亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

初一

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)

時(shí)間:2022-07-14 11:21:15 初一 我要投稿

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總

  在我們的學(xué)習(xí)時(shí)代,說到知識(shí)點(diǎn),大家是不是都習(xí)慣性的重視?知識(shí)點(diǎn)就是掌握某個(gè)問題/知識(shí)的學(xué)習(xí)要點(diǎn)。哪些知識(shí)點(diǎn)能夠真正幫助到我們呢?下面是小編整理的初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總,歡迎閱讀與收藏。

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總1

  ⑴正數(shù)的立方根是正數(shù).⑵負(fù)數(shù)的立方根是負(fù)數(shù).⑶0的立方根是0.一般地,如果一個(gè)數(shù)X的立方等于a,那么這個(gè)數(shù)X就叫做a的立方根(cuberoot,也叫做三次方根)。如2是8的立方根,-3分之2是-27分之8的立方根,0是0的立方根。

  立方和開立方運(yùn)算,互為逆運(yùn)算,初中歷史。

  互為相反數(shù)的兩個(gè)數(shù)的立方根也是互為相反數(shù)。

  負(fù)數(shù)不能開平方,但能開立方。

  立方根如何與其他數(shù)作比較?

  ⑴做這兩個(gè)數(shù)的立方

 、谱鞑

  ⑶比較被開方數(shù)(如三次根號(hào)3大于三次根號(hào)2)

  任何數(shù)(正數(shù)、負(fù)數(shù)、或零)的立方根如果存在的話,必定只有一個(gè).

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總2

  相交線與平行線

  1.同一平面內(nèi),兩直線不平行就相交。

  2.兩條直線相交所成的四個(gè)角中,相鄰的兩個(gè)角叫做鄰補(bǔ)角,特點(diǎn)是兩個(gè)角共用一條邊,另一條邊互為反向延長(zhǎng)線,性質(zhì)是鄰補(bǔ)角互補(bǔ);相對(duì)的兩個(gè)角叫做對(duì)頂角,特點(diǎn)是它們的兩條邊互為反向延長(zhǎng)線。性質(zhì)是對(duì)頂角相等。

  3.垂直定義:兩條直線相交所成的四個(gè)角中,如果有一個(gè)角為90度,則稱這兩條直線互相垂直。其中一條直線叫做另外一條直線的垂線,他們的交點(diǎn)稱為垂足。

  4.垂直三要素:垂直關(guān)系,垂直記號(hào),垂足

  5.垂直公理:過一點(diǎn)有且只有一條直線與已知直線垂直。

  6.垂線段最短;

  7.點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度。

  8.兩條直線被第三條直線所截:同位角F(在兩條直線的同一旁,第三條直線的同一側(cè)),內(nèi)錯(cuò)角Z(在兩條直線內(nèi)部,位于第三條直線兩側(cè)),同旁內(nèi)角U(在兩條直線內(nèi)部,位于第三條直線同側(cè))。

  9.平行公理:過直線外一點(diǎn)有且只有一條直線與已知直線平行。

  10.如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。如果b//a,c//a,那么b//cP174題

  11.平行線的判定。

  結(jié)論:在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行。平行線的性質(zhì):1.兩直線平行,同位角相等。2.兩直線平行,內(nèi)錯(cuò)角相等。3.兩直線平行,同旁內(nèi)角互補(bǔ)。

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總3

  初一下冊(cè)知識(shí)點(diǎn)總結(jié)

  1.同底數(shù)冪的乘法:am?an=am+n ,底數(shù)不變,指數(shù)相加。

  2.同底數(shù)冪的除法:am÷an=am-n ,底數(shù)不變,指數(shù)相減。

  3.冪的乘方與積的乘方:(am)n=amn ,底數(shù)不變,指數(shù)相乘; (ab)n=anbn ,積的乘方等于各因式乘方的積。

  4.零指數(shù)與負(fù)指數(shù)公式:

  (1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2無意義。

  (2)有了負(fù)指數(shù),可用科學(xué)記數(shù)法記錄小于1的數(shù),例如:0.0000201=2.01×10-5。

  5.(1)平方差公式:(a+b)(a-b)= a2-b2,兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積等于這兩個(gè)數(shù)的平方差;

  (2)完全平方公式:

 、 (a+b)2=a2+2ab+b2, 兩個(gè)數(shù)和的平方,等于它們的平方和,加上它們的積的2倍;

  ② (a-b)2=a2-2ab+b2 , 兩個(gè)數(shù)差的平方,等于它們的平方和,減去它們的積的2倍;

  ※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc

  6.配方:

  (1)若二次三項(xiàng)式x2+px+q是完全平方式,則有關(guān)系式: ;

  ※ (2)二次三項(xiàng)式ax2+bx+c經(jīng)過配方,總可以變?yōu)閍(x-h)2+k的形式。

  注意:當(dāng)x=h時(shí),可求出ax2+bx+c的最大(或最小)值k。

  ※(3)注意: 。

  7.單項(xiàng)式的系數(shù)與次數(shù):單項(xiàng)式中不為零的數(shù)字因數(shù),叫單項(xiàng)式的數(shù)字系數(shù),簡(jiǎn)稱單項(xiàng)式的系數(shù);

  系數(shù)不為零時(shí),單項(xiàng)式中所有字母指數(shù)的和,叫單項(xiàng)式的次數(shù)。

  8.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個(gè)數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng);

  多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù);

  注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個(gè)二次三項(xiàng)式。

  9.同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的單項(xiàng)式是同類項(xiàng)。

  10.合并同類項(xiàng)法則:系數(shù)相加,字母與字母的指數(shù)不變。

  11.去(添)括號(hào)法則:去(添)括號(hào)時(shí),若括號(hào)前邊是“+”號(hào),括號(hào)里的各項(xiàng)都不變號(hào);若括號(hào)前邊是“-”號(hào),括號(hào)里的各項(xiàng)都要變號(hào)。

  注意:多項(xiàng)式計(jì)算的最后結(jié)果一般應(yīng)該進(jìn)行升冪(或降冪)排列。

  平面幾何部分

  1、補(bǔ)角重要性質(zhì):同角或等角的補(bǔ)角相等.

  余角重要性質(zhì):同角或等角的余角相等.

  2、①直線公理:過兩點(diǎn)有且只有一條直線.

  線段公理:兩點(diǎn)之間線段最短.

  ②有關(guān)垂線的定理:(1)過一點(diǎn)有且只有一條直線與已知直線垂直;

  (2)直線外一點(diǎn)與直線上各點(diǎn)連結(jié)的所有線段中,垂線段最短.

  比例尺:比例尺1:m中,1表示圖上距離,m表示實(shí)際距離,若圖上1厘米,表示實(shí)際距離m厘米.

