△ACE是直角三角形,即AE⊥CD,
∵sinA==,
∴∠A=30°,
∴∠COE=60°,
∴=sin∠COE,即=,解得OC=,
∵AE⊥CD,
∴=,
∴===.
故選B.
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
第21章二次根式
1、二次根式:一般地,式子叫做二次根式。
注意:
(1)若這個(gè)條件不成立,則不是二次根式;
。2)是一個(gè)重要的非負(fù)數(shù),即; ≥0。
2、重要公式:
3、積的算術(shù)平方根:
積的算術(shù)平方根等于積中各因式的算術(shù)平方根的積;
4、二次根式的乘法法則:。
5、二次根式比較大小的方法:
。1)利用近似值比大小;
。2)把二次根式的系數(shù)移入二次根號(hào)內(nèi),然后比大;
(3)分別平方,然后比大小。
6、商的算術(shù)平方根:,
商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根。
7、二次根式的除法法則:
分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎健?/p>
8、最簡二次根式:
(1)滿足下列兩個(gè)條件的二次根式,叫做最簡二次根式,
、俦婚_方數(shù)的因數(shù)是整數(shù),因式是整式,
、诒婚_方數(shù)中不含能開的盡的因數(shù)或因式;
。2)最簡二次根式中,被開方數(shù)不能含有小數(shù)、分?jǐn)?shù),字母因式次數(shù)低于2,且不含分母;
。3)化簡二次根式時(shí),往往需要把被開方數(shù)先分解因數(shù)或分解因式;
。4)二次根式計(jì)算的最后結(jié)果必須化為最簡二次根式。
9、同類二次根式:幾個(gè)二次根式化成最簡二次根式后,如果被開方數(shù)相同,這幾個(gè)二次根式叫做同類二次根式。
10、二次根式的混合運(yùn)算:
(1)二次根式的混合運(yùn)算包括加、減、乘、除、乘方、開方六種代數(shù)運(yùn)算,以前學(xué)過的,在有理數(shù)范圍內(nèi)的一切公式和運(yùn)算律在二次根式的混合運(yùn)算中都適用;
。2)二次根式的運(yùn)算一般要先把二次根式進(jìn)行適當(dāng)化簡,例如:化為同類二次根式才能合并;除法運(yùn)算有時(shí)轉(zhuǎn)化為分母有理化或約分更為簡便;使用乘法公式等。
第22章一元二次方程
1、一元二次方程的一般形式:
a≠0時(shí),ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關(guān)問題時(shí),多數(shù)習(xí)題要先化為一般形式,目的`是確定一般形式中的a、 b、 c;其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的代數(shù)式。
2、一元二次方程的解法:一元二次方程的四種解法要求靈活運(yùn)用,其中直接開平方法雖然簡單,但是適用范圍較小;公式法雖然適用范圍大,但計(jì)算較繁,易發(fā)生計(jì)算錯(cuò)誤;因式分解法適用范圍較大,且計(jì)算簡便,是首選方法;配方法使用較少。
3。一元二次方程根的判別式:當(dāng)ax2+bx+c=0
(a≠0)時(shí),Δ=b2—4ac叫一元二次方程根的判別式。請注意以下等價(jià)命題:
Δ>0 <=>有兩個(gè)不等的實(shí)根;
Δ=0 <=>有兩個(gè)相等的實(shí)根;Δ<0 <=>無實(shí)根;
當(dāng)h<0,k<0時(shí),將拋物線向xxx移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。
因此,研究拋物線y=ax+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便。
2.拋物線y=ax+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b]/4a)。
3.拋物線y=ax+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小。
4.拋物線y=ax+bx+c的圖象與坐標(biāo)軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c)。
(2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a≠0)的兩根.這兩點(diǎn)間的距離AB=|x-x|。
當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);當(dāng)△<0.圖象與x軸沒有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0。
5.拋物線y=ax+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b)/4a。
頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值。
