初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總
在我們的學(xué)習(xí)時(shí)代,說到知識(shí)點(diǎn),大家是不是都習(xí)慣性的重視?知識(shí)點(diǎn)就是掌握某個(gè)問題/知識(shí)的學(xué)習(xí)要點(diǎn)。哪些知識(shí)點(diǎn)能夠真正幫助到我們呢?下面是小編整理的初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總,歡迎閱讀與收藏。
初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總1
⑴正數(shù)的立方根是正數(shù).⑵負(fù)數(shù)的立方根是負(fù)數(shù).⑶0的立方根是0.一般地,如果一個(gè)數(shù)X的立方等于a,那么這個(gè)數(shù)X就叫做a的立方根(cuberoot,也叫做三次方根)。如2是8的立方根,-3分之2是-27分之8的立方根,0是0的立方根。
立方和開立方運(yùn)算,互為逆運(yùn)算,初中歷史。
互為相反數(shù)的兩個(gè)數(shù)的立方根也是互為相反數(shù)。
負(fù)數(shù)不能開平方,但能開立方。
立方根如何與其他數(shù)作比較?
⑴做這兩個(gè)數(shù)的立方
、谱鞑
⑶比較被開方數(shù)(如三次根號(hào)3大于三次根號(hào)2)
任何數(shù)(正數(shù)、負(fù)數(shù)、或零)的立方根如果存在的話,必定只有一個(gè).
初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總2
相交線與平行線
1.同一平面內(nèi),兩直線不平行就相交。
2.兩條直線相交所成的四個(gè)角中,相鄰的兩個(gè)角叫做鄰補(bǔ)角,特點(diǎn)是兩個(gè)角共用一條邊,另一條邊互為反向延長(zhǎng)線,性質(zhì)是鄰補(bǔ)角互補(bǔ);相對(duì)的兩個(gè)角叫做對(duì)頂角,特點(diǎn)是它們的兩條邊互為反向延長(zhǎng)線。性質(zhì)是對(duì)頂角相等。
3.垂直定義:兩條直線相交所成的四個(gè)角中,如果有一個(gè)角為90度,則稱這兩條直線互相垂直。其中一條直線叫做另外一條直線的垂線,他們的交點(diǎn)稱為垂足。
4.垂直三要素:垂直關(guān)系,垂直記號(hào),垂足
5.垂直公理:過一點(diǎn)有且只有一條直線與已知直線垂直。
6.垂線段最短;
7.點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度。
8.兩條直線被第三條直線所截:同位角F(在兩條直線的同一旁,第三條直線的同一側(cè)),內(nèi)錯(cuò)角Z(在兩條直線內(nèi)部,位于第三條直線兩側(cè)),同旁內(nèi)角U(在兩條直線內(nèi)部,位于第三條直線同側(cè))。
9.平行公理:過直線外一點(diǎn)有且只有一條直線與已知直線平行。
10.如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。如果b//a,c//a,那么b//cP174題
11.平行線的判定。
結(jié)論:在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行。平行線的性質(zhì):1.兩直線平行,同位角相等。2.兩直線平行,內(nèi)錯(cuò)角相等。3.兩直線平行,同旁內(nèi)角互補(bǔ)。
初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總3
初一下冊(cè)知識(shí)點(diǎn)總結(jié)
1.同底數(shù)冪的乘法:am?an=am+n ,底數(shù)不變,指數(shù)相加。
2.同底數(shù)冪的除法:am÷an=am-n ,底數(shù)不變,指數(shù)相減。
3.冪的乘方與積的乘方:(am)n=amn ,底數(shù)不變,指數(shù)相乘; (ab)n=anbn ,積的乘方等于各因式乘方的積。
4.零指數(shù)與負(fù)指數(shù)公式:
(1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2無意義。
(2)有了負(fù)指數(shù),可用科學(xué)記數(shù)法記錄小于1的數(shù),例如:0.0000201=2.01×10-5。
5.(1)平方差公式:(a+b)(a-b)= a2-b2,兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積等于這兩個(gè)數(shù)的平方差;
(2)完全平方公式:
、 (a+b)2=a2+2ab+b2, 兩個(gè)數(shù)和的平方,等于它們的平方和,加上它們的積的2倍;
② (a-b)2=a2-2ab+b2 , 兩個(gè)數(shù)差的平方,等于它們的平方和,減去它們的積的2倍;
※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc
6.配方:
(1)若二次三項(xiàng)式x2+px+q是完全平方式,則有關(guān)系式: ;
※ (2)二次三項(xiàng)式ax2+bx+c經(jīng)過配方,總可以變?yōu)閍(x-h)2+k的形式。
注意:當(dāng)x=h時(shí),可求出ax2+bx+c的最大(或最小)值k。
※(3)注意: 。
7.單項(xiàng)式的系數(shù)與次數(shù):單項(xiàng)式中不為零的數(shù)字因數(shù),叫單項(xiàng)式的數(shù)字系數(shù),簡(jiǎn)稱單項(xiàng)式的系數(shù);
系數(shù)不為零時(shí),單項(xiàng)式中所有字母指數(shù)的和,叫單項(xiàng)式的次數(shù)。
8.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個(gè)數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng);
多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù);
注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個(gè)二次三項(xiàng)式。
9.同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的單項(xiàng)式是同類項(xiàng)。
10.合并同類項(xiàng)法則:系數(shù)相加,字母與字母的指數(shù)不變。
11.去(添)括號(hào)法則:去(添)括號(hào)時(shí),若括號(hào)前邊是“+”號(hào),括號(hào)里的各項(xiàng)都不變號(hào);若括號(hào)前邊是“-”號(hào),括號(hào)里的各項(xiàng)都要變號(hào)。
注意:多項(xiàng)式計(jì)算的最后結(jié)果一般應(yīng)該進(jìn)行升冪(或降冪)排列。
平面幾何部分
1、補(bǔ)角重要性質(zhì):同角或等角的補(bǔ)角相等.
余角重要性質(zhì):同角或等角的余角相等.
2、①直線公理:過兩點(diǎn)有且只有一條直線.
線段公理:兩點(diǎn)之間線段最短.
②有關(guān)垂線的定理:(1)過一點(diǎn)有且只有一條直線與已知直線垂直;
(2)直線外一點(diǎn)與直線上各點(diǎn)連結(jié)的所有線段中,垂線段最短.
比例尺:比例尺1:m中,1表示圖上距離,m表示實(shí)際距離,若圖上1厘米,表示實(shí)際距離m厘米.
