亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

奧數(shù)知識

小學奧數(shù)經(jīng)典應用題答案詳解

時間:2024-08-15 19:06:01 奧數(shù)知識 我要投稿
  • 相關(guān)推薦

小學奧數(shù)經(jīng)典應用題答案詳解

  引導語:小學奧數(shù)經(jīng)典應用題答案詳解,由應屆畢業(yè)生培訓網(wǎng)整理而成,謝謝您的閱讀,祝您閱讀愉快。

  1、想:由已知條件可知,一張桌子比一把椅子多的288元,正好是一把椅子價錢的(10-1)倍,由此可求得一把椅子的價錢。再根據(jù)椅子的價錢,就可求得一張桌子的價錢。

  解:一把椅子的價錢:

  288÷(10-1)=32(元)

  一張桌子的價錢:

  32×10=320(元)

  答:一張桌子320元,一把椅子32元。

  2、想:可先求出3箱梨比3箱蘋果多的重量,再加上3箱蘋果的重量,就是3箱梨的重量。

  解:45+5×3

  =45+15

  =60(千克)

  答:3箱梨重60千克。

  3、想:根據(jù)在距離中點4千米處相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知經(jīng)過4小時相遇。即可求甲比乙每小時快多少千米。

  解:4×2÷4

  =8÷4

  =2(千米)

  答:甲每小時比乙快2千米。

  4、想:根據(jù)兩人付同樣多的錢買同一種鉛筆和要了13支,張強要了7支,可知每人應該得(13+7)÷2支,而要了13支比應得的多了3支,因此又給張強0.6元錢,即可求每支鉛筆的價錢。

  解:0.6÷[13-(13+7)÷2]

  =0.6÷[13-20÷2]

  =0.6÷3

  =0.2(元)

  答:每支鉛筆0.2元。

  5、想:根據(jù)已知兩車上午8時從兩站出發(fā),下午2點返回原車站,可求出兩車所行駛的時間。根據(jù)兩車的速度和行駛的時間可求兩車行駛的總路程。

  解:下午2點是14時。

  往返用的時間:14-8=6(時)

  兩地間路程:(40+45)×6÷2

  =85×6÷2

  =255(千米)

  答:兩地相距255千米。

  6、想:第一小組停下來參觀果園時間,第二小組多行了[3.5-(4.5-3.5)] 千米,也就是第一組要追趕的路程。又知第一組每小時比第二組快( 4.5-3.5)千米,由此便可求出追趕的時間。

  解:第一組追趕第二組的路程:

  3.5-(4.5- 3.5)=3.5-1=2.5(千米)

  第一組追趕第二組所用時間:

  2.5÷(4.5-3.5)=2.5÷1=2.5(小時)

  答:第一組2.5小時能追上第二小組。

  7、想:根據(jù)甲倉的存糧噸數(shù)比乙倉的4倍少5噸,可知甲倉的存糧如果增加5噸,它的存糧噸數(shù)就是乙倉的4倍,那樣總存糧數(shù)也要增加5噸。若把乙倉存糧噸數(shù)看作1倍,總存糧噸數(shù)就是(4+1)倍,由此便可求出甲、乙兩倉存糧噸數(shù)。

  解:乙倉存糧:

  (32.5×2+5)÷(4+1)

  =(65+5)÷5

  =70÷5

  =14(噸)

  甲倉存糧:

  14×4-5

  =56-5

  =51(噸)

  答:甲倉存糧51噸,乙倉存糧14噸。

  8、想:根據(jù)甲隊每天比乙隊多修10米,可以這樣考慮:如果把甲隊修的4天看作和乙隊4天修的同樣多,那么總長度就減少4個10米,這時的長度相當于乙(4+5)天修的。由此可求出乙隊每天修的米數(shù),進而再求兩隊每天共修的米數(shù)。

  解:乙每天修的米數(shù):

  (400-10×4)÷(4+5)

  =(400-40)÷9

  =360÷9

  =40(米)

  甲乙兩隊每天共修的米數(shù):

  40×2+10=80+10=90(米)