  3、三角形的內(nèi)角和等于180

  三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和

  三角形的一個(gè)外角大于與它不相鄰的任何一個(gè)內(nèi)角

  4、n邊形的對(duì)角線公式:

  各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形

  5、n邊形的內(nèi)角和公式:180(n-2); 多邊形的外角和等于360

  6、判斷三條線段能否組成三角形:

  ①a+b>c(a b為最短的兩條線段)②a-b

  7、第三邊取值范圍:

  a-b< c

  8、對(duì)應(yīng)周長(zhǎng)取值范圍:

  若兩邊分別為a,b則周長(zhǎng)的取值范圍是 2a

  如兩邊分別為5和7則周長(zhǎng)的取值范圍是 14

  9、相關(guān)命題:

  (1) 三角形中最多有1個(gè)直角或鈍角,最多有3個(gè)銳角,最少有2個(gè)銳角。

  (2) 銳角三角形中最大的銳角的取值范圍是60≤X<90 。最大銳角不小于60度。

  (3)任意一個(gè)三角形兩角平分線的夾角=90+第三角的一半。

  (4) 鈍角三角形有兩條高在外部。

  (5) 全等圖形的大小(面積、周長(zhǎng))、形狀都相同。

  (6) 面積相等的兩個(gè)三角形不一定是全等圖形。

  (7) 三角形具有穩(wěn)定性。

  (8) 角平分線到角的兩邊距離相等。

  (9)有一個(gè)角是60的等腰三角形是等邊三角形。

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總4

  一、選擇題(每小題4分,共12分)

  1.計(jì)算(-x)2x3的結(jié)果是()

  A.x5 B.-x5 C.x6 D.-x6

  2.下列各式計(jì)算正確的個(gè)數(shù)是()

  ①x4②x3x3=2x6 ;③a5+a7 =a12;

 、(-a)2(-a2)=-a4;⑤a4a3=a7.

  A.1B.2C.3D.4

  3.下列各式能用同底數(shù)冪乘法法則進(jìn)行計(jì)算的是()

  A.(x+y)2(x-y)2B.(x+y)2(-x-y)

  C.(x+y)2+2 (x+y)2D.(x-y)2(-x-y)

  二、填空題(每小題4分,共12分)

  4.(20xx天津中考)計(jì)算aa6的結(jié)果等于.

  5.若2n-224=64,則n= .

  6.已知2x2x8=213,則x=.

  三、解答題(共26分)

  7.(8分)計(jì)算:(1)(- 3) 3(-3)4(-3).

  (2)a3a2-a(-a)2a2.

  (3)(2m-n)4(n-2m)3(2m-n)6.

  (4)yyn+ 1-2yny2.

  8.(8分)已知ax=5,ay=4,求下列各式的值:

  (1)ax+2. (2)ax+y+1.

  【拓展延伸】

  9.(10分)已知2a=3,2b=6, 2c=12,試確定a,b,c之間的關(guān)系.

  答案解析

  1.【解析】選A.(-x)2x3=x2x3=x2+3=x5.

  2.【解析】選B.x4x2=x4+2=x6,故①錯(cuò)誤;x3x3=x3+3=x6,故②錯(cuò)誤;a5與a7不是同類項(xiàng),不能合并,故③錯(cuò)誤;(-a)2(- a2)=a2(-a2)=-a2a2=-a2+2=-a4,故④正確;a4a3=a4+3=a7,故⑤正確.

  3.【解 析】選B.A,D選項(xiàng)底數(shù)不相同,不是同底數(shù)冪的乘法,C選項(xiàng)不是乘法;(x+y)2(-x-y)=-(x+y)2(x+y)=-(x+y)3.

  4.【解析】根據(jù)同底數(shù)冪的乘法法 則同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加,所以aa 6=a1+6=a7.

  答案:a7

  5.【解析】因?yàn)?2n-224=2n-2+4=2n+2,64=26,

  所以2n+2=26,即n+2=6,解得n=4.

  答案:4

  6.【解析】因?yàn)?x2x8=2x2x23=2x+x+3 ,

  所以x+x+3=13,解得x=5.

  答案:5

  7.【解析】(1)(-3)3(-3)4(-3)=(-3)3+4+1=(-3)8=38.

  (2)a3a2-a(-a)2a2=a3+2-aa2a2

  =a5-a5=0.

  (3)(2m-n)4(n-2m)3(2m-n)6

  =(n-2m)4(n-2m)3(n-2m)6

  =(n-2m)4+3+6=(n-2m)13.

  (4)yyn+1-2yny2=yn+1+1-2yn+2

  =yn+2-2yn+2=(1-2)yn+2

  =-yn+2.

  8.【解析】(1)ax+2=axa2=5a2.

  (2)ax+y+1=axaya=54a=20a.

  9.【解析】方法一:因?yàn)?2 =322=62,

  所以2c=12=322=2a22=2a+2,

  即c=a+2,①

  又因?yàn)?c=12=62=2b2=2b+1,

  所以c=b+1,②

  ①+②得2c=a+b+3.

  方法二:因?yàn)?b=6=32=2a2=2a+1,

  所以b=a+1,①

  又因?yàn)?c=12=62=2b2=2b+1,

  所以c=b+1,②

 、-②得2b=a+c.

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總5

  1.消元:將未知數(shù)的個(gè)數(shù)由多化少,逐一解決的想法,叫做消元思想。

  歸納:基本思路:“消元”——把“二元”變?yōu)椤耙辉薄?/p>

  2.代入消元:將一個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的式子表示出來,再代入另一個(gè)方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的解,這種方法叫做代入消元法,簡(jiǎn)稱代入法。

  3.加減消元法:當(dāng)兩個(gè)方程中同一未知數(shù)的系數(shù)相反或相等時(shí),將兩個(gè)方程的兩邊分別相加或相減,就能消去這個(gè)未知數(shù),這種方法叫做加減消元法,簡(jiǎn)稱加減法。

  4.教科書中沒有的幾種解法

  (1)加減-代入混合使用的方法:

  特點(diǎn):兩方程相加減,單個(gè)x或單個(gè)y,這樣就適用接下來的代入消元。

  (2)換元法

  特點(diǎn):兩方程中都含有相同的代數(shù)式,換元后可簡(jiǎn)化方程也是主要原因。

  (3)設(shè)參數(shù)法

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總6

  一、目標(biāo)與要求

  1.了解全面調(diào)查的概念;會(huì)設(shè)計(jì)簡(jiǎn)單的調(diào)查問卷,收集數(shù)據(jù);掌握劃記法,會(huì)用表格整理數(shù)據(jù);會(huì)畫扇形統(tǒng)計(jì)圖,能用統(tǒng)計(jì)圖描述數(shù)據(jù);經(jīng)歷統(tǒng)計(jì)調(diào)查的一般過程,體驗(yàn)統(tǒng)計(jì)與生活的關(guān)系。

  2.經(jīng)歷數(shù)據(jù)的收集、整理和分析的模擬過程,了解抽樣調(diào)查、樣本、個(gè)體與總體等統(tǒng)計(jì)概念;學(xué)會(huì)從樣本中分析、歸納出較為正確的結(jié)論,增強(qiáng)用統(tǒng)計(jì)方法解決問題的意識(shí)。

  3.理解頻數(shù)、頻數(shù)分布的意義,學(xué)會(huì)制作頻數(shù)分布表;學(xué)會(huì)畫頻數(shù)分布直方圖和頻數(shù)折線圖。

  二、重點(diǎn)

  學(xué)會(huì)畫頻數(shù)分布直方圖;

  分層抽樣的方法和樣本的分析、歸納;

  抽樣調(diào)查、樣本、總體等概念以及用樣本估計(jì)總體的思想;

  全面調(diào)查的過程(數(shù)據(jù)的收集、整理、描述)。

  三、難點(diǎn)