3、三角形的內(nèi)角和等于180
三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和
三角形的一個(gè)外角大于與它不相鄰的任何一個(gè)內(nèi)角
4、n邊形的對(duì)角線公式:
各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形
5、n邊形的內(nèi)角和公式:180(n-2); 多邊形的外角和等于360
6、判斷三條線段能否組成三角形:
①a+b>c(a b為最短的兩條線段)②a-b
7、第三邊取值范圍:
a-b< c
8、對(duì)應(yīng)周長(zhǎng)取值范圍:
若兩邊分別為a,b則周長(zhǎng)的取值范圍是 2a
如兩邊分別為5和7則周長(zhǎng)的取值范圍是 14
9、相關(guān)命題:
(1) 三角形中最多有1個(gè)直角或鈍角,最多有3個(gè)銳角,最少有2個(gè)銳角。
(2) 銳角三角形中最大的銳角的取值范圍是60≤X<90 。最大銳角不小于60度。
(3)任意一個(gè)三角形兩角平分線的夾角=90+第三角的一半。
(4) 鈍角三角形有兩條高在外部。
(5) 全等圖形的大小(面積、周長(zhǎng))、形狀都相同。
(6) 面積相等的兩個(gè)三角形不一定是全等圖形。
(7) 三角形具有穩(wěn)定性。
(8) 角平分線到角的兩邊距離相等。
(9)有一個(gè)角是60的等腰三角形是等邊三角形。
初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總4
一、選擇題(每小題4分,共12分)
1.計(jì)算(-x)2x3的結(jié)果是()
A.x5 B.-x5 C.x6 D.-x6
2.下列各式計(jì)算正確的個(gè)數(shù)是()
①x4②x3x3=2x6 ;③a5+a7 =a12;
、(-a)2(-a2)=-a4;⑤a4a3=a7.
A.1B.2C.3D.4
3.下列各式能用同底數(shù)冪乘法法則進(jìn)行計(jì)算的是()
A.(x+y)2(x-y)2B.(x+y)2(-x-y)
C.(x+y)2+2 (x+y)2D.(x-y)2(-x-y)
二、填空題(每小題4分,共12分)
4.(20xx天津中考)計(jì)算aa6的結(jié)果等于.
5.若2n-224=64,則n= .
6.已知2x2x8=213,則x=.
三、解答題(共26分)
7.(8分)計(jì)算:(1)(- 3) 3(-3)4(-3).
(2)a3a2-a(-a)2a2.
(3)(2m-n)4(n-2m)3(2m-n)6.
(4)yyn+ 1-2yny2.
8.(8分)已知ax=5,ay=4,求下列各式的值:
(1)ax+2. (2)ax+y+1.
【拓展延伸】
9.(10分)已知2a=3,2b=6, 2c=12,試確定a,b,c之間的關(guān)系.
答案解析
1.【解析】選A.(-x)2x3=x2x3=x2+3=x5.
2.【解析】選B.x4x2=x4+2=x6,故①錯(cuò)誤;x3x3=x3+3=x6,故②錯(cuò)誤;a5與a7不是同類項(xiàng),不能合并,故③錯(cuò)誤;(-a)2(- a2)=a2(-a2)=-a2a2=-a2+2=-a4,故④正確;a4a3=a4+3=a7,故⑤正確.
3.【解 析】選B.A,D選項(xiàng)底數(shù)不相同,不是同底數(shù)冪的乘法,C選項(xiàng)不是乘法;(x+y)2(-x-y)=-(x+y)2(x+y)=-(x+y)3.
4.【解析】根據(jù)同底數(shù)冪的乘法法 則同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加,所以aa 6=a1+6=a7.
答案:a7
5.【解析】因?yàn)?2n-224=2n-2+4=2n+2,64=26,
所以2n+2=26,即n+2=6,解得n=4.
答案:4
6.【解析】因?yàn)?x2x8=2x2x23=2x+x+3 ,
所以x+x+3=13,解得x=5.
答案:5
7.【解析】(1)(-3)3(-3)4(-3)=(-3)3+4+1=(-3)8=38.
(2)a3a2-a(-a)2a2=a3+2-aa2a2
=a5-a5=0.
(3)(2m-n)4(n-2m)3(2m-n)6
=(n-2m)4(n-2m)3(n-2m)6
=(n-2m)4+3+6=(n-2m)13.
(4)yyn+1-2yny2=yn+1+1-2yn+2
=yn+2-2yn+2=(1-2)yn+2
=-yn+2.
8.【解析】(1)ax+2=axa2=5a2.
(2)ax+y+1=axaya=54a=20a.
9.【解析】方法一:因?yàn)?2 =322=62,
所以2c=12=322=2a22=2a+2,
即c=a+2,①
又因?yàn)?c=12=62=2b2=2b+1,
所以c=b+1,②
①+②得2c=a+b+3.
方法二:因?yàn)?b=6=32=2a2=2a+1,
所以b=a+1,①
又因?yàn)?c=12=62=2b2=2b+1,
所以c=b+1,②
、-②得2b=a+c.
初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總5
1.消元:將未知數(shù)的個(gè)數(shù)由多化少,逐一解決的想法,叫做消元思想。
歸納:基本思路:“消元”——把“二元”變?yōu)椤耙辉薄?/p>
2.代入消元:將一個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的式子表示出來,再代入另一個(gè)方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的解,這種方法叫做代入消元法,簡(jiǎn)稱代入法。
3.加減消元法:當(dāng)兩個(gè)方程中同一未知數(shù)的系數(shù)相反或相等時(shí),將兩個(gè)方程的兩邊分別相加或相減,就能消去這個(gè)未知數(shù),這種方法叫做加減消元法,簡(jiǎn)稱加減法。
4.教科書中沒有的幾種解法
(1)加減-代入混合使用的方法:
特點(diǎn):兩方程相加減,單個(gè)x或單個(gè)y,這樣就適用接下來的代入消元。
(2)換元法
特點(diǎn):兩方程中都含有相同的代數(shù)式,換元后可簡(jiǎn)化方程也是主要原因。
(3)設(shè)參數(shù)法
初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總6
一、目標(biāo)與要求
1.了解全面調(diào)查的概念;會(huì)設(shè)計(jì)簡(jiǎn)單的調(diào)查問卷,收集數(shù)據(jù);掌握劃記法,會(huì)用表格整理數(shù)據(jù);會(huì)畫扇形統(tǒng)計(jì)圖,能用統(tǒng)計(jì)圖描述數(shù)據(jù);經(jīng)歷統(tǒng)計(jì)調(diào)查的一般過程,體驗(yàn)統(tǒng)計(jì)與生活的關(guān)系。
2.經(jīng)歷數(shù)據(jù)的收集、整理和分析的模擬過程,了解抽樣調(diào)查、樣本、個(gè)體與總體等統(tǒng)計(jì)概念;學(xué)會(huì)從樣本中分析、歸納出較為正確的結(jié)論,增強(qiáng)用統(tǒng)計(jì)方法解決問題的意識(shí)。
3.理解頻數(shù)、頻數(shù)分布的意義,學(xué)會(huì)制作頻數(shù)分布表;學(xué)會(huì)畫頻數(shù)分布直方圖和頻數(shù)折線圖。
二、重點(diǎn)
學(xué)會(huì)畫頻數(shù)分布直方圖;
分層抽樣的方法和樣本的分析、歸納;
抽樣調(diào)查、樣本、總體等概念以及用樣本估計(jì)總體的思想;
全面調(diào)查的過程(數(shù)據(jù)的收集、整理、描述)。
三、難點(diǎn)
繪制扇形統(tǒng)計(jì)圖;
樣本的抽取;
分層抽樣方案的制定;
確定組距和組數(shù)。