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當(dāng)題給條件為已知圖象經(jīng)過三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:y=ax+bx+c(a≠0)。
(2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)+k(a≠0)。
(3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x)(x-x)(a≠0)。
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13
定義
只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是2次的整式方程叫做一元二次方程(quadratice quation of one variable或asingle―variable quadratice quation)。
一元二次方程有三個(gè)特點(diǎn):
。1)含有一個(gè)未知數(shù);
。2)且未知數(shù)的`最高次數(shù)是2;
。3)是整式方程。要判斷一個(gè)方程是否為一元二次方程,先看它是否為整式方程,若是,再對(duì)它進(jìn)行整理。如果能整理為ax2+bx+c=0(a0)的形式,則這個(gè)方程就為一元二次方程。里面要有等號(hào),且分母里不含未知數(shù)。
補(bǔ)充說明
1、方程的兩根與方程中各數(shù)有如下關(guān)系:X1+X2=―b/a,X1X2=c/a(也稱韋達(dá)定理)。
2、方程兩根為x1,x2時(shí),方程為:x2―(x1+x2)X+x1x2=0(根據(jù)韋達(dá)定理逆推而得)。
3、在系數(shù)a0的情況下,b2―4ac0時(shí)有2個(gè)不相等的實(shí)數(shù)根,b2―4ac=0時(shí)有兩個(gè)相等的實(shí)數(shù)根,b2―4ac0時(shí)無實(shí)數(shù)根。(在復(fù)數(shù)范圍內(nèi)有兩個(gè)復(fù)數(shù)根)。
一般式
ax2+bx+c=0(a、b、c是實(shí)數(shù),a0)
例如:x2+2x+1=0
配方式
a(x+b/2a)2=(b2―4ac)/4a
兩根式(交點(diǎn)式)
a(x―x1)(x―x2)=0
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14
1二次根式:形如a(a0)的式子為二次根式;性質(zhì):a(a0)是一個(gè)非負(fù)數(shù);
a2aa0。
2二次根式的乘除:ababa0,b0;
aaa0,b0。bb3二次根式的加減:二次根式加減時(shí),先將二次根式華為最簡二次根式,再將被開方數(shù)相同的二次根式進(jìn)行合并。
4海倫-秦九韶公式:S是三角形的面積,Sp(p)(pb)(pc),p為pabc。2第二章一元二次方程
1一元二次方程:等號(hào)兩邊都是整式,且只有一個(gè)未知數(shù),未知數(shù)的最高次是2的方程。
2一元二次方程的解法
配方法:將方程的一邊配成完全平方式,然后兩邊開方;
bb24ac公式法:x2a因式分解法:左邊是兩個(gè)因式的乘積,右邊為零。
3一元二次方程在實(shí)際問題中的應(yīng)用
4韋達(dá)定理:設(shè)x1,x2是方程ax2bxc0的兩個(gè)根,那么有x1x2,x1x2第三章旋轉(zhuǎn)
1圖形的旋轉(zhuǎn)旋轉(zhuǎn):一個(gè)圖形繞某一點(diǎn)轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;
對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連的線段的夾角等于旋轉(zhuǎn)角旋轉(zhuǎn)前后的圖形全等。
2中心對(duì)稱:一個(gè)圖形繞一個(gè)點(diǎn)旋轉(zhuǎn)180度,和另一個(gè)圖形重合,則兩個(gè)圖形關(guān)于這個(gè)點(diǎn)中心對(duì)稱;
中心對(duì)稱圖形:一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180度后得到的圖形能夠和原來的圖形重合,則說這個(gè)圖形是中心對(duì)稱圖形;
3關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的'坐標(biāo)第四章圓
1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義
2垂直于弦的直徑
圓是軸對(duì)稱圖形,任何一條直徑所在的直線都是它的對(duì)稱軸;
垂直于弦的直徑平分弦,并且平方弦所對(duì)的兩條弧;平分弦的直徑垂直弦,并且平分弦所對(duì)的兩條弧。
3弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所baca對(duì)的弦也相等。
4圓周角