  繪制扇形統(tǒng)計(jì)圖;

  樣本的抽取;

  分層抽樣方案的制定;

  確定組距和組數(shù)。

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總7

  初一數(shù)學(xué)下冊(cè)期末考試知識(shí)點(diǎn)總結(jié)一(蘇教版)

  第七章 平面圖形的認(rèn)識(shí)(二) 1

  第八章 冪的運(yùn)算 2

  第九章 整式的乘法與因式分解 3

  第十章 二元一次方程組 4

  第十一章 一元一次不等式 4

  第十二章 證明 9

  第七章 平面圖形的認(rèn)識(shí)(二)

  一、知識(shí)點(diǎn):

  1、“三線八角”

 、 如何由線找角:一看線,二看型。

  同位角是“F”型;

  內(nèi)錯(cuò)角是“Z”型;

  同旁內(nèi)角是“U”型。

 、 如何由角找線:組成角的三條線中的公共直線就是截線。

  2、平行公理:

  如果兩條直線都和第三條直線平行,那么這兩條直線也平行。

  簡(jiǎn)述:平行于同一條直線的兩條直線平行。

  補(bǔ)充定理:

  如果兩條直線都和第三條直線垂直,那么這兩條直線也平行。

  簡(jiǎn)述:垂直于同一條直線的兩條直線平行。

  3、平行線的判定和性質(zhì):

  判定定理 性質(zhì)定理

  條件 結(jié)論 條件 結(jié)論

  同位角相等 兩直線平行 兩直線平行 同位角相等

  內(nèi)錯(cuò)角相等 兩直線平行 兩直線平行 內(nèi)錯(cuò)角相等

  同旁內(nèi)角互補(bǔ) 兩直線平行 兩直線平行 同旁內(nèi)角互補(bǔ)

  4、圖形平移的性質(zhì):

  圖形經(jīng)過平移,連接各組對(duì)應(yīng)點(diǎn)所得的線段互相平行(或在同一直線上)并且相等。

  5、三角形三邊之間的關(guān)系:

  三角形的任意兩邊之和大于第三邊;

  三角形的任意兩邊之差小于第三邊。

  若三角形的三邊分別為a、b、c,

  則

  6、三角形中的主要線段:

  三角形的高、角平分線、中線。

  注意:①三角形的高、角平分線、中線都是線段。

 、诟、角平分線、中線的應(yīng)用。

  7、三角形的內(nèi)角和:

  三角形的3個(gè)內(nèi)角的和等于180°;

  直角三角形的兩個(gè)銳角互余;

  三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和;

  三角形的一個(gè)外角大于與它不相鄰的任意一個(gè)內(nèi)角。

  8、多邊形的內(nèi)角和:

  n邊形的內(nèi)角和等于(n-2)180°;

  任意多邊形的外角和等于360°。

  第八章 冪的運(yùn)算

  冪(p5

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總8

  一個(gè)正數(shù)如果有平方根,那么必定有兩個(gè),它們互為相反數(shù)。顯然,如果我們知道了這兩個(gè)平方根的一個(gè),那么就可以及時(shí)的根據(jù)相反數(shù)的概念得到它的另一個(gè)平方根。

  如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根。a的算術(shù)平方根記為,讀作根號(hào)a,a叫做被開方數(shù)。

  規(guī)定:0的平方根是0。

  負(fù)數(shù)在實(shí)數(shù)范圍內(nèi)不能開平方,只有在復(fù)數(shù)范圍內(nèi),才可以開平方根。例如:-1的平方根為1i,-9的平方根為3i。

  平方根包含了算術(shù)平方根,算術(shù)平方根是平方根中的一種。

  任何復(fù)數(shù)都有平方根。

  算術(shù)平方根為:a=a(a為非負(fù)數(shù))

  被開方數(shù)是乘方運(yùn)算里的冪。

  求平方根可通過逆運(yùn)算平方來求。

  開平方:求一個(gè)非負(fù)數(shù)a的平方根的運(yùn)算叫做開平方,其中a叫做被開方數(shù)。

  若x的平方等于a,那么x就叫做a的平方根,即a=x(a為非負(fù)數(shù))

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總9

  1. 平面上不相重合的兩條直線之間的位置關(guān)系為_______或________

  2. 兩條直線相交所成的四個(gè)角中,相鄰的兩個(gè)角叫做鄰補(bǔ)角,特點(diǎn)是兩個(gè)角共用一條邊,另一條邊互為反向延長(zhǎng)線,性質(zhì)是鄰補(bǔ)角互補(bǔ);相對(duì)的兩個(gè)角叫做對(duì)頂角,特點(diǎn)是它們的兩條邊互為反向延長(zhǎng)線。性質(zhì)是對(duì)頂角相等。P3 例;P8 2題;P9 7題;P35 2(2);P35 3題

  3. 兩條直線相交所成的四個(gè)角中,如果有一個(gè)角為90度,則稱這兩條直線互相垂直。其中一條直線叫做另外一條直線的垂線,他們的交點(diǎn)稱為垂足。

  4. 垂直三要素:垂直關(guān)系,垂直記號(hào),垂足

  5. 做直角三角形的高:兩條直角邊即是鈍角三角形的高,只要做出斜邊上的高即可。

  6.做鈍角三角形的高:最長(zhǎng)的邊上的高只要向最長(zhǎng)邊引垂線即可,另外兩條邊上的高過邊所對(duì)的頂點(diǎn)向該邊的延長(zhǎng)線做垂線。

  7. 垂直公理:過一點(diǎn)有且只有一條直線與已知直線垂直。

  8. 垂線段最短;

  9. 點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度。

  10. 兩條直線被第三條直線所截:同位角F(在兩條直線的同一旁,第三條直線的同一側(cè)),內(nèi)錯(cuò)角Z(在兩條直線內(nèi)部,位于第三條直線兩側(cè)),同旁內(nèi)角U(在兩條直線內(nèi)部,位于第三條直線同側(cè))。

  P7 例、練習(xí)1

  11. 平行公理:過直線外一點(diǎn)有且只有一條直線與已知直線平行。

  12. 如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。如果b//a,c//a,那么b//c P17 4題

  13. 平行線的判定。P15 例 結(jié)論:在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行。

  P15 練習(xí);P17 7題;P36 8題。

  14. 平行線的性質(zhì)。P21 練習(xí)1,2;P23 6題

  15. 命題:如果+題設(shè),那么+結(jié)論。P22練習(xí)1

  16. 真、假命題P24 11題;P37 12題

  17. 平移的性質(zhì)P28歸納

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總10

  一、整式

  單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。

  a)由數(shù)與字母的積組成的代數(shù)式叫做單項(xiàng)式。單獨(dú)一個(gè)數(shù)或字母也是單項(xiàng)式。

  b)單項(xiàng)式的系數(shù)是這個(gè)單項(xiàng)式的數(shù)字因數(shù),作為單項(xiàng)式的系數(shù),必須連同數(shù)字前面的性質(zhì)符號(hào),如果一個(gè)單項(xiàng)式只是字母的積,并非沒有系數(shù),系數(shù)為1或-1。

  c)一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)(注意:常數(shù)項(xiàng)的單項(xiàng)式次數(shù)為0)

  a)幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。在多項(xiàng)式中,每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。其中,不含字母的項(xiàng)叫做常數(shù)項(xiàng)。一個(gè)多項(xiàng)式中,次數(shù)最高項(xiàng)的次數(shù),叫做這個(gè)多項(xiàng)式的次數(shù).