初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總7
初一數(shù)學(xué)下冊(cè)期末考試知識(shí)點(diǎn)總結(jié)一(蘇教版)
第七章 平面圖形的認(rèn)識(shí)(二) 1
第八章 冪的運(yùn)算 2
第九章 整式的乘法與因式分解 3
第十章 二元一次方程組 4
第十一章 一元一次不等式 4
第十二章 證明 9
第七章 平面圖形的認(rèn)識(shí)(二)
一、知識(shí)點(diǎn):
1、“三線八角”
、 如何由線找角:一看線,二看型。
同位角是“F”型;
內(nèi)錯(cuò)角是“Z”型;
同旁內(nèi)角是“U”型。
、 如何由角找線:組成角的三條線中的公共直線就是截線。
2、平行公理:
如果兩條直線都和第三條直線平行,那么這兩條直線也平行。
簡(jiǎn)述:平行于同一條直線的兩條直線平行。
補(bǔ)充定理:
如果兩條直線都和第三條直線垂直,那么這兩條直線也平行。
簡(jiǎn)述:垂直于同一條直線的兩條直線平行。
3、平行線的判定和性質(zhì):
判定定理 性質(zhì)定理
條件 結(jié)論 條件 結(jié)論
同位角相等 兩直線平行 兩直線平行 同位角相等
內(nèi)錯(cuò)角相等 兩直線平行 兩直線平行 內(nèi)錯(cuò)角相等
同旁內(nèi)角互補(bǔ) 兩直線平行 兩直線平行 同旁內(nèi)角互補(bǔ)
4、圖形平移的性質(zhì):
圖形經(jīng)過平移,連接各組對(duì)應(yīng)點(diǎn)所得的線段互相平行(或在同一直線上)并且相等。
5、三角形三邊之間的關(guān)系:
三角形的任意兩邊之和大于第三邊;
三角形的任意兩邊之差小于第三邊。
若三角形的三邊分別為a、b、c,
則
6、三角形中的主要線段:
三角形的高、角平分線、中線。
注意:①三角形的高、角平分線、中線都是線段。
、诟、角平分線、中線的應(yīng)用。
7、三角形的內(nèi)角和:
三角形的3個(gè)內(nèi)角的和等于180°;
直角三角形的兩個(gè)銳角互余;
三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和;
三角形的一個(gè)外角大于與它不相鄰的任意一個(gè)內(nèi)角。
8、多邊形的內(nèi)角和:
n邊形的內(nèi)角和等于(n-2)180°;
任意多邊形的外角和等于360°。
第八章 冪的運(yùn)算
冪(p5
初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總8
一個(gè)正數(shù)如果有平方根,那么必定有兩個(gè),它們互為相反數(shù)。顯然,如果我們知道了這兩個(gè)平方根的一個(gè),那么就可以及時(shí)的根據(jù)相反數(shù)的概念得到它的另一個(gè)平方根。
如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根。a的算術(shù)平方根記為,讀作根號(hào)a,a叫做被開方數(shù)。
規(guī)定:0的平方根是0。
負(fù)數(shù)在實(shí)數(shù)范圍內(nèi)不能開平方,只有在復(fù)數(shù)范圍內(nèi),才可以開平方根。例如:-1的平方根為1i,-9的平方根為3i。
平方根包含了算術(shù)平方根,算術(shù)平方根是平方根中的一種。
任何復(fù)數(shù)都有平方根。
算術(shù)平方根為:a=a(a為非負(fù)數(shù))
被開方數(shù)是乘方運(yùn)算里的冪。
求平方根可通過逆運(yùn)算平方來求。
開平方:求一個(gè)非負(fù)數(shù)a的平方根的運(yùn)算叫做開平方,其中a叫做被開方數(shù)。
若x的平方等于a,那么x就叫做a的平方根,即a=x(a為非負(fù)數(shù))
初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總9
1. 平面上不相重合的兩條直線之間的位置關(guān)系為_______或________
2. 兩條直線相交所成的四個(gè)角中,相鄰的兩個(gè)角叫做鄰補(bǔ)角,特點(diǎn)是兩個(gè)角共用一條邊,另一條邊互為反向延長(zhǎng)線,性質(zhì)是鄰補(bǔ)角互補(bǔ);相對(duì)的兩個(gè)角叫做對(duì)頂角,特點(diǎn)是它們的兩條邊互為反向延長(zhǎng)線。性質(zhì)是對(duì)頂角相等。P3 例;P8 2題;P9 7題;P35 2(2);P35 3題
3. 兩條直線相交所成的四個(gè)角中,如果有一個(gè)角為90度,則稱這兩條直線互相垂直。其中一條直線叫做另外一條直線的垂線,他們的交點(diǎn)稱為垂足。
4. 垂直三要素:垂直關(guān)系,垂直記號(hào),垂足
5. 做直角三角形的高:兩條直角邊即是鈍角三角形的高,只要做出斜邊上的高即可。
6.做鈍角三角形的高:最長(zhǎng)的邊上的高只要向最長(zhǎng)邊引垂線即可,另外兩條邊上的高過邊所對(duì)的頂點(diǎn)向該邊的延長(zhǎng)線做垂線。
7. 垂直公理:過一點(diǎn)有且只有一條直線與已知直線垂直。
8. 垂線段最短;
9. 點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度。
10. 兩條直線被第三條直線所截:同位角F(在兩條直線的同一旁,第三條直線的同一側(cè)),內(nèi)錯(cuò)角Z(在兩條直線內(nèi)部,位于第三條直線兩側(cè)),同旁內(nèi)角U(在兩條直線內(nèi)部,位于第三條直線同側(cè))。
P7 例、練習(xí)1
11. 平行公理:過直線外一點(diǎn)有且只有一條直線與已知直線平行。
12. 如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。如果b//a,c//a,那么b//c P17 4題
13. 平行線的判定。P15 例 結(jié)論:在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行。
P15 練習(xí);P17 7題;P36 8題。
14. 平行線的性質(zhì)。P21 練習(xí)1,2;P23 6題
15. 命題:如果+題設(shè),那么+結(jié)論。P22練習(xí)1
16. 真、假命題P24 11題;P37 12題
17. 平移的性質(zhì)P28歸納
初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總10
一、整式
單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。
a)由數(shù)與字母的積組成的代數(shù)式叫做單項(xiàng)式。單獨(dú)一個(gè)數(shù)或字母也是單項(xiàng)式。
b)單項(xiàng)式的系數(shù)是這個(gè)單項(xiàng)式的數(shù)字因數(shù),作為單項(xiàng)式的系數(shù),必須連同數(shù)字前面的性質(zhì)符號(hào),如果一個(gè)單項(xiàng)式只是字母的積,并非沒有系數(shù),系數(shù)為1或-1。
c)一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)(注意:常數(shù)項(xiàng)的單項(xiàng)式次數(shù)為0)
a)幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。在多項(xiàng)式中,每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。其中,不含字母的項(xiàng)叫做常數(shù)項(xiàng)。一個(gè)多項(xiàng)式中,次數(shù)最高項(xiàng)的次數(shù),叫做這個(gè)多項(xiàng)式的次數(shù).