在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半;
半圓(或直徑)所對(duì)的圓周角是直角,90度的圓周角所對(duì)的弦是直徑。
5點(diǎn)和圓的位置關(guān)系點(diǎn)在dr點(diǎn)在圓上d=r點(diǎn)在圓內(nèi)d相等,這一點(diǎn)和圓心的連線平分兩條切線的夾角。
三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,圓心是三角形的三條角平分線的交點(diǎn),為三角形的內(nèi)心。
6圓和圓的位置關(guān)系
外離d>R+r外切d=R+r相交R-r第五章概率初步
1概率意義:在大量重復(fù)試驗(yàn)中,事件A發(fā)生的頻率某個(gè)常數(shù)p附近,則常數(shù)p叫做事件A的概率。
2用列舉法求概率
一般的,在一次試驗(yàn)中,有n中可能的結(jié)果,并且它們發(fā)生的概率相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率就是p(A)=mnm穩(wěn)定在n3用頻率去估計(jì)概率
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15
第21章二次根式知識(shí)框圖
理解并掌握下列結(jié)論:
(1)是非負(fù)數(shù);(2);(3);
I.二次根式的定義和概念:
1、定義:一般地,形如√。╝≥0)的代數(shù)式叫做二次根式。當(dāng)a>0時(shí),√a表示a的算數(shù)平方根,√0=0
2、概念:式子√。╝≥0)叫二次根式!台。╝≥0)是一個(gè)非負(fù)數(shù)。
II.二次根式√ā的簡單性質(zhì)和幾何意義
1)a≥0;√ā≥0[雙重非負(fù)性]
2)(√。2=a(a≥0)[任何一個(gè)非負(fù)數(shù)都可以寫成一個(gè)數(shù)的平方的形式]3)√(a^2+b^2)表示平面間兩點(diǎn)之間的距離,即勾股定理推論。
IV.二次根式的乘法和除法
1運(yùn)算法則
√a√b=√ab(a≥0,b≥0)
√a/b=√a/√b(a≥0,b>0)
二數(shù)二次根之積,等于二數(shù)之積的二次根。2共軛因式
如果兩個(gè)含有根式的代數(shù)式的積不再含有根式,那么這兩個(gè)代數(shù)式叫做共軛因式,也稱互為有理化根式。
V.二次根式的加法和減法
1同類二次根式
一般地,把幾個(gè)二次根式化為最簡二次根式后,如果它們的被開方數(shù)相同,就把這幾個(gè)二次根式叫做同類二次根式。2合并同類二次根式
把幾個(gè)同類二次根式合并為一個(gè)二次根式就叫做合并同類二次根式。
3二次根式加減時(shí),可以先將二次根式化為最簡二次根式,再將被開方數(shù)相同的進(jìn)行合并
、.二次根式的混合運(yùn)算
1確定運(yùn)算順序2靈活運(yùn)用運(yùn)算定律3正確使用乘法公式4大多數(shù)分母有理化要及時(shí)
5在有些簡便運(yùn)算中也許可以約分,不要盲目有理化
VII.分母有理化
分母有理化有兩種方法I.分母是單項(xiàng)式
如:√a/√b=√a×√b/√b×√b=√ab/b
II.分母是多項(xiàng)式要利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-bIII.分母是多項(xiàng)式要利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b第22章一元二次方程知識(shí)框圖
旋轉(zhuǎn)的定義
旋轉(zhuǎn)對(duì)稱中心
大于360°)。
把一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角度后,與初始圖形重合,這種
圖形叫做旋轉(zhuǎn)對(duì)稱圖形,這個(gè)定點(diǎn)叫做旋轉(zhuǎn)對(duì)稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角(旋轉(zhuǎn)角小于0°,
也就是說:
①中心對(duì)稱圖形:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個(gè)圖形成中心對(duì)稱圖形。
②中心對(duì)稱:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,那么我們就說,這兩個(gè)圖形成中心對(duì)稱。
中心對(duì)稱圖形
正(2N)邊形(N為大于1的正整數(shù)),線段,矩形,菱形,圓
只是中心對(duì)稱圖形
平行四邊形等.第24章圓知識(shí)框圖
圓和點(diǎn)的位置關(guān)系:以點(diǎn)P與圓O的為例(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO<r。