  b)單項(xiàng)式和多項(xiàng)式都有次數(shù),含有字母的單項(xiàng)式有系數(shù),多項(xiàng)式?jīng)]有系數(shù)。多項(xiàng)式的每一項(xiàng)都是單項(xiàng)式,一個(gè)多項(xiàng)式的項(xiàng)數(shù)就是這個(gè)多項(xiàng)式作為加數(shù)的單項(xiàng)式的個(gè)數(shù)。多項(xiàng)式中每一項(xiàng)都有它們各自的次數(shù),但是它們的次數(shù)不可能都作是為這個(gè)多項(xiàng)式的次數(shù),一個(gè)多項(xiàng)式的次數(shù)只有一個(gè),它是所含各項(xiàng)的次數(shù)中最高的那一項(xiàng)次數(shù).

  a)整式的加減實(shí)質(zhì)上就是去括號(hào)后,合并同類項(xiàng),運(yùn)算結(jié)果是一個(gè)多項(xiàng)式或是單項(xiàng)式.

  b)括號(hào)前面是“-”號(hào),去括號(hào)時(shí),括號(hào)內(nèi)各項(xiàng)要變號(hào),一個(gè)數(shù)與多項(xiàng)式相乘時(shí),這個(gè)數(shù)與括號(hào)內(nèi)各項(xiàng)都要相乘。

  二、同底數(shù)冪的乘法

  (,n都是整數(shù))是冪的運(yùn)算中最基本的法則,在應(yīng)用法則運(yùn)算時(shí),要注意以下幾點(diǎn):

  a)法則使用的`前提條件是:冪的底數(shù)相同而且是相乘時(shí),底數(shù)a可以是一個(gè)具體的數(shù)字式字母,也可以是一個(gè)單項(xiàng)或多項(xiàng)式;

  b) 指數(shù)是1時(shí),不要誤以為沒有指數(shù);

  c)不要將同底數(shù)冪的乘法與整式的加法相混淆,對(duì)乘法,只要底數(shù)相同指數(shù)就可以相加;而對(duì)于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;

  d)當(dāng)三個(gè)或三個(gè)以上同底數(shù)冪相乘時(shí),法則可推廣為(其中、n、p均為整數(shù));

  e)公式還可以逆用:(、n均為整數(shù))

  a)冪的乘方法則:(,n都是整數(shù)數(shù))是冪的乘法法則為基礎(chǔ)推導(dǎo)出來的,但兩者不能混淆。

  b)(,n都為整數(shù))

  c) 底數(shù)有負(fù)號(hào)時(shí),運(yùn)算時(shí)要注意,底數(shù)是a與(-a)時(shí)不是同底,但可以利用乘方法則化成同底,如將(-a)3化成-a3

  d)底數(shù)有時(shí)形式不同,但可以化成相同。

  e) 要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。

  f) 積的乘方法則:積的乘方,等于把積每一個(gè)因式分別乘方,再把所得的冪相乘,即(ab)n=anbn (n為正整數(shù))。

  g) 冪的乘方與積乘方法則均可逆向運(yùn)用。

  三、同底數(shù)冪的除法

  a)同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即(a≠0).

  b)在應(yīng)用時(shí)需要注意以下幾點(diǎn):

  1) 法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a0。

  2)任何不等于0的數(shù)的0次冪等于1,即a0=1(a≠0) ,如100=1 ,(-2.50=1),則00無意義。

  c)任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個(gè)數(shù)的p的次冪的倒數(shù),即( a≠0,p是正整數(shù)),而0-1,0-3都是無意義的;當(dāng)a>0時(shí),a-p的值一定是正的,當(dāng)a<0時(shí),a-p的值可能是正也可能是負(fù)的,如, d)運(yùn)算要注意運(yùn)算順序。

  四、整式的乘法

  單項(xiàng)式相乘,它們的系數(shù)、相同字母分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個(gè)因式。

  單項(xiàng)式乘法法則在運(yùn)用時(shí)要注意以下幾點(diǎn):

  a)積的系數(shù)等于各因式系數(shù)積,先確定符號(hào),再計(jì)算絕對(duì)值。這時(shí)容易出現(xiàn)的錯(cuò)誤的是,將系數(shù)相乘與指數(shù)相加混淆;

  b)相同字母相乘,運(yùn)用同底數(shù)冪的乘法法則;

  c)只在一個(gè)單項(xiàng)式里含有的字母,要連同它的指數(shù)作為積的一個(gè)因式;

  d)單項(xiàng)式乘法法則對(duì)于三個(gè)以上的單項(xiàng)式相乘同樣適用;

  e)單項(xiàng)式乘以單項(xiàng)式,結(jié)果仍是一個(gè)單項(xiàng)式。

  單項(xiàng)式乘以多項(xiàng)式,是通過乘法對(duì)加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

  單項(xiàng)式與多項(xiàng)式相乘時(shí)要注意以下幾點(diǎn):

  a)單項(xiàng)式與多項(xiàng)式相乘,積是一個(gè)多項(xiàng)式,其項(xiàng)數(shù)與多項(xiàng)式的項(xiàng)數(shù)相同;

  b)運(yùn)算時(shí)要注意積的符號(hào),多項(xiàng)式的每一項(xiàng)都包括它前面的符號(hào);

  c) 在混合運(yùn)算時(shí),要注意運(yùn)算順序。

  多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式中的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加。

  多項(xiàng)式與多項(xiàng)式相乘時(shí)要注意以下幾點(diǎn):

  a)多項(xiàng)式與多項(xiàng)式相乘要防止漏項(xiàng),檢查的方法是:在沒有合并同類項(xiàng)之前,積的項(xiàng)數(shù)應(yīng)等于原兩個(gè)多項(xiàng)式項(xiàng)數(shù)的積;

  b)多項(xiàng)式相乘的結(jié)果應(yīng)注意合并同類項(xiàng);

  c)對(duì)含有同一個(gè)字母的一次項(xiàng)系數(shù)是1的兩個(gè)一次二項(xiàng)式相乘(x+a)(x+b)=x2+(a+b)x+ab,其二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)等于兩個(gè)因式中常數(shù)項(xiàng)的和,常數(shù)項(xiàng)是兩個(gè)因式中常數(shù)項(xiàng)的積。對(duì)于一次項(xiàng)系數(shù)不為1的兩個(gè)一次二項(xiàng)式(x+a)和(nx+b)相乘可以得到。

  五.平方差公式

  兩數(shù)和與這兩數(shù)差的積,等于它們的平方差,即。

  其結(jié)構(gòu)特征是:

  a)公式左邊是兩個(gè)二項(xiàng)式相乘,兩個(gè)二項(xiàng)式中第一項(xiàng)相同,第二項(xiàng)互為相反數(shù);

  b) 公式右邊是兩項(xiàng)的平方差,即相同項(xiàng)的平方與相反項(xiàng)的平方之差。

  六、完全平方公式

  兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍,即;