b)單項(xiàng)式和多項(xiàng)式都有次數(shù),含有字母的單項(xiàng)式有系數(shù),多項(xiàng)式?jīng)]有系數(shù)。多項(xiàng)式的每一項(xiàng)都是單項(xiàng)式,一個(gè)多項(xiàng)式的項(xiàng)數(shù)就是這個(gè)多項(xiàng)式作為加數(shù)的單項(xiàng)式的個(gè)數(shù)。多項(xiàng)式中每一項(xiàng)都有它們各自的次數(shù),但是它們的次數(shù)不可能都作是為這個(gè)多項(xiàng)式的次數(shù),一個(gè)多項(xiàng)式的次數(shù)只有一個(gè),它是所含各項(xiàng)的次數(shù)中最高的那一項(xiàng)次數(shù).
a)整式的加減實(shí)質(zhì)上就是去括號(hào)后,合并同類項(xiàng),運(yùn)算結(jié)果是一個(gè)多項(xiàng)式或是單項(xiàng)式.
b)括號(hào)前面是“-”號(hào),去括號(hào)時(shí),括號(hào)內(nèi)各項(xiàng)要變號(hào),一個(gè)數(shù)與多項(xiàng)式相乘時(shí),這個(gè)數(shù)與括號(hào)內(nèi)各項(xiàng)都要相乘。
二、同底數(shù)冪的乘法
(,n都是整數(shù))是冪的運(yùn)算中最基本的法則,在應(yīng)用法則運(yùn)算時(shí),要注意以下幾點(diǎn):
a)法則使用的`前提條件是:冪的底數(shù)相同而且是相乘時(shí),底數(shù)a可以是一個(gè)具體的數(shù)字式字母,也可以是一個(gè)單項(xiàng)或多項(xiàng)式;
b) 指數(shù)是1時(shí),不要誤以為沒有指數(shù);
c)不要將同底數(shù)冪的乘法與整式的加法相混淆,對(duì)乘法,只要底數(shù)相同指數(shù)就可以相加;而對(duì)于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;
d)當(dāng)三個(gè)或三個(gè)以上同底數(shù)冪相乘時(shí),法則可推廣為(其中、n、p均為整數(shù));
e)公式還可以逆用:(、n均為整數(shù))
a)冪的乘方法則:(,n都是整數(shù)數(shù))是冪的乘法法則為基礎(chǔ)推導(dǎo)出來的,但兩者不能混淆。
b)(,n都為整數(shù))
c) 底數(shù)有負(fù)號(hào)時(shí),運(yùn)算時(shí)要注意,底數(shù)是a與(-a)時(shí)不是同底,但可以利用乘方法則化成同底,如將(-a)3化成-a3
d)底數(shù)有時(shí)形式不同,但可以化成相同。
e) 要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
f) 積的乘方法則:積的乘方,等于把積每一個(gè)因式分別乘方,再把所得的冪相乘,即(ab)n=anbn (n為正整數(shù))。
g) 冪的乘方與積乘方法則均可逆向運(yùn)用。
三、同底數(shù)冪的除法
a)同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即(a≠0).
b)在應(yīng)用時(shí)需要注意以下幾點(diǎn):
1) 法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a0。
2)任何不等于0的數(shù)的0次冪等于1,即a0=1(a≠0) ,如100=1 ,(-2.50=1),則00無意義。
c)任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個(gè)數(shù)的p的次冪的倒數(shù),即( a≠0,p是正整數(shù)),而0-1,0-3都是無意義的;當(dāng)a>0時(shí),a-p的值一定是正的,當(dāng)a<0時(shí),a-p的值可能是正也可能是負(fù)的,如, d)運(yùn)算要注意運(yùn)算順序。
四、整式的乘法
單項(xiàng)式相乘,它們的系數(shù)、相同字母分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個(gè)因式。
單項(xiàng)式乘法法則在運(yùn)用時(shí)要注意以下幾點(diǎn):
a)積的系數(shù)等于各因式系數(shù)積,先確定符號(hào),再計(jì)算絕對(duì)值。這時(shí)容易出現(xiàn)的錯(cuò)誤的是,將系數(shù)相乘與指數(shù)相加混淆;
b)相同字母相乘,運(yùn)用同底數(shù)冪的乘法法則;
c)只在一個(gè)單項(xiàng)式里含有的字母,要連同它的指數(shù)作為積的一個(gè)因式;
d)單項(xiàng)式乘法法則對(duì)于三個(gè)以上的單項(xiàng)式相乘同樣適用;
e)單項(xiàng)式乘以單項(xiàng)式,結(jié)果仍是一個(gè)單項(xiàng)式。
單項(xiàng)式乘以多項(xiàng)式,是通過乘法對(duì)加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
單項(xiàng)式與多項(xiàng)式相乘時(shí)要注意以下幾點(diǎn):
a)單項(xiàng)式與多項(xiàng)式相乘,積是一個(gè)多項(xiàng)式,其項(xiàng)數(shù)與多項(xiàng)式的項(xiàng)數(shù)相同;
b)運(yùn)算時(shí)要注意積的符號(hào),多項(xiàng)式的每一項(xiàng)都包括它前面的符號(hào);
c) 在混合運(yùn)算時(shí),要注意運(yùn)算順序。
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式中的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加。
多項(xiàng)式與多項(xiàng)式相乘時(shí)要注意以下幾點(diǎn):
a)多項(xiàng)式與多項(xiàng)式相乘要防止漏項(xiàng),檢查的方法是:在沒有合并同類項(xiàng)之前,積的項(xiàng)數(shù)應(yīng)等于原兩個(gè)多項(xiàng)式項(xiàng)數(shù)的積;
b)多項(xiàng)式相乘的結(jié)果應(yīng)注意合并同類項(xiàng);
c)對(duì)含有同一個(gè)字母的一次項(xiàng)系數(shù)是1的兩個(gè)一次二項(xiàng)式相乘(x+a)(x+b)=x2+(a+b)x+ab,其二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)等于兩個(gè)因式中常數(shù)項(xiàng)的和,常數(shù)項(xiàng)是兩個(gè)因式中常數(shù)項(xiàng)的積。對(duì)于一次項(xiàng)系數(shù)不為1的兩個(gè)一次二項(xiàng)式(x+a)和(nx+b)相乘可以得到。
五.平方差公式
兩數(shù)和與這兩數(shù)差的積,等于它們的平方差,即。
其結(jié)構(gòu)特征是:
a)公式左邊是兩個(gè)二項(xiàng)式相乘,兩個(gè)二項(xiàng)式中第一項(xiàng)相同,第二項(xiàng)互為相反數(shù);
b) 公式右邊是兩項(xiàng)的平方差,即相同項(xiàng)的平方與相反項(xiàng)的平方之差。
六、完全平方公式
兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍,即;
口訣:首平方,尾平方,2倍乘積在中央;
a)公式左邊是二項(xiàng)式的完全平方;
b)公式右邊共有三項(xiàng),是二項(xiàng)式中二項(xiàng)的平方和,再加上或減去這兩項(xiàng)乘積的2倍。
c)在運(yùn)用完全平方公式時(shí),要注意公式右邊中間項(xiàng)的符號(hào),以及避免出現(xiàn)這樣的錯(cuò)誤。
七、整式的除法
單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式;
多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加,其特點(diǎn)是把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成單項(xiàng)式除以單項(xiàng)式,所得商的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同,另外還要特別注意符號(hào)。
初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總11
一、整式
單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。
a)由數(shù)與字母的積組成的代數(shù)式叫做單項(xiàng)式。單獨(dú)一個(gè)數(shù)或字母也是單項(xiàng)式。
b)單項(xiàng)式的系數(shù)是這個(gè)單項(xiàng)式的數(shù)字因數(shù),作為單項(xiàng)式的系數(shù),必須連同數(shù)字前面的性質(zhì)符號(hào),如果一個(gè)單項(xiàng)式只是字母的積,并非沒有系數(shù),系數(shù)為1或-1。
c)一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)(注意:常數(shù)項(xiàng)的單項(xiàng)式次數(shù)為0)
a)幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。在多項(xiàng)式中,每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。其中,不含字母的項(xiàng)叫做常數(shù)項(xiàng)。一個(gè)多項(xiàng)式中,次數(shù)最高項(xiàng)的次數(shù),叫做這個(gè)多項(xiàng)式的次數(shù).