直線與圓有3種位置關(guān)系:無公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線叫做圓的割線;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。以直線AB與圓O為例(設(shè)OP⊥AB于P,則PO是AB到圓心的距離):AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO<r。
兩圓之間有5種位置關(guān)系:無公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有兩個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內(nèi)切P=R-r;內(nèi)含P<R-r。
圓的平面幾何性質(zhì)和定理
一有關(guān)圓的基本性質(zhì)與定理
、艌A的確定:不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。
圓的對(duì)稱性質(zhì):圓是軸對(duì)稱圖形,其對(duì)稱軸是任意一條通過圓心的直線。圓也是中心對(duì)稱圖形,其對(duì)稱中心是圓心。垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的2條弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的2條弧。
⑵有關(guān)圓周角和圓心角的性質(zhì)和定理在同圓或等圓中,如果兩個(gè)圓心角,兩個(gè)圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那么他們所對(duì)應(yīng)的其余各組量都分別相等。一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。直徑所對(duì)的圓周角是直角。90度的圓周角所對(duì)的弦是直徑。
、怯嘘P(guān)外接圓和內(nèi)切圓的性質(zhì)和定理
、僖粋(gè)三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形三個(gè)頂點(diǎn)距離相等;
②內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形三邊距離相等。③S三角=1/2*△三角形周長*內(nèi)切圓半徑
、軆上嗲袌A的連心線過切點(diǎn)(連心線:兩個(gè)圓心相連的線段)
、輬AO中的弦PQ的中點(diǎn)M,過點(diǎn)M任作兩弦AB,CD,弦AD與BC分別交PQ于X,Y,則M為XY之中點(diǎn)。
〖有關(guān)切線的性質(zhì)和定理〗
圓的切線垂直于過切點(diǎn)的半徑;經(jīng)過半徑的一端,并且垂直于這條半徑的直線,是這個(gè)圓的切線。
切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線。
切線的性質(zhì):(1)經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線。(2)經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心。(3)圓的切線垂直于經(jīng)過切點(diǎn)的半徑。
切線長定理:從圓外一點(diǎn)到圓的兩條切線的長相等,那點(diǎn)與圓心的連線平分切線的.夾角!加嘘P(guān)圓的計(jì)算公式〗
1.圓的周長C=2πr=πd2.圓的面積S=πr^2;3.扇形弧長l=nπr/1804.扇形面積S=π(R^2-r^2)5.圓錐側(cè)面積S=πrl
第25章概率初步知識(shí)框圖
第26章二次函數(shù)
知識(shí)框圖
定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:
一般式:y=ax^2+bx+c(a≠0,a、b、c為常數(shù)),則稱y為x的二次函數(shù)。頂點(diǎn)式:y=a(x-h)^2+k
交點(diǎn)式(與x軸):y=a(x-x1)(x-x2)
重要概念:(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a
1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x=-b/2a。
對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為P(-b/2a,(4ac-b)/4a)當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b-4ac=0時(shí),P在x軸上。3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;因?yàn)槿魧?duì)稱軸在左邊則對(duì)稱軸小于0,也就是-b/2a0,所以b/2a要小于0,所以a、b要異號(hào)
事實(shí)上,b有其自身的幾何意義:拋物線與y軸的交點(diǎn)處的該拋物線切線的函數(shù)解析式(一次函數(shù))的斜率k的值?赏ㄟ^對(duì)二次函數(shù)求導(dǎo)得到。5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。拋物線與y軸交于(0,c)6.拋物線與x軸交點(diǎn)個(gè)數(shù)