  口訣:首平方,尾平方,2倍乘積在中央;

  a)公式左邊是二項(xiàng)式的完全平方;

  b)公式右邊共有三項(xiàng),是二項(xiàng)式中二項(xiàng)的平方和,再加上或減去這兩項(xiàng)乘積的2倍。

  c)在運(yùn)用完全平方公式時(shí),要注意公式右邊中間項(xiàng)的符號(hào),以及避免出現(xiàn)這樣的錯(cuò)誤。

  七、整式的除法

  單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式;

  多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加,其特點(diǎn)是把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成單項(xiàng)式除以單項(xiàng)式,所得商的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同,另外還要特別注意符號(hào)。

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總11

  一、整式

  單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。

  a)由數(shù)與字母的積組成的代數(shù)式叫做單項(xiàng)式。單獨(dú)一個(gè)數(shù)或字母也是單項(xiàng)式。

  b)單項(xiàng)式的系數(shù)是這個(gè)單項(xiàng)式的數(shù)字因數(shù),作為單項(xiàng)式的系數(shù),必須連同數(shù)字前面的性質(zhì)符號(hào),如果一個(gè)單項(xiàng)式只是字母的積,并非沒有系數(shù),系數(shù)為1或-1。

  c)一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)(注意:常數(shù)項(xiàng)的單項(xiàng)式次數(shù)為0)

  a)幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。在多項(xiàng)式中,每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。其中,不含字母的項(xiàng)叫做常數(shù)項(xiàng)。一個(gè)多項(xiàng)式中,次數(shù)最高項(xiàng)的次數(shù),叫做這個(gè)多項(xiàng)式的次數(shù).

  b)單項(xiàng)式和多項(xiàng)式都有次數(shù),含有字母的單項(xiàng)式有系數(shù),多項(xiàng)式?jīng)]有系數(shù)。多項(xiàng)式的每一項(xiàng)都是單項(xiàng)式,一個(gè)多項(xiàng)式的項(xiàng)數(shù)就是這個(gè)多項(xiàng)式作為加數(shù)的單項(xiàng)式的個(gè)數(shù)。多項(xiàng)式中每一項(xiàng)都有它們各自的次數(shù),但是它們的次數(shù)不可能都作是為這個(gè)多項(xiàng)式的次數(shù),一個(gè)多項(xiàng)式的次數(shù)只有一個(gè),它是所含各項(xiàng)的次數(shù)中最高的那一項(xiàng)次數(shù).

  a)整式的加減實(shí)質(zhì)上就是去括號(hào)后,合并同類項(xiàng),運(yùn)算結(jié)果是一個(gè)多項(xiàng)式或是單項(xiàng)式.

  b)括號(hào)前面是“-”號(hào),去括號(hào)時(shí),括號(hào)內(nèi)各項(xiàng)要變號(hào),一個(gè)數(shù)與多項(xiàng)式相乘時(shí),這個(gè)數(shù)與括號(hào)內(nèi)各項(xiàng)都要相乘。

  二、同底數(shù)冪的乘法

  (m,n都是整數(shù))是冪的運(yùn)算中最基本的法則,在應(yīng)用法則運(yùn)算時(shí),要注意以下幾點(diǎn):

  a)法則使用的前提條件是:冪的底數(shù)相同而且是相乘時(shí),底數(shù)a可以是一個(gè)具體的數(shù)字式字母,也可以是一個(gè)單項(xiàng)或多項(xiàng)式;

  b)指數(shù)是1時(shí),不要誤以為沒有指數(shù);

  c)不要將同底數(shù)冪的乘法與整式的加法相混淆,對(duì)乘法,只要底數(shù)相同指數(shù)就可以相加;而對(duì)于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;

  d)當(dāng)三個(gè)或三個(gè)以上同底數(shù)冪相乘時(shí),法則可推廣為

  (其中m、n、p均為整數(shù));

  e)公式還可以逆用:

  (m、n均為整數(shù))

  a)冪的乘方法則:

  (m,n都是整數(shù)數(shù))是冪的乘法法則為基礎(chǔ)推導(dǎo)出來的,但兩者不能混淆。

  b)

  (m,n都為整數(shù))。

  c)底數(shù)有負(fù)號(hào)時(shí),運(yùn)算時(shí)要注意,底數(shù)是a與(-a)時(shí)不是同底,但可以利用乘方法則化成同底,如將(-a)3化成-a3

  d)底數(shù)有時(shí)形式不同,但可以化成相同。

  e)要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。

  f)積的乘方法則:積的乘方,等于把積每一個(gè)因式分別乘方,再把所得的冪相乘,即(ab)n=anbn(n為正整數(shù))。

  g)冪的乘方與積乘方法則均可逆向運(yùn)用。

  、同底數(shù)冪的除法

  a)同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即

  (a≠0).

  b)在應(yīng)用時(shí)需要注意以下幾點(diǎn):

  1)法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a0。

  2)任何不等于0的數(shù)的0次冪等于1,即a0=1(a≠0),如100=1,(-2.50=1),則00無意義。

  c)任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個(gè)數(shù)的p的次冪的倒數(shù),即

  (a≠0,p是正整數(shù)),而0-1,0-3都是無意義的;當(dāng)a>0時(shí),a-p的值一定是正的,當(dāng)a<0時(shí),a-p的值可能是正也可能是負(fù)的,如

  ,d)運(yùn)算要注意運(yùn)算順序。

  四、整式的乘法

  單項(xiàng)式相乘,它們的系數(shù)、相同字母分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個(gè)因式。

  單項(xiàng)式乘法法則在運(yùn)用時(shí)要注意以下幾點(diǎn):

  a)積的系數(shù)等于各因式系數(shù)積,先確定符號(hào),再計(jì)算絕對(duì)值。這時(shí)容易出現(xiàn)的錯(cuò)誤的是,將系數(shù)相乘與指數(shù)相加混淆;

  b)相同字母相乘,運(yùn)用同底數(shù)冪的乘法法則;

  c)只在一個(gè)單項(xiàng)式里含有的字母,要連同它的指數(shù)作為積的一個(gè)因式;

  d)單項(xiàng)式乘法法則對(duì)于三個(gè)以上的單項(xiàng)式相乘同樣適用;

  e)單項(xiàng)式乘以單項(xiàng)式,結(jié)果仍是一個(gè)單項(xiàng)式。

  單項(xiàng)式乘以多項(xiàng)式,是通過乘法對(duì)加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

  單項(xiàng)式與多項(xiàng)式相乘時(shí)要注意以下幾點(diǎn):

  a)單項(xiàng)式與多項(xiàng)式相乘,積是一個(gè)多項(xiàng)式,其項(xiàng)數(shù)與多項(xiàng)式的項(xiàng)數(shù)相同;

  b)運(yùn)算時(shí)要注意積的符號(hào),多項(xiàng)式的每一項(xiàng)都包括它前面的符號(hào);

  c)在混合運(yùn)算時(shí),要注意運(yùn)算順序。

  多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式中的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加。