b)單項(xiàng)式和多項(xiàng)式都有次數(shù),含有字母的單項(xiàng)式有系數(shù),多項(xiàng)式?jīng)]有系數(shù)。多項(xiàng)式的每一項(xiàng)都是單項(xiàng)式,一個(gè)多項(xiàng)式的項(xiàng)數(shù)就是這個(gè)多項(xiàng)式作為加數(shù)的單項(xiàng)式的個(gè)數(shù)。多項(xiàng)式中每一項(xiàng)都有它們各自的次數(shù),但是它們的次數(shù)不可能都作是為這個(gè)多項(xiàng)式的次數(shù),一個(gè)多項(xiàng)式的次數(shù)只有一個(gè),它是所含各項(xiàng)的次數(shù)中最高的那一項(xiàng)次數(shù).
a)整式的加減實(shí)質(zhì)上就是去括號(hào)后,合并同類項(xiàng),運(yùn)算結(jié)果是一個(gè)多項(xiàng)式或是單項(xiàng)式.
b)括號(hào)前面是“-”號(hào),去括號(hào)時(shí),括號(hào)內(nèi)各項(xiàng)要變號(hào),一個(gè)數(shù)與多項(xiàng)式相乘時(shí),這個(gè)數(shù)與括號(hào)內(nèi)各項(xiàng)都要相乘。
二、同底數(shù)冪的乘法
(m,n都是整數(shù))是冪的運(yùn)算中最基本的法則,在應(yīng)用法則運(yùn)算時(shí),要注意以下幾點(diǎn):
a)法則使用的前提條件是:冪的底數(shù)相同而且是相乘時(shí),底數(shù)a可以是一個(gè)具體的數(shù)字式字母,也可以是一個(gè)單項(xiàng)或多項(xiàng)式;
b)指數(shù)是1時(shí),不要誤以為沒有指數(shù);
c)不要將同底數(shù)冪的乘法與整式的加法相混淆,對(duì)乘法,只要底數(shù)相同指數(shù)就可以相加;而對(duì)于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;
d)當(dāng)三個(gè)或三個(gè)以上同底數(shù)冪相乘時(shí),法則可推廣為
(其中m、n、p均為整數(shù));
e)公式還可以逆用:
(m、n均為整數(shù))
a)冪的乘方法則:
(m,n都是整數(shù)數(shù))是冪的乘法法則為基礎(chǔ)推導(dǎo)出來的,但兩者不能混淆。
b)
(m,n都為整數(shù))。
c)底數(shù)有負(fù)號(hào)時(shí),運(yùn)算時(shí)要注意,底數(shù)是a與(-a)時(shí)不是同底,但可以利用乘方法則化成同底,如將(-a)3化成-a3
d)底數(shù)有時(shí)形式不同,但可以化成相同。
e)要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
f)積的乘方法則:積的乘方,等于把積每一個(gè)因式分別乘方,再把所得的冪相乘,即(ab)n=anbn(n為正整數(shù))。
g)冪的乘方與積乘方法則均可逆向運(yùn)用。
三、同底數(shù)冪的除法
a)同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即
(a≠0).
b)在應(yīng)用時(shí)需要注意以下幾點(diǎn):
1)法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a0。
2)任何不等于0的數(shù)的0次冪等于1,即a0=1(a≠0),如100=1,(-2.50=1),則00無意義。
c)任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個(gè)數(shù)的p的次冪的倒數(shù),即
(a≠0,p是正整數(shù)),而0-1,0-3都是無意義的;當(dāng)a>0時(shí),a-p的值一定是正的,當(dāng)a<0時(shí),a-p的值可能是正也可能是負(fù)的,如
,d)運(yùn)算要注意運(yùn)算順序。
四、整式的乘法
單項(xiàng)式相乘,它們的系數(shù)、相同字母分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個(gè)因式。
單項(xiàng)式乘法法則在運(yùn)用時(shí)要注意以下幾點(diǎn):
a)積的系數(shù)等于各因式系數(shù)積,先確定符號(hào),再計(jì)算絕對(duì)值。這時(shí)容易出現(xiàn)的錯(cuò)誤的是,將系數(shù)相乘與指數(shù)相加混淆;
b)相同字母相乘,運(yùn)用同底數(shù)冪的乘法法則;
c)只在一個(gè)單項(xiàng)式里含有的字母,要連同它的指數(shù)作為積的一個(gè)因式;
d)單項(xiàng)式乘法法則對(duì)于三個(gè)以上的單項(xiàng)式相乘同樣適用;
e)單項(xiàng)式乘以單項(xiàng)式,結(jié)果仍是一個(gè)單項(xiàng)式。
單項(xiàng)式乘以多項(xiàng)式,是通過乘法對(duì)加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
單項(xiàng)式與多項(xiàng)式相乘時(shí)要注意以下幾點(diǎn):
a)單項(xiàng)式與多項(xiàng)式相乘,積是一個(gè)多項(xiàng)式,其項(xiàng)數(shù)與多項(xiàng)式的項(xiàng)數(shù)相同;
b)運(yùn)算時(shí)要注意積的符號(hào),多項(xiàng)式的每一項(xiàng)都包括它前面的符號(hào);
c)在混合運(yùn)算時(shí),要注意運(yùn)算順序。
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式中的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加。
多項(xiàng)式與多項(xiàng)式相乘時(shí)要注意以下幾點(diǎn):
a)多項(xiàng)式與多項(xiàng)式相乘要防止漏項(xiàng),檢查的方法是:在沒有合并同類項(xiàng)之前,積的項(xiàng)數(shù)應(yīng)等于原兩個(gè)多項(xiàng)式項(xiàng)數(shù)的積;
b)多項(xiàng)式相乘的結(jié)果應(yīng)注意合并同類項(xiàng);
c)對(duì)含有同一個(gè)字母的一次項(xiàng)系數(shù)是1的兩個(gè)一次二項(xiàng)式相乘(x+a)(x+b)=x2+(a+b)x+ab,其二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)等于兩個(gè)因式中常數(shù)項(xiàng)的和,常數(shù)項(xiàng)是兩個(gè)因式中常數(shù)項(xiàng)的積。對(duì)于一次項(xiàng)系數(shù)不為1的兩個(gè)一次二項(xiàng)式(mx+a)和(nx+b)相乘可以得到
。
五.平方差公式
兩數(shù)和與這兩數(shù)差的積,等于它們的平方差,即
。
其結(jié)構(gòu)特征是:
a)公式左邊是兩個(gè)二項(xiàng)式相乘,兩個(gè)二項(xiàng)式中第一項(xiàng)相同,第二項(xiàng)互為相反數(shù);