Δ=b-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。Δ=b-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。_______
Δ=b-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)
當(dāng)a>0時(shí),函數(shù)在x=-b/2a處取得最小值f(-b/2a)=4ac-b/4a;在{x|x-b/2a}上是增函數(shù);拋物線的開口向上;函數(shù)的值域是{y|y≥4ac-b/4a}相反不變
當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸,這時(shí),函數(shù)是偶函數(shù),解析式變形為y=ax+c(a≠0)解析式:
第27章相似知識(shí)框圖
相似三角形的認(rèn)識(shí)
對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形。(similartriangles)。互為相似形的三角形叫做相似三角形
相似三角形的判定方法
根據(jù)相似圖形的特征來判斷。(對(duì)應(yīng)邊成比例,對(duì)應(yīng)角相等)
1.平行于三角形一邊的直線(或兩邊的延長線)和其他兩邊相交,所構(gòu)成的三角形與原三角形相似;
。ㄟ@是相似三角形判定的引理,是以下判定方法證明的基礎(chǔ)。這個(gè)引理的證明方法需要平行線分線段成比例的證明)
2.如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似;
直角三角形相似判定定理
1.斜邊與一條直角邊對(duì)應(yīng)成比例的兩直角三角形相似。
2.直角三角形被斜邊上的高分成的兩個(gè)直角三角形與原直角三角形相似,并且分成的兩個(gè)直角三角形也相似。射影定理
三角形相似的判定定理推論
推論一:頂角或底角相等的那個(gè)的兩個(gè)等腰三角形相似。推論二:腰和底對(duì)應(yīng)成比例的兩個(gè)等腰三角形相似。推論三:有一個(gè)銳角相等的兩個(gè)直角三角形相似。
推論四:直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形都相似。
推論五:如果一個(gè)三角形的兩邊和其中一邊上的中線與另一個(gè)三角形的對(duì)應(yīng)部分成比例,那么這兩個(gè)三角形相似。
推論六:如果一個(gè)三角形的兩邊和第三邊上的中線與另一個(gè)三角形的對(duì)應(yīng)部分成比例,那么這兩個(gè)三角形相似。
相似三角形的性質(zhì)
1.相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比。
2.相似三角形周長的比等于相似比。3.相似三角形面積的比等于相似比的平方。
相似三角形的特例
能夠完全重合的兩個(gè)三角形叫做全等三角形。(congruenttriangles)全等三角形是相似三角形的特例。全等三角形的特征:1.形狀完全相同,相似比是k=1。
全等三角形一定是相似三角形,而相似三角形不一定是全等三角形。
因此,相似三角形包括全等三角形。全等三角形的定義
能夠完全重合的兩個(gè)三角形稱為全等三角形。(注:全等三角形是相似三角形中的特殊情況)當(dāng)兩個(gè)三角形完全重合時(shí),互相重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn),互相重合的邊叫做對(duì)應(yīng)邊,互相重合的角叫做對(duì)應(yīng)角。
由此,可以得出:全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等。
(1)全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊;(2)全等三角形對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角;(3)有公共邊的,公共邊一定是對(duì)應(yīng)邊;(4)有公共角的,角一定是對(duì)應(yīng)角;(5)有對(duì)頂角的,對(duì)頂角一定是對(duì)應(yīng)角;三角形全等的判定公理及推論
1、三組對(duì)應(yīng)邊分別相等的兩個(gè)三角形全等(簡稱SSS或“邊邊邊”),這一條也說明了三角形具有穩(wěn)定性的原因。
2、有兩邊及其夾角對(duì)應(yīng)相等的兩個(gè)三角形全等(SAS或“邊角邊”)。3、有兩角及其夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(ASA或“角邊角”)。由3可推到
4、有兩角及一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等(AAS或“角角邊”)