  多項(xiàng)式與多項(xiàng)式相乘時(shí)要注意以下幾點(diǎn):

  a)多項(xiàng)式與多項(xiàng)式相乘要防止漏項(xiàng),檢查的方法是:在沒有合并同類項(xiàng)之前,積的項(xiàng)數(shù)應(yīng)等于原兩個(gè)多項(xiàng)式項(xiàng)數(shù)的積;

  b)多項(xiàng)式相乘的結(jié)果應(yīng)注意合并同類項(xiàng);

  c)對(duì)含有同一個(gè)字母的一次項(xiàng)系數(shù)是1的兩個(gè)一次二項(xiàng)式相乘(x+a)(x+b)=x2+(a+b)x+ab,其二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)等于兩個(gè)因式中常數(shù)項(xiàng)的和,常數(shù)項(xiàng)是兩個(gè)因式中常數(shù)項(xiàng)的積。對(duì)于一次項(xiàng)系數(shù)不為1的兩個(gè)一次二項(xiàng)式(mx+a)和(nx+b)相乘可以得到

  。

  .平方差公式

  兩數(shù)和與這兩數(shù)差的積,等于它們的平方差,即

  。

  其結(jié)構(gòu)特征是:

  a)公式左邊是兩個(gè)二項(xiàng)式相乘,兩個(gè)二項(xiàng)式中第一項(xiàng)相同,第二項(xiàng)互為相反數(shù);

  b)公式右邊是兩項(xiàng)的平方差,即相同項(xiàng)的平方與相反項(xiàng)的平方之差。

  、完全平方公式

  兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍,即

  ;

  口訣:首平方,尾平方,2倍乘積在中央;

  a)公式左邊是二項(xiàng)式的完全平方;

  b)公式右邊共有三項(xiàng),是二項(xiàng)式中二項(xiàng)的平方和,再加上或減去這兩項(xiàng)乘積的2倍。

  c)在運(yùn)用完全平方公式時(shí),要注意公式右邊中間項(xiàng)的符號(hào),以及避免出現(xiàn)

  這樣的錯(cuò)誤。

  、整式的除法

  單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式;

  多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加,其特點(diǎn)是把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成單項(xiàng)式除以單項(xiàng)式,所得商的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同,另外還要特別注意符號(hào)。

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總12

  一、目標(biāo)與要求

  1。感受生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義,通過解決簡(jiǎn)單的實(shí)際問題,使學(xué)生自發(fā)地尋找不等式的解,會(huì)把不等式的解集正確地表示到數(shù)軸上;

  2。經(jīng)歷由具體實(shí)例建立不等模型的過程,經(jīng)歷探究不等式解與解集的不同意義的過程,滲透數(shù)形結(jié)合思想;

  3。通過對(duì)不等式、不等式解與解集的探究,引導(dǎo)學(xué)生在獨(dú)立思考的基礎(chǔ)上積極參與對(duì)數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識(shí);讓學(xué)生充分體會(huì)到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個(gè)領(lǐng)域。

  三、重點(diǎn)

  理解并掌握不等式的性質(zhì);

  正確運(yùn)用不等式的性質(zhì);

  建立方程解決實(shí)際問題,會(huì)解ax+b=cx+d類型的一元一次方程;

  尋找實(shí)際問題中的不等關(guān)系,建立數(shù)學(xué)模型;

  一元一次不等式組的解集和解法。

  四、難點(diǎn)

  一元一次不等式組解集的理解;

  弄清列不等式解決實(shí)際問題的思想方法,用去括號(hào)法解一元一次不等式;

  正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。

  五、知識(shí)點(diǎn)、概念總結(jié)

  1。不等式:用符號(hào),,,表示大小關(guān)系的式子叫做不等式。

  2。不等式分類:不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。

  一般地,用純粹的大于號(hào)、小于號(hào),連接的不等式稱為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào)),連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。

  3。不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。

  4。不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

  5。不等式解集的表示方法:

  (1)用不等式表示:一般的,一個(gè)含未知數(shù)的不等式有無數(shù)個(gè)解,其解集是一個(gè)范圍,這個(gè)范圍可用最簡(jiǎn)單的不等式表達(dá)出來,例如:x—12的解集是x3

 。2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個(gè)解,用數(shù)軸表示不等式的解集要注意兩點(diǎn):一是定邊界線;二是定方向。

  6。解不等式可遵循的一些同解原理

 。1)不等式F(x) G(x)與不等式 G(x)F(x)同解。

 。2)如果不等式F(x) G(x)的定義域被解析式H(x)的定義域所包含,那么不等式 F(x) G(x)與不等式H(x)+F(x)

 。3)如果不等式F(x) G(x)的定義域被解析式H(x)的定義域所包含,并且H(x)0,那么不等式F(x) G(x)與不等式H(x)F(x)0,那么不等式F(x) G(x)與不等式H(x)F(x)H(x)G(x)同解。

  7。不等式的性質(zhì):

 。1)如果xy,那么yy;(對(duì)稱性)

 。2)如果xy,y那么x(傳遞性)

 。3)如果xy,而z為任意實(shí)數(shù)或整式,那么x+z(加法則)

 。4)如果xy,z0,那么xz如果xy,z0,那么xz

 。5)如果xy,z0,那么xzy如果xy,z0,那么xz

 。6)如果xy,mn,那么x+my+n(充分不必要條件)

 。7)如果x0,m0,那么xmyn

  (8)如果x0,那么x的n次冪y的n次冪(n為正數(shù))

  8。一元一次不等式:不等式的左、右兩邊都是整式,只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。

  9。解一元一次不等式的一般順序:

 。1)去分母 (運(yùn)用不等式性質(zhì)2、3)

 。2)去括號(hào)

  (3)移項(xiàng) (運(yùn)用不等式性質(zhì)1)

 。4)合并同類項(xiàng)

 。5)將未知數(shù)的系數(shù)化為1 (運(yùn)用不等式性質(zhì)2、3)

  (6)有些時(shí)候需要在數(shù)軸上表示不等式的解集

  10。 一元一次不等式與一次函數(shù)的綜合運(yùn)用:

  一般先求出函數(shù)表達(dá)式,再化簡(jiǎn)不等式求解。

  11。一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一一起,就組成

  了一個(gè)一元一次不等式組。

  12。解一元一次不等式組的步驟:

 。1) 求出每個(gè)不等式的解集;

  (2) 求出每個(gè)不等式的解集的公共部分;(一般利用數(shù)軸)

 。3) 用代數(shù)符號(hào)語言來表示公共部分。(也可以說成是下結(jié)論)

  13。解不等式的訣竅

 。1)大于大于取大的(大大大);

  例如:X—1,X2 ,不等式組的解集是X2

 。2)小于小于取小的(小小小);

  例如:X—4,X—6,不等式組的解集是X—6

  (3)大于小于交叉取中間;

 。4)無公共部分分開無解了;

  14。解不等式組的口訣

  (1)同大取大

  例如,x2,x3 ,不等式組的解集是X3

 。2)同小取小

  例如,x2,x3 ,不等式組的解集是X2

  (3)大小小大中間找

  例如,x2,x1,不等式組的解集是1

 。4)大大小小不用找

  例如,x2,x3,不等式組無解

  15。應(yīng)用不等式組解決實(shí)際問題的步驟

  (1)審清題意

 。2)設(shè)未知數(shù),根據(jù)所設(shè)未知數(shù)列出不等式組

 。3)解不等式組

  (4)由不等式組的解確立實(shí)際問題的解

 。5)作答

  16。用不等式組解決實(shí)際問題:其公共解不一定就為實(shí)際問題的解,所以需結(jié)合生活實(shí)際具體分析,最后確定結(jié)果。

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總13

  一、目標(biāo)與要求

  1.理解對(duì)頂角和鄰補(bǔ)角的概念,能在圖形中辨認(rèn);