  答:兩隊每天修90米。

  9、想:已知每張桌子比每把椅子貴30元,如果桌子的單價與椅子同樣多,那么總價就應減少30×6元,這時的總價相當于(6+5)把椅子的價錢,由此可求每把椅子的單價,再求每張桌子的單價。

  解:每把椅子的價錢:

  (455-30×6)÷(6+5)

  =(455- 180)÷11

  =275÷11

  =25(元)

  每張桌子的價錢:

  25+30=55(元)

  答:每張桌子55元,每把椅子25元。

  10、想:根據(jù)已知的兩車的速度可求速度差,根據(jù)兩車的速度差及快車比慢車多行的路程,可求出兩車行駛的時間,進而求出甲乙兩地的路程。

  解:(7+65)×[40÷(75- 65)]

  =140×[40÷10]

  =140×4

  =560(千米)

  答:甲乙兩地相距 560千米。

  11、想:根據(jù)已知托運玻璃250箱,每箱運費20元,可求出應付運費總錢數(shù)。根據(jù)每損壞一箱,不但不付運費還要賠償100元的條件可知,應付的錢數(shù)和實際付的錢數(shù)的差里有幾個(100+20)元,就是損壞幾箱。

  解:(20×250-4400)÷(10+20)

  =600÷120

  =5(箱)

  答:損壞了5箱。

  12、想:因第一中隊早出發(fā)2小時比第二中隊先行4×2千米,而每小時第二中隊比第一中隊多行(12-4)千米,由此即可求第二中隊追上第一中隊的時間。

  解:4×2÷(12-4)

  =4×2÷8

  =1(時)

  答:第二中隊1小時能追上第一中隊。

  13、想:由已知條件可知道,前后燒煤總數(shù)量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原計劃燒的天數(shù),進而再求出這堆煤的數(shù)量。

  解:原計劃燒煤天數(shù):

  (1500+1000)÷(1500-1000)

  =2500÷500

  =5(天)

  這堆煤的重量:

  1500×(5-1)

  =1500×4

  =6000(千克)

  答:這堆煤有6000千克。

  14、想:小紅打算買的鉛筆和本子總數(shù)與實際買的鉛筆和本子總數(shù)量是相等的,找回0.45 元,說明(8-5)支鉛筆當作(8-5)本練習本計算,相差0.45元。由此可求練習本的單價比鉛筆貴的錢數(shù)。從總錢數(shù)里去掉8個練習本比8支鉛筆貴的錢 數(shù),剩余的則是(5+8)支鉛筆的錢數(shù)。進而可求出每支鉛筆的價錢。

  解:每本練習本比每支鉛筆貴的錢數(shù):

  0.45÷(8-5)=0.45÷3=0.15(元)

  8個練習本比8支鉛筆貴的錢數(shù):

  0.15×8=1.2(元)

  每支鉛筆的價錢:

  (3.8-1.2)÷(5+8)=2.6÷13=0.2(元)

  也可以用方程解:

  設一枝鉛筆X元,則一本練習本為 元。

  8X+5× =3.8-0.45

  64X+19-25X=30.4-3.6

  39X=7.8

  X=0.2

  答:每支鉛筆0.2元。

  15、想:根據(jù)一輛客車比一輛卡車多載10人,可求6輛客車比6輛卡車多載的人數(shù),即多用的(8-6)輛卡車所載的人數(shù),進而可求每輛卡車載多少人和每輛大客車載多少人。

  解:卡車的數(shù)量:

  360÷[10×6÷(8-6)]

  =360÷[10×6÷2]

  =360÷30

  =12(輛)

  客車的數(shù)量:

  360÷[10×6÷(8-6)+10]

  =360÷[30+10]

  =360÷40

  =9(輛)

  答:可用卡車12輛,客車9輛。

  16、想:根據(jù)計劃每天修720米,這樣實際提前的長度是(720×3-1200)米。根據(jù)每天多修80米可求已修的天數(shù),進而求公路的全長。

  解:已修的天數(shù):