b)公式右邊是兩項(xiàng)的平方差,即相同項(xiàng)的平方與相反項(xiàng)的平方之差。
六、完全平方公式
兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍,即
;
口訣:首平方,尾平方,2倍乘積在中央;
a)公式左邊是二項(xiàng)式的完全平方;
b)公式右邊共有三項(xiàng),是二項(xiàng)式中二項(xiàng)的平方和,再加上或減去這兩項(xiàng)乘積的2倍。
c)在運(yùn)用完全平方公式時(shí),要注意公式右邊中間項(xiàng)的符號(hào),以及避免出現(xiàn)
這樣的錯(cuò)誤。
七、整式的除法
單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式;
多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加,其特點(diǎn)是把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成單項(xiàng)式除以單項(xiàng)式,所得商的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同,另外還要特別注意符號(hào)。
初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總12
一、目標(biāo)與要求
1。感受生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義,通過解決簡(jiǎn)單的實(shí)際問題,使學(xué)生自發(fā)地尋找不等式的解,會(huì)把不等式的解集正確地表示到數(shù)軸上;
2。經(jīng)歷由具體實(shí)例建立不等模型的過程,經(jīng)歷探究不等式解與解集的不同意義的過程,滲透數(shù)形結(jié)合思想;
3。通過對(duì)不等式、不等式解與解集的探究,引導(dǎo)學(xué)生在獨(dú)立思考的基礎(chǔ)上積極參與對(duì)數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識(shí);讓學(xué)生充分體會(huì)到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個(gè)領(lǐng)域。
三、重點(diǎn)
理解并掌握不等式的性質(zhì);
正確運(yùn)用不等式的性質(zhì);
建立方程解決實(shí)際問題,會(huì)解ax+b=cx+d類型的一元一次方程;
尋找實(shí)際問題中的不等關(guān)系,建立數(shù)學(xué)模型;
一元一次不等式組的解集和解法。
四、難點(diǎn)
一元一次不等式組解集的理解;
弄清列不等式解決實(shí)際問題的思想方法,用去括號(hào)法解一元一次不等式;
正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。
五、知識(shí)點(diǎn)、概念總結(jié)
1。不等式:用符號(hào),,,表示大小關(guān)系的式子叫做不等式。
2。不等式分類:不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。
一般地,用純粹的大于號(hào)、小于號(hào),連接的不等式稱為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào)),連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。
3。不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。
4。不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
5。不等式解集的表示方法:
(1)用不等式表示:一般的,一個(gè)含未知數(shù)的不等式有無數(shù)個(gè)解,其解集是一個(gè)范圍,這個(gè)范圍可用最簡(jiǎn)單的不等式表達(dá)出來,例如:x—12的解集是x3
。2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個(gè)解,用數(shù)軸表示不等式的解集要注意兩點(diǎn):一是定邊界線;二是定方向。
6。解不等式可遵循的一些同解原理
。1)不等式F(x) G(x)與不等式 G(x)F(x)同解。
。2)如果不等式F(x) G(x)的定義域被解析式H(x)的定義域所包含,那么不等式 F(x) G(x)與不等式H(x)+F(x)
。3)如果不等式F(x) G(x)的定義域被解析式H(x)的定義域所包含,并且H(x)0,那么不等式F(x) G(x)與不等式H(x)F(x)0,那么不等式F(x) G(x)與不等式H(x)F(x)H(x)G(x)同解。
7。不等式的性質(zhì):
。1)如果xy,那么yy;(對(duì)稱性)
。2)如果xy,y那么x(傳遞性)
。3)如果xy,而z為任意實(shí)數(shù)或整式,那么x+z(加法則)
。4)如果xy,z0,那么xz如果xy,z0,那么xz
。5)如果xy,z0,那么xzy如果xy,z0,那么xz
。6)如果xy,mn,那么x+my+n(充分不必要條件)
。7)如果x0,m0,那么xmyn
(8)如果x0,那么x的n次冪y的n次冪(n為正數(shù))
8。一元一次不等式:不等式的左、右兩邊都是整式,只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。
9。解一元一次不等式的一般順序:
。1)去分母 (運(yùn)用不等式性質(zhì)2、3)
。2)去括號(hào)
(3)移項(xiàng) (運(yùn)用不等式性質(zhì)1)
。4)合并同類項(xiàng)
。5)將未知數(shù)的系數(shù)化為1 (運(yùn)用不等式性質(zhì)2、3)
(6)有些時(shí)候需要在數(shù)軸上表示不等式的解集
10。 一元一次不等式與一次函數(shù)的綜合運(yùn)用:
一般先求出函數(shù)表達(dá)式,再化簡(jiǎn)不等式求解。
11。一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一一起,就組成
了一個(gè)一元一次不等式組。
12。解一元一次不等式組的步驟:
。1) 求出每個(gè)不等式的解集;
(2) 求出每個(gè)不等式的解集的公共部分;(一般利用數(shù)軸)
。3) 用代數(shù)符號(hào)語言來表示公共部分。(也可以說成是下結(jié)論)
13。解不等式的訣竅
。1)大于大于取大的(大大大);
例如:X—1,X2 ,不等式組的解集是X2
。2)小于小于取小的(小小小);
例如:X—4,X—6,不等式組的解集是X—6
(3)大于小于交叉取中間;
。4)無公共部分分開無解了;
14。解不等式組的口訣
(1)同大取大
例如,x2,x3 ,不等式組的解集是X3
。2)同小取小
例如,x2,x3 ,不等式組的解集是X2
(3)大小小大中間找
例如,x2,x1,不等式組的解集是1
。4)大大小小不用找
例如,x2,x3,不等式組無解
15。應(yīng)用不等式組解決實(shí)際問題的步驟