  2.掌握對(duì)頂角相等的性質(zhì)和它的推證過程;

  3.通過在圖形中辨認(rèn)對(duì)頂角和鄰補(bǔ)角,培養(yǎng)學(xué)生的識(shí)圖能力。

  二、重點(diǎn)

  在較復(fù)雜的圖形中準(zhǔn)確辨認(rèn)對(duì)頂角和鄰補(bǔ)角;

  兩條直線互相垂直的概念、性質(zhì)和畫法;

  同位角、內(nèi)錯(cuò)角、同旁內(nèi)角的概念與識(shí)別。

  三、難點(diǎn)

  在較復(fù)雜的圖形中準(zhǔn)確辨認(rèn)對(duì)頂角和鄰補(bǔ)角;

  對(duì)點(diǎn)到直線的距離的概念的理解;

  對(duì)平行線本質(zhì)屬性的理解,用幾何語言描述圖形的性質(zhì);

  能區(qū)分平行線的性質(zhì)和判定,平行線的性質(zhì)與判定的混合應(yīng)用。

  四、知識(shí)框架

  五、知識(shí)點(diǎn)、概念總結(jié)

  1.鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角。

  2.對(duì)頂角:一個(gè)角的兩邊分別是另一個(gè)叫的兩邊的反向延長(zhǎng)線,像這樣的兩個(gè)角互為對(duì)頂角。

  3.對(duì)頂角和鄰補(bǔ)角的關(guān)系

  4.垂直:兩條直線、兩個(gè)平面相交,或一條直線與一個(gè)平面相交,如果交角成直角,叫做互相垂直。

  5.垂線:兩條直線相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線。

  6.垂足:如果兩直線的夾角為直角,那么就說這兩條直線互相垂直,它們的交點(diǎn)叫做垂足。

  7.垂線性質(zhì)

  (1)在同一平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。

  (2)連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。簡(jiǎn)單說成:垂線段最短。

  (3)點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度,叫做點(diǎn)到直線的距離。

  8.同位角、內(nèi)錯(cuò)角、同旁內(nèi)角:

  同位角:1與5像這樣具有相同位置關(guān)系的一對(duì)角叫做同位角。

  內(nèi)錯(cuò)角:2與6像這樣的一對(duì)角叫做內(nèi)錯(cuò)角。

  同旁內(nèi)角:2與5像這樣的一對(duì)角叫做同旁內(nèi)角。

  9.平行:在平面上兩條直線、空間的兩個(gè)平面或空間的一條直線與一平面之間沒有任何公共點(diǎn)時(shí),稱它們平行。

  10.平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。

  11.命題:判斷一件事情的語句叫命題。

  12.真命題:正確的命題,即如果命題的題設(shè)成立,那么結(jié)論一定成立。

  13.假命題:條件和結(jié)果相矛盾的命題是假命題。

  14.平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,圖形的這種移動(dòng)叫做平移平移變換,簡(jiǎn)稱平移。

  15.對(duì)應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動(dòng)后得到的,這樣的兩個(gè)點(diǎn)叫做對(duì)應(yīng)點(diǎn)。

  16.定理與性質(zhì)

  對(duì)頂角的性質(zhì):對(duì)頂角相等。

  17.垂線的性質(zhì):

  性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。

  性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。

  18.平行公理:經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線平行。

  平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。

  19.平行線的性質(zhì):

  性質(zhì)1:兩直線平行,同位角相等。

  性質(zhì)2:兩直線平行,內(nèi)錯(cuò)角相等。

  性質(zhì)3:兩直線平行,同旁內(nèi)角互補(bǔ)。

  20.平行線的判定:

  判定1:同位角相等,兩直線平行。

  判定2:內(nèi)錯(cuò)角相等,兩直線平行。

  判定3:同旁內(nèi)角相等,兩直線平行。

  21.命題的擴(kuò)展

  三種命題

  (1)對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論分別是另外一個(gè)命題的結(jié)論和條件,那么這兩個(gè)命題叫做互逆命題,其中一個(gè)命題叫做原命題,另外一個(gè)命題叫做原命題的逆命題。

  (2)對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論分別是另外一個(gè)命題的條件的否定和結(jié)論的否定,那么這兩個(gè)命題叫做互否命題,其中一個(gè)命題叫做原命題,另外一個(gè)命題叫做原命題的否命題。

  (3)對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論分別是另外一個(gè)命題的結(jié)論的否定和條件的否定,那么這兩個(gè)命題叫做互為逆否命題,其中一個(gè)命題叫做原命題,另外一個(gè)命題叫做原命題的逆否命題。

  四種命題的相互關(guān)系

  (1)四種命題的相互關(guān)系:原命題與逆命題互逆,否命題與原命題互否,原命題與逆否命題相互逆否,逆命題與否命題相互逆否,逆命題與逆否命題互否,逆否命題與否命題互逆。

  (2)四種命題的真假關(guān)系:

  兩個(gè)命題互為逆否命題,它們有相同的真假性。兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系

  命題之間的關(guān)系

  (1)能夠判斷真假的陳述句叫做命題,正確的命題叫做真命題,錯(cuò)誤的命題叫做假命題。

  (2)若p,則q形式的命題中p叫做命題的條件,q叫做命題的結(jié)論。

  (3)命題的分類:

  A:原命題:一個(gè)命題的本身稱之為原命題,如:若x1,則f(x)=(x-1)2單調(diào)遞增。

  B:逆命題:將原命題的條件和結(jié)論顛倒的新命題,如:若f(x)=(x-1)2單調(diào)遞增,則x1.

  C:否命題:將原命題的條件和結(jié)論全否定的新命題,但不改變條件和結(jié)論的順序,

  如:若x小于1,則f(x)=(x-1)2不單調(diào)遞增。

  D:逆否命題:將原命題的條件和結(jié)論顛倒,然后再將條件和結(jié)論全否定的新命題,

  如:若f(x)=(x-1)2不單調(diào)遞增,則x小于1.