  (720×3-1200)÷80

  =960÷80

  =12(天)

  公路全長:

  (720+80)×12+1200

  =800×12+1200

  =9600+1200

  =10800(米)

  答:這條公路全長10800米。

  17、想:根據(jù)已知條件,可求12個紙箱轉(zhuǎn)化成木箱的個數(shù),先求出每個木箱裝多少雙,再求每個紙箱裝多少雙。

  解:12個紙箱相當木箱的個數(shù):

  2×(12÷3)=2×4=8(個)

  一個木箱裝鞋的雙數(shù):

  1800÷(8+4)=18000÷12=150(雙)

  一個紙箱裝鞋的雙數(shù):

  150×2÷3=100(雙)

  答:每個紙箱可裝鞋100雙,每個木箱可裝鞋

  150雙

  18、想:由已知條件可知道,每天用去30袋水泥,同時用去30×2袋沙子,才能同時用完。但現(xiàn)在每天只用去40袋沙子,少用(30×2-40)袋,這樣才累計出120袋沙子。因此看120袋里有多少個少用的沙子袋數(shù),便可求出用的天數(shù)。進而可求出沙子和水泥的總袋數(shù)。

  解:水泥用完的天數(shù):

  120÷(30×2-40)=120÷20=6(天)

  水泥的總袋數(shù):

  30×6=180(袋)

  沙子的總袋數(shù):

  180×2=360(袋)

  答:運進水泥180袋,沙子360袋。

  19、想:根據(jù)每個保溫瓶的價錢是每個茶杯的4倍,可把5個保溫瓶的價錢轉(zhuǎn)化為20個茶杯的價錢。這樣就可把5個保溫瓶和10個茶杯共用的90元錢,看作30個茶杯共用的錢數(shù)。

  解:每個茶杯的價錢:

  90÷(4×5+10)=3(元)

  每個保溫瓶的價錢:

  3×4=12(元)

  答:每個保溫瓶12元,每個茶杯3元。

  20、想:已知一個加數(shù)個位上是0,去掉0,就與第二個加數(shù)相同,可知第一個加數(shù)是第二個加數(shù)的10倍,那么兩個加數(shù)的和572,就是第二個加數(shù)的(10+1)倍。

  解:第一個加數(shù):

  572÷(10+1)=52

  第二個加數(shù):

  52×10=520

  答:這兩個加數(shù)分別是52和520。

  21、想:由已知條件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。

  解:9-(16-9)

  =9-7

  =2(千克)

  答:桶重2千克。

  22、想:由已知條件可知,10千克與5.5千克的差正好是半桶油的重量,再乘以2就是原來油的重量。

  解:(10-5.5)×2=9(千克)

  答:原來有油9千克。

  23、想:由已知條件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。

  解:(22-10)÷(5-2)

  =12÷3

  =4(千克)

  答:桶里原有水4千克。

  24、想:從"小紅給小華5本,兩人故事書的本數(shù)就相等"這一條件,可知小紅比小華多(5×2)本書,用共有的36本去掉小紅比小華多的本數(shù),剩下的本數(shù)正好是小華本數(shù)的2倍。

  解:小華有書的本數(shù):

  (36-5×2)÷2=13(本)

  小紅有書的本數(shù):

  13+5×2=23(本)

  答:原來小紅有23本,小華有13本。

  25、想:由已知條件知,5桶油共取出(15×5)千克。由于剩下油的重量正好等于原來2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。

  解:15×5÷(5-2)=25(千克)

  答:原來每桶油重25千克。

  26、想:把一根木料鋸成3段,只鋸出了(3-1)個鋸口,這樣就可以求出鋸出每個鋸口所需要的時間,進一步即可以求出鋸成5段所需的時間。

  解:9÷(3-1)×(5-1)=18(分)

  答:鋸成5段需要18分鐘。

  27、想:女工比男工少35人,男、女工各調(diào)出17人后,女工仍比男工少35人。這時男工人數(shù)是女工人數(shù)的2倍,也就是說少的35人是女工人數(shù)的(2-1)倍。這樣就可求出現(xiàn)在女工多少人,然后再分別求出男、女工原來各多少人。