5、直角三角形全等條件有:斜邊及一直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等(HL或“斜邊,直角邊”)
所以,SSS,SAS,ASA,AAS,HL均為判定三角形全等的定理。
注意:在全等的判定中,沒有AAA和SSA,這兩種情況都不能唯一確定三角形的形狀。A是英文角的縮寫(angle),S是英文邊的縮寫(side)。全等三角形的性質(zhì)
1、全等三角形的對(duì)應(yīng)角相等、對(duì)應(yīng)邊相等。2、全等三角形的對(duì)應(yīng)邊上的高對(duì)應(yīng)相等。3、全等三角形的對(duì)應(yīng)角平分線相等。4、全等三角形的對(duì)應(yīng)中線相等。5、全等三角形面積相等。6、全等三角形周長相等。
7、三邊對(duì)應(yīng)相等的兩個(gè)三角形全等。(SSS)
8、兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等。(SAS)9、兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等。(ASA)
10、兩個(gè)角和其中一個(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等。(AAS)11、斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等。(HL)全等三角形的運(yùn)用
1、性質(zhì)中三角形全等是條件,結(jié)論是對(duì)應(yīng)角、對(duì)應(yīng)邊相等。而全等的判定卻剛好相反。2、利用性質(zhì)和判定,學(xué)會(huì)準(zhǔn)確地找出兩個(gè)全等三角形中的對(duì)應(yīng)邊與對(duì)應(yīng)角是關(guān)鍵。在寫兩個(gè)三角形全等時(shí),一定把對(duì)應(yīng)的頂點(diǎn),角、邊的順序?qū)懸恢拢瑸檎覍?duì)應(yīng)邊,角提供方便。3,當(dāng)圖中出現(xiàn)兩個(gè)以上等邊三角形時(shí),應(yīng)首先考慮用SAS找全等三角形。
第28章銳角三角函數(shù)
知識(shí)框圖
第29章投影與視圖知識(shí)框圖
代數(shù)重點(diǎn)難點(diǎn)總結(jié)
方程(組)
一、基本概念
1.方程、方程的解(根)、方程組的解、解方程(組)二、一元二次方程1.定義及一般形式:
2.解法:⑴直接開平方法(注意特征)⑵配方法(注意步驟推倒求根公式)⑶公式法:⑷因式分解法(特征:左邊=0)3.根的判別式:b24ac
bc4.根與系數(shù)的關(guān)系(韋達(dá)定理):x1+x2=,x1x2=
aa逆定理:若,則以x1,x2為根的一元二次方程是:a(x-x1)(x-x2)=0。5.常用等式:
三、可化為一元二次方程的方程1.分式方程⑴定義
、苹舅枷耄喝シ帜
、腔窘夥ǎ孩偃シ帜阜á趽Q元法(如,)⑷驗(yàn)根及方法2.無理方程⑴定義
⑵基本思想:分母有理化
、腔窘夥ǎ孩俪朔椒ǎㄗ⒁饧记桑。。趽Q元法(例,)⑷驗(yàn)根及方法
3.簡單的二元二次方程組
由一個(gè)二元一次方程和一個(gè)二元二次方程組成的二元二次方程組都可用代入法解。四、列方程解應(yīng)用題一概述
列方程(組)解應(yīng)用題是中學(xué)數(shù)學(xué)聯(lián)系實(shí)際的一個(gè)重要方面。其具體步驟是:
、艑忣}。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關(guān)系是什么。
⑵設(shè)元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。
、怯煤粗獢(shù)的代數(shù)式表示相關(guān)的量。
、葘ふ蚁嗟汝P(guān)系(有的由題目給出,有的由該問題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個(gè)數(shù)與方程個(gè)數(shù)是相同的。⑸解方程及檢驗(yàn)。⑹答案。
綜上所述,列方程解應(yīng)用題實(shí)質(zhì)是先把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題(設(shè)元、列方程),在由數(shù)學(xué)問題的解決而導(dǎo)致實(shí)際問題的解決(列方程、寫出答案)。在這個(gè)過程中,列方程起著承前啟后的作用。因此,列方程是解應(yīng)用題的關(guān)鍵。
函數(shù)及其圖象
★重難點(diǎn)★二次函數(shù)的圖象和性質(zhì)。一、平面直角坐標(biāo)系
1.各象限內(nèi)點(diǎn)的坐標(biāo)的特點(diǎn)2.坐標(biāo)軸上點(diǎn)的坐標(biāo)的特點(diǎn)
3.關(guān)于坐標(biāo)軸、原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特點(diǎn)4.坐標(biāo)平面內(nèi)點(diǎn)與有序?qū)崝?shù)對(duì)的對(duì)應(yīng)關(guān)系二、函數(shù)