  (4)命題的否定

  命題的否定是只將命題的結(jié)論否定的新命題,這與否命題不同。

  (5)4種命題及命題的否定的真假性關(guān)系

  原命題和逆否命題等價(jià),否命題和逆命題等價(jià),命題的否定與原命題的真假性相反。

  充分條件與必要條件

  (1)若p,則q為真命題,叫做由p推出q,記作p=q,并且說p是q的充分條件,q是p的必要條件。

  (2)若p,則q為假命題,叫做由p推不出q,記作pq,并且說p不是q的充分條件(或p是q的非充分條件),q不是p的必要條件(或q是p的非必要條件)。

  充要條件

  如果既有p=q,又有q=p,就記作pq,并且說p是q的充分必要條件(或q是p的充分必要條件),簡(jiǎn)稱充要條件。

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總14

  一、目標(biāo)與要求

  1、感受生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義,通過解決簡(jiǎn)單的實(shí)際問題,使學(xué)生自發(fā)地尋找不等式的解,會(huì)把不等式的解集正確地表示到數(shù)軸上;

  2、經(jīng)歷由具體實(shí)例建立不等模型的過程,經(jīng)歷探究不等式解與解集的不同意義的過程,滲透數(shù)形結(jié)合思想;

  3、通過對(duì)不等式、不等式解與解集的探究,引導(dǎo)學(xué)生在獨(dú)立思考的基礎(chǔ)上積極參與對(duì)數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識(shí);讓學(xué)生充分體會(huì)到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個(gè)領(lǐng)域。

  二、知識(shí)框架

  三、重點(diǎn)

  理解并掌握不等式的性質(zhì);

  正確運(yùn)用不等式的性質(zhì);

  建立方程解決實(shí)際問題,會(huì)解"ax+b=cx+d"類型的一元一次方程;

  尋找實(shí)際問題中的不等關(guān)系,建立數(shù)學(xué)模型;

  一元一次不等式組的解集和解法。

  四、難點(diǎn)

  一元一次不等式組解集的理解;

  弄清列不等式解決實(shí)際問題的思想方法,用去括號(hào)法解一元一次不等式;

  正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。

  五、知識(shí)點(diǎn)、概念總結(jié)

  1、不等式:用符號(hào)"<",">","≤","≥"表示大小關(guān)系的式子叫做不等式。

  2、不等式分類:不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。

  一般地,用純粹的大于號(hào)、小于號(hào)">","<"連接的不等式稱為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào))"≥","≤"連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。

  3、不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。

  4、不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

  5、不等式解集的表示方法:

  (1)用不等式表示:一般的,一個(gè)含未知數(shù)的不等式有無數(shù)個(gè)解,其解集是一個(gè)范圍,這個(gè)范圍可用最簡(jiǎn)單的不等式表達(dá)出來,例如:x—1≤2的解集是x≤3

  (2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個(gè)解,用數(shù)軸表示不等式的解集要注意兩點(diǎn):一是定邊界線;二是定方向。

  6、解不等式可遵循的一些同解原理

  (1)不等式F(x)< G(x)與不等式 G(x)>F(x)同解。

 。2)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,那么不等式 F(x)< G(x)與不等式H(x)+F(x)

  (3)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,并且H(x)>0,那么不等式F(x)< G(x)與不等式H(x)F(x)0,那么不等式F(x)< G(x)與不等式H(x)F(x)>H(x)G(x)同解。

  7、不等式的性質(zhì):

  (1)如果x>y,那么yy;(對(duì)稱性)

 。2)如果x>y,y>z;那么x>z;(傳遞性)

 。3)如果x>y,而z為任意實(shí)數(shù)或整式,那么x+z>y+z;(加法則)

 。4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

 。5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

  (6)如果x>y,m>n,那么x+m>y+n(充分不必要條件)

 。7)如果x>y>0,m>n>0,那么xm>yn

 。8)如果x>y>0,那么x的n次冪>y的n次冪(n為正數(shù))

  8、一元一次不等式:不等式的左、右兩邊都是整式,只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。

  9、解一元一次不等式的一般順序:

 。1)去分母 (運(yùn)用不等式性質(zhì)2、3)

 。2)去括號(hào)

 。3)移項(xiàng) (運(yùn)用不等式性質(zhì)1)

 。4)合并同類項(xiàng)

 。5)將未知數(shù)的系數(shù)化為1 (運(yùn)用不等式性質(zhì)2、3)

  (6)有些時(shí)候需要在數(shù)軸上表示不等式的解集

  10、 一元一次不等式與一次函數(shù)的綜合運(yùn)用:

  一般先求出函數(shù)表達(dá)式,再化簡(jiǎn)不等式求解。

  11、一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一一起,就組成

  了一個(gè)一元一次不等式組。

  12、解一元一次不等式組的步驟:

 。1) 求出每個(gè)不等式的解集;

 。2) 求出每個(gè)不等式的解集的公共部分;(一般利用數(shù)軸)

  (3) 用代數(shù)符號(hào)語言來表示公共部分。(也可以說成是下結(jié)論)

  13、解不等式的訣竅

 。1)大于大于取大的(大大大);

  例如:X>—1,X>2 ,不等式組的解集是X>2

 。2)小于小于取小的(小小小);

  例如:X<—4,X<—6,不等式組的解集是X<—6

 。3)大于小于交叉取中間;

  (4)無公共部分分開無解了;

  14、解不等式組的口訣

 。1)同大取大

  例如,x>2,x>3 ,不等式組的解集是X>3

 。2)同小取小

  例如,x<2,x<3 ,不等式組的解集是X<2

 。3)大小小大中間找

  例如,x<2,x>1,不等式組的解集是1

  (4)大大小小不用找

  例如,x<2,x>3,不等式組無解

  15、應(yīng)用不等式組解決實(shí)際問題的步驟

 。1)審清題意

  (2)設(shè)未知數(shù),根據(jù)所設(shè)未知數(shù)列出不等式組

  (3)解不等式組

 。4)由不等式組的解確立實(shí)際問題的解

  (5)作答

  16、用不等式組解決實(shí)際問題:其公共解不一定就為實(shí)際問題的解,所以需結(jié)合生活實(shí)際具體分析,最后確定結(jié)果。

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總15

  1.判斷一個(gè)方程是不是二元一次方程,一般要將方程化為一般形式后再根據(jù)定義判斷。

  2.二元一次方程的解:一個(gè)二元一次方程有無數(shù)個(gè)解,而每一個(gè)解都是一對(duì)數(shù)值。求二元一次方程的解的方法:若方程中的未知數(shù)為x,y,可任取x的一些值,相應(yīng)的可算出y的值,這樣,就會(huì)得到滿足需要的數(shù)對(duì)。

  3.二元一次方程組:兩個(gè)二元一次方程合在一起,就組成了一個(gè)二元一次方程組。作為二元一次方程組的兩個(gè)方程,不一定都含有兩個(gè)未知數(shù),可以其中一個(gè)是一元一次方程,另一個(gè)是二元一次方程。

  4.二元一次方程組的解:使二元一次方程組的兩個(gè)方程左右兩邊的值都相等的兩個(gè)未知數(shù)的值,叫做二元一次方程組的解。檢驗(yàn)一對(duì)數(shù)值是不是二元一次方程組的解的方法是,將兩個(gè)未知數(shù)分別代入方程組中的兩個(gè)方程,如果都能滿足這兩個(gè)方程,那么它就是方程組的解。

【初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)】相關(guān)文章:

人教版初一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)11-16

初一數(shù)學(xué)下冊(cè)期末知識(shí)點(diǎn)整理07-04

初一數(shù)學(xué)下冊(cè)實(shí)踐與探索的知識(shí)點(diǎn)09-10

關(guān)于初一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)02-18

初一數(shù)學(xué)下冊(cè)期末知識(shí)點(diǎn)總結(jié)03-26

了初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)10-17

初一下冊(cè)的數(shù)學(xué)知識(shí)點(diǎn)09-04

初一數(shù)學(xué)下冊(cè)第二單元知識(shí)點(diǎn)01-22

初一數(shù)學(xué)下冊(cè)實(shí)數(shù)期末備考知識(shí)點(diǎn)10-15

初一數(shù)學(xué)下冊(cè)基本知識(shí)點(diǎn)總結(jié)11-27