  解:35÷(2-1)=35(人)

  女工原有:

  35+17=52(人)

  男工原有:

  52+35=87(人)

  答:原有男工87人,女工52人。

  28、想:由每小時行12千米,5小時到達可求出兩地的路程,即返回時所行的路程。由去時5小時到達和返回時多用1小時,可求出返回時所用時間。

  解:12×5÷(5+1)=10(千米)

  答:返回時平均每小時行10千米。

  29、想:由題意知,狗跑的時間正好是二人的相遇時間,又知狗的速度,這樣就可求出狗跑了多少千米。

  解:18÷(5+4)=2(小時)

  8×2=16(千米)

  答:狗跑了16千米。

  30、想:由條件知,(21+20+19)表示三種球總個數(shù)的2倍,由此可求出三種球的總個數(shù),再根據(jù)題目中的條件就可以求出三種球各多少個。

  解:總個數(shù):

  (21+20+19)÷2=30(個)

  白球:30-21=9(個)

  紅球:30-20=10(個)

  黃球:30-19=11(個)

  答:白球有9個,紅球有10個,黃球有11個。

  31、想:根據(jù)題意,33米比18米長的米數(shù)正好是3根細鋼管的長度,由此可求出一根細鋼管的長度,然后求一根粗鋼管的長度。

  解:(33-18)÷(5-2)=5(米)

  18-5×2=8(米)

  答:一根粗鋼管長8米,一根細鋼管長5米。

  32、想:由題意知,實際10天比原計劃10天多生產(chǎn)水泥(4.8×10)噸,而多生產(chǎn)的這些水泥按原計劃還需用(12-10)天才能完成,也就是說原計劃(12-10)天能生產(chǎn)水泥(4.8×10)噸。

  解:4.8×10÷(12-10)=24(噸)

  答:原計劃每天生產(chǎn)水泥24噸。

  33、想:由題意知唱歌的70人中也有跳舞的,同樣跳舞的30人中也有唱歌的,把兩者相加,這樣既唱歌又跑舞的就統(tǒng)計了兩次,再減去參加表演的80人,就是既唱歌又跳舞的人數(shù)。

  解:70+30-80

  =100-80

  =20(人)

  答:既唱歌又跳舞的有20人。

  34、想:參加語文競賽的36人中有參加數(shù)學競賽的,同樣參加數(shù)學競賽的38人中也有參加語 文競賽的,如果把兩者加起來,那么既參加語文競賽又參加數(shù)學競賽的人數(shù)就統(tǒng)計了兩次,所以將參加語文競賽的人數(shù)加上參加數(shù)學競賽的人數(shù)再加上一科也沒參加 的人數(shù)減去全班人數(shù)就是雙科都參加的人數(shù)。

  解:36+38+5-59=20(人)

  答:雙科都參加的有20人。

  35、想:由"2張桌子和5把椅子的價錢相等"這一條件,可以推出4張桌子就相當于10把椅子的價錢,買4張桌子和6把椅子共用640元,也就相當于買16把椅子共用640元。

  解:5×(4÷2)+6=16(把)

  640÷16=40(元)

  40×5÷2=10O(元)

  答:桌子和椅子的單價分別是100元、40元。

  36、想:5年前父親的年齡是(45-5)歲,兒子的年齡是(45-5)÷4歲,再加上5就是今年兒子的年齡。

  解:(45-5)÷4+5

  =10+5

  =15(歲)

  答:今年兒子15歲。

  37、想:"如果從甲桶倒入乙桶18千克,兩桶油就一樣重"可推出:甲桶油的重量比乙桶多(18×2)千克,又知"甲桶油重是乙桶油重的4倍",可知(18×2)千克正好是乙桶油重量的(4-1)倍。

  解:18×2÷(4-1)=12(千克)

  12×4=48(千克)