1.表示方法:⑴解析法;⑵列表法;⑶圖象法。
2.確定自變量取值范圍的原則:⑴使代數(shù)式有意義;⑵使實(shí)際問題有意義。
3.畫函數(shù)圖象:⑴列表;⑵描點(diǎn);⑶連線。三、二次函數(shù)(定義→圖象→性質(zhì))⑴定義:
、茍D象:拋物線(用描點(diǎn)法畫出:先確定頂點(diǎn)、對(duì)稱軸、開口方向,再對(duì)稱地描點(diǎn))。用配方法變?yōu),則頂點(diǎn)為(h,k);對(duì)稱軸為直線x=h;a>0時(shí),開口向上;a0時(shí),在對(duì)稱軸左側(cè),右側(cè);a
四邊形
★重難點(diǎn)★相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。分類表:
1.一般性質(zhì)(角)⑴內(nèi)角和:360°
、祈槾芜B結(jié)各邊中點(diǎn)得平行四邊形。
推論1:順次連結(jié)對(duì)角線相等的四邊形各邊中點(diǎn)得菱形。
推論2:順次連結(jié)對(duì)角線互相垂直的四邊形各邊中點(diǎn)得矩形。⑶外角和:360°2.特殊四邊形
⑴研究它們的一般方法:
、破叫兴倪呅巍⒕匦、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定⑶判定步驟:四邊形→平行四邊形→矩形→正方形┗→菱形↑
、葘(duì)角線的紐帶作用:3.對(duì)稱圖形
⑴軸對(duì)稱(定義及性質(zhì));⑵中心對(duì)稱(定義及性質(zhì))4.有關(guān)定理:①平行線等分線段定理及其推論1、2②三角形、梯形的中位線定理
、燮叫芯間的距離處處相等。(如,找下圖中面積相等的三角形)
5.重要輔助線:①常連結(jié)四邊形的對(duì)角線;②梯形中!捌揭埔谎薄ⅰ捌揭茖(duì)角線”、“作高”、“連結(jié)頂點(diǎn)和對(duì)腰中點(diǎn)并延長與底邊相交”轉(zhuǎn)化為三角形。6.作圖:任意等分線段。
第十章圓
★重難點(diǎn)★①圓的重要性質(zhì);②直線與圓、圓與圓的位置關(guān)系;③與圓有關(guān)的角的定理;④與圓有關(guān)的比例線段定理。一、圓的基本性質(zhì)1.圓的定義
2.有關(guān)概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。3.“三點(diǎn)定圓”定理4.垂徑定理及其推論
5.“等對(duì)等”定理及其推論
5.與圓有關(guān)的角:⑴圓心角定義(等對(duì)等定理)⑵圓周角定義(圓周角定理,與圓心角的關(guān)系)⑶弦切角定義(弦切角定理)二、直線和圓的位置關(guān)系
1.三種位置及判定與性質(zhì):相離、相切、相交2.切線的性質(zhì)(重點(diǎn))
3.切線的判定定理(重點(diǎn))。圓的切線的判定有⑴⑵
4.切線長定理
三、圓換圓的位置關(guān)系
1.五種位置關(guān)系及判定與性質(zhì):(重點(diǎn):相切)外離、外切、相交、內(nèi)切、內(nèi)含
2.相切(交)兩圓連心線的性質(zhì)定理3.兩圓的公切線:⑴定義⑵性質(zhì)四、與圓有關(guān)的比例線段1.相交弦定理2.切割線定理
五、與和正多邊形
1.圓的內(nèi)接、外切多邊形(三角形、四邊形)2.三角形的外接圓、內(nèi)切圓及性質(zhì)3.圓的外切四邊形、內(nèi)接四邊形的性質(zhì)4.正多邊形及計(jì)算中心角:
內(nèi)角的一半:(解Rt△OAM可求出相關(guān)元素等)六、一組計(jì)算公式1.圓周長公式2.圓面積公式3.扇形面積公式4.弧長公式
5.弓形面積的計(jì)算方法
6.圓柱、圓錐的側(cè)面展開圖及相關(guān)計(jì)算七、點(diǎn)的軌跡六條基本軌跡八、有關(guān)作圖
1.作三角形的外接圓、內(nèi)切圓2.平分已知弧
3.作已知兩線段的比例中項(xiàng)4.等分圓周:4、8;6、3等分九、基本圖形十、重要輔助線1.作半徑
2.見弦往往作弦心距
3.見直徑往往作直徑上的圓周角4.切點(diǎn)圓心莫忘連
5.兩圓相切公切線(連心線)6.兩圓相交公共弦
【初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-18
初三數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)11-22
初三數(shù)學(xué)圓知識(shí)點(diǎn)總結(jié)10-25
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-10
初三數(shù)學(xué)上冊知識(shí)點(diǎn)總結(jié)11-18
初三數(shù)學(xué)上冊知識(shí)點(diǎn)總結(jié)06-19
關(guān)于初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-18
初三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)06-16