(1)審清題意
。2)設(shè)未知數(shù),根據(jù)所設(shè)未知數(shù)列出不等式組
。3)解不等式組
(4)由不等式組的解確立實(shí)際問題的解
。5)作答
16。用不等式組解決實(shí)際問題:其公共解不一定就為實(shí)際問題的解,所以需結(jié)合生活實(shí)際具體分析,最后確定結(jié)果。
初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總13
一、目標(biāo)與要求
1.理解對(duì)頂角和鄰補(bǔ)角的概念,能在圖形中辨認(rèn);
2.掌握對(duì)頂角相等的性質(zhì)和它的推證過程;
3.通過在圖形中辨認(rèn)對(duì)頂角和鄰補(bǔ)角,培養(yǎng)學(xué)生的識(shí)圖能力。
二、重點(diǎn)
在較復(fù)雜的圖形中準(zhǔn)確辨認(rèn)對(duì)頂角和鄰補(bǔ)角;
兩條直線互相垂直的概念、性質(zhì)和畫法;
同位角、內(nèi)錯(cuò)角、同旁內(nèi)角的概念與識(shí)別。
三、難點(diǎn)
在較復(fù)雜的圖形中準(zhǔn)確辨認(rèn)對(duì)頂角和鄰補(bǔ)角;
對(duì)點(diǎn)到直線的距離的概念的理解;
對(duì)平行線本質(zhì)屬性的理解,用幾何語言描述圖形的性質(zhì);
能區(qū)分平行線的性質(zhì)和判定,平行線的性質(zhì)與判定的混合應(yīng)用。
四、知識(shí)框架
五、知識(shí)點(diǎn)、概念總結(jié)
1.鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角。
2.對(duì)頂角:一個(gè)角的兩邊分別是另一個(gè)叫的兩邊的反向延長(zhǎng)線,像這樣的兩個(gè)角互為對(duì)頂角。
3.對(duì)頂角和鄰補(bǔ)角的關(guān)系
4.垂直:兩條直線、兩個(gè)平面相交,或一條直線與一個(gè)平面相交,如果交角成直角,叫做互相垂直。
5.垂線:兩條直線相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線。
6.垂足:如果兩直線的夾角為直角,那么就說這兩條直線互相垂直,它們的交點(diǎn)叫做垂足。
7.垂線性質(zhì)
(1)在同一平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。
(2)連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。簡(jiǎn)單說成:垂線段最短。
(3)點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度,叫做點(diǎn)到直線的距離。
8.同位角、內(nèi)錯(cuò)角、同旁內(nèi)角:
同位角:1與5像這樣具有相同位置關(guān)系的一對(duì)角叫做同位角。
內(nèi)錯(cuò)角:2與6像這樣的一對(duì)角叫做內(nèi)錯(cuò)角。
同旁內(nèi)角:2與5像這樣的一對(duì)角叫做同旁內(nèi)角。
9.平行:在平面上兩條直線、空間的兩個(gè)平面或空間的一條直線與一平面之間沒有任何公共點(diǎn)時(shí),稱它們平行。
10.平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。
11.命題:判斷一件事情的語句叫命題。
12.真命題:正確的命題,即如果命題的題設(shè)成立,那么結(jié)論一定成立。
13.假命題:條件和結(jié)果相矛盾的命題是假命題。
14.平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,圖形的這種移動(dòng)叫做平移平移變換,簡(jiǎn)稱平移。
15.對(duì)應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動(dòng)后得到的,這樣的兩個(gè)點(diǎn)叫做對(duì)應(yīng)點(diǎn)。
16.定理與性質(zhì)
對(duì)頂角的性質(zhì):對(duì)頂角相等。
17.垂線的性質(zhì):
性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。
性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。
18.平行公理:經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
19.平行線的性質(zhì):
性質(zhì)1:兩直線平行,同位角相等。
性質(zhì)2:兩直線平行,內(nèi)錯(cuò)角相等。
性質(zhì)3:兩直線平行,同旁內(nèi)角互補(bǔ)。
20.平行線的判定:
判定1:同位角相等,兩直線平行。
判定2:內(nèi)錯(cuò)角相等,兩直線平行。
判定3:同旁內(nèi)角相等,兩直線平行。
21.命題的擴(kuò)展
三種命題
(1)對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論分別是另外一個(gè)命題的結(jié)論和條件,那么這兩個(gè)命題叫做互逆命題,其中一個(gè)命題叫做原命題,另外一個(gè)命題叫做原命題的逆命題。
(2)對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論分別是另外一個(gè)命題的條件的否定和結(jié)論的否定,那么這兩個(gè)命題叫做互否命題,其中一個(gè)命題叫做原命題,另外一個(gè)命題叫做原命題的否命題。
(3)對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論分別是另外一個(gè)命題的結(jié)論的否定和條件的否定,那么這兩個(gè)命題叫做互為逆否命題,其中一個(gè)命題叫做原命題,另外一個(gè)命題叫做原命題的逆否命題。
四種命題的相互關(guān)系
(1)四種命題的相互關(guān)系:原命題與逆命題互逆,否命題與原命題互否,原命題與逆否命題相互逆否,逆命題與否命題相互逆否,逆命題與逆否命題互否,逆否命題與否命題互逆。
(2)四種命題的真假關(guān)系:
兩個(gè)命題互為逆否命題,它們有相同的真假性。兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系
命題之間的關(guān)系
(1)能夠判斷真假的陳述句叫做命題,正確的命題叫做真命題,錯(cuò)誤的命題叫做假命題。
(2)若p,則q形式的命題中p叫做命題的條件,q叫做命題的結(jié)論。
(3)命題的分類:
A:原命題:一個(gè)命題的本身稱之為原命題,如:若x1,則f(x)=(x-1)2單調(diào)遞增。
B:逆命題:將原命題的條件和結(jié)論顛倒的新命題,如:若f(x)=(x-1)2單調(diào)遞增,則x1.
C:否命題:將原命題的條件和結(jié)論全否定的新命題,但不改變條件和結(jié)論的順序,
如:若x小于1,則f(x)=(x-1)2不單調(diào)遞增。
D:逆否命題:將原命題的條件和結(jié)論顛倒,然后再將條件和結(jié)論全否定的新命題,
如:若f(x)=(x-1)2不單調(diào)遞增,則x小于1.
(4)命題的否定
命題的否定是只將命題的結(jié)論否定的新命題,這與否命題不同。
(5)4種命題及命題的否定的真假性關(guān)系
原命題和逆否命題等價(jià),否命題和逆命題等價(jià),命題的否定與原命題的真假性相反。
充分條件與必要條件
(1)若p,則q為真命題,叫做由p推出q,記作p=q,并且說p是q的充分條件,q是p的必要條件。
(2)若p,則q為假命題,叫做由p推不出q,記作pq,并且說p不是q的充分條件(或p是q的非充分條件),q不是p的必要條件(或q是p的非必要條件)。
充要條件
如果既有p=q,又有q=p,就記作pq,并且說p是q的充分必要條件(或q是p的充分必要條件),簡(jiǎn)稱充要條件。
初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總14
一、目標(biāo)與要求
1、感受生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義,通過解決簡(jiǎn)單的實(shí)際問題,使學(xué)生自發(fā)地尋找不等式的解,會(huì)把不等式的解集正確地表示到數(shù)軸上;
2、經(jīng)歷由具體實(shí)例建立不等模型的過程,經(jīng)歷探究不等式解與解集的不同意義的過程,滲透數(shù)形結(jié)合思想;
3、通過對(duì)不等式、不等式解與解集的探究,引導(dǎo)學(xué)生在獨(dú)立思考的基礎(chǔ)上積極參與對(duì)數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識(shí);讓學(xué)生充分體會(huì)到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個(gè)領(lǐng)域。
二、知識(shí)框架
三、重點(diǎn)
理解并掌握不等式的性質(zhì);
正確運(yùn)用不等式的性質(zhì);
建立方程解決實(shí)際問題,會(huì)解"ax+b=cx+d"類型的一元一次方程;
尋找實(shí)際問題中的不等關(guān)系,建立數(shù)學(xué)模型;
一元一次不等式組的解集和解法。
四、難點(diǎn)
一元一次不等式組解集的理解;
弄清列不等式解決實(shí)際問題的思想方法,用去括號(hào)法解一元一次不等式;
正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。
五、知識(shí)點(diǎn)、概念總結(jié)
1、不等式:用符號(hào)"<",">","≤","≥"表示大小關(guān)系的式子叫做不等式。
2、不等式分類:不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。
一般地,用純粹的大于號(hào)、小于號(hào)">","<"連接的不等式稱為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào))"≥","≤"連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。
3、不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。
4、不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
5、不等式解集的表示方法:
(1)用不等式表示:一般的,一個(gè)含未知數(shù)的不等式有無數(shù)個(gè)解,其解集是一個(gè)范圍,這個(gè)范圍可用最簡(jiǎn)單的不等式表達(dá)出來,例如:x—1≤2的解集是x≤3
(2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個(gè)解,用數(shù)軸表示不等式的解集要注意兩點(diǎn):一是定邊界線;二是定方向。
6、解不等式可遵循的一些同解原理
(1)不等式F(x)< G(x)與不等式 G(x)>F(x)同解。
。2)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,那么不等式 F(x)< G(x)與不等式H(x)+F(x)
(3)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,并且H(x)>0,那么不等式F(x)< G(x)與不等式H(x)F(x)0,那么不等式F(x)< G(x)與不等式H(x)F(x)>H(x)G(x)同解。
7、不等式的性質(zhì):
(1)如果x>y,那么yy;(對(duì)稱性)
。2)如果x>y,y>z;那么x>z;(傳遞性)
。3)如果x>y,而z為任意實(shí)數(shù)或整式,那么x+z>y+z;(加法則)
。4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz
。5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z
(6)如果x>y,m>n,那么x+m>y+n(充分不必要條件)
。7)如果x>y>0,m>n>0,那么xm>yn
。8)如果x>y>0,那么x的n次冪>y的n次冪(n為正數(shù))
8、一元一次不等式:不等式的左、右兩邊都是整式,只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。
9、解一元一次不等式的一般順序:
。1)去分母 (運(yùn)用不等式性質(zhì)2、3)
。2)去括號(hào)
。3)移項(xiàng) (運(yùn)用不等式性質(zhì)1)
。4)合并同類項(xiàng)
。5)將未知數(shù)的系數(shù)化為1 (運(yùn)用不等式性質(zhì)2、3)
(6)有些時(shí)候需要在數(shù)軸上表示不等式的解集
10、 一元一次不等式與一次函數(shù)的綜合運(yùn)用:
一般先求出函數(shù)表達(dá)式,再化簡(jiǎn)不等式求解。
11、一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一一起,就組成
了一個(gè)一元一次不等式組。
12、解一元一次不等式組的步驟:
。1) 求出每個(gè)不等式的解集;
。2) 求出每個(gè)不等式的解集的公共部分;(一般利用數(shù)軸)
(3) 用代數(shù)符號(hào)語言來表示公共部分。(也可以說成是下結(jié)論)
13、解不等式的訣竅
。1)大于大于取大的(大大大);
例如:X>—1,X>2 ,不等式組的解集是X>2
。2)小于小于取小的(小小小);
例如:X<—4,X<—6,不等式組的解集是X<—6
。3)大于小于交叉取中間;
(4)無公共部分分開無解了;
14、解不等式組的口訣
。1)同大取大
例如,x>2,x>3 ,不等式組的解集是X>3
。2)同小取小
例如,x<2,x<3 ,不等式組的解集是X<2
。3)大小小大中間找
例如,x<2,x>1,不等式組的解集是1
(4)大大小小不用找
例如,x<2,x>3,不等式組無解
15、應(yīng)用不等式組解決實(shí)際問題的步驟
。1)審清題意
(2)設(shè)未知數(shù),根據(jù)所設(shè)未知數(shù)列出不等式組
(3)解不等式組
。4)由不等式組的解確立實(shí)際問題的解
(5)作答
16、用不等式組解決實(shí)際問題:其公共解不一定就為實(shí)際問題的解,所以需結(jié)合生活實(shí)際具體分析,最后確定結(jié)果。
初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總15
1.判斷一個(gè)方程是不是二元一次方程,一般要將方程化為一般形式后再根據(jù)定義判斷。
2.二元一次方程的解:一個(gè)二元一次方程有無數(shù)個(gè)解,而每一個(gè)解都是一對(duì)數(shù)值。求二元一次方程的解的方法:若方程中的未知數(shù)為x,y,可任取x的一些值,相應(yīng)的可算出y的值,這樣,就會(huì)得到滿足需要的數(shù)對(duì)。
3.二元一次方程組:兩個(gè)二元一次方程合在一起,就組成了一個(gè)二元一次方程組。作為二元一次方程組的兩個(gè)方程,不一定都含有兩個(gè)未知數(shù),可以其中一個(gè)是一元一次方程,另一個(gè)是二元一次方程。
4.二元一次方程組的解:使二元一次方程組的兩個(gè)方程左右兩邊的值都相等的兩個(gè)未知數(shù)的值,叫做二元一次方程組的解。檢驗(yàn)一對(duì)數(shù)值是不是二元一次方程組的解的方法是,將兩個(gè)未知數(shù)分別代入方程組中的兩個(gè)方程,如果都能滿足這兩個(gè)方程,那么它就是方程組的解。
【初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)】相關(guān)文章:
人教版初一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)11-16
初一數(shù)學(xué)下冊(cè)期末知識(shí)點(diǎn)整理07-04
初一數(shù)學(xué)下冊(cè)實(shí)踐與探索的知識(shí)點(diǎn)09-10
關(guān)于初一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)02-18
初一數(shù)學(xué)下冊(cè)期末知識(shí)點(diǎn)總結(jié)03-26
了初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)10-17
初一下冊(cè)的數(shù)學(xué)知識(shí)點(diǎn)09-04
初一數(shù)學(xué)下冊(cè)第二單元知識(shí)點(diǎn)01-22