  答:原來甲桶有油48千克,乙桶有油12千克。

  38、想:根據(jù)題意,20題全部答對得100分,答錯一題將失去(5+3)分,而不答僅失去5分。小麗共失去(100-79)分。再根據(jù)(100-79)÷8=2(題)……5(分),分析答對、答錯和沒答的題數(shù)。

  解:(5×20-75)÷8=2(題)……5(分)

  20-2-1=17(題)

  答:答對17題,答錯2題,有1題沒答。

  39、想:"從兩車頭相遇到兩車尾相離",兩車所行的路程是兩車身長之和,即(240+264)米,速度之和為(20+16)米。根據(jù)路程、速度和時間的關(guān)系,就可求得所需時間。

  解:(240+264)÷(20+16)

  =504÷30

  =14(秒)

  答:從兩車頭相遇到兩車尾相離,需要14秒。

  40、想:火車通過隧道是指從車頭進入隧道到車尾離開隧道,所行的路程正好是車身與隧道長度之和。

  解:(600+1150)÷700

  =1750÷700

  =2.5(分)

  答:火車通過隧道需2.5分。

  41、想:在每分走50米的到校時間內(nèi)按兩種速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,這就可求出小明按每分50米的到校時間。

  解:60×2÷(60-50)=12(分)

  50×12=600(米)

  答:小明從家里到學校是600米。

  42、想:由已知條件可知,二人第一次相遇時,乙比甲多跑一周,即600米,又知乙每分鐘比甲多跑(400-300)米,即可求第一次相遇時經(jīng)過的時間。

  解:600÷(400-300)

  =600÷100

  =6(分)

  答:經(jīng)過6分鐘兩人第一次相遇

  43、想:由"只把寬增加2厘米,面積就增加12平方厘米",可求出原來的長是:(12÷2)厘米,同理原來的寬就是(8÷2)厘米,求出長和寬,就能求出原來的面積。

  解:(12÷2)×(8÷2)=24(平方厘米)

  答:這個長方形紙板原來的面積是24平方厘米。

  44、想:用去的錢數(shù)除以3就是1千克蘋果和1千克梨的總錢數(shù)。從這個總錢數(shù)里去掉1千克蘋果的錢數(shù),就是每千克梨的錢數(shù)。

  解:(20-7.4)÷3-2.4

  =12.6÷3-2.4

  =4.2-2.4

  =1.8(元)

  答:每千克梨1.8元。

  45、想:由題意知,甲乙速度和是(135÷3)千米,這個速度和是乙的速度的(2+1)倍。

  解:135÷3÷(2+1)=15(千米)

  15×2=30(千米)

  答:甲乙每小時分別行30千米、15千米。

  46、想:兩種球的數(shù)目相等,黑球取完時,白球還剩12個,說明黑球多取了12個,而每次多取(8-5)個,可求出一共取了幾次。

  解:12÷(8-5)=4(次)

  8×4+5×4+12=64(個)

  或8×4×2=64(個)

  答:一共取了4次,盒子里共有64個球。

  47、想:1路和2路下次同時發(fā)車時,所經(jīng)過的時間必須既是12分的倍數(shù),又是18分的倍數(shù)。也就是它們的最小公倍數(shù)。

  解:12和18的最小公倍數(shù)是36

  6時+36分=6時36分

  答:下次同時發(fā)車時間是上午6時36分。

  48、想:父、子年齡的差是(45-15)歲,當父親的年齡是兒子年齡的11倍時,這個差正好是兒子年齡的(11-1)倍,由此可求出兒子多少歲時,父親是兒子年齡的11倍。又知今年兒子15歲,兩個歲數(shù)的差就是所求的問題。

  解:(45-15)÷(11-1)=3(歲)

  15-3=12(年)

  答:12年前父親的年齡是兒子年齡的11倍。

  49、想:根據(jù)題意,可以將題中的條件轉(zhuǎn)化為:平均分給2名同學、3名同學、4名同學、5名同學都少一支,因此,求出2、3、4、5的最小公倍數(shù)再減去1就是要求的問題。

  解:2、3、4、5的最小公倍數(shù)是60

  60-1=59(支)

  答:這盒鉛筆最少有59支。

  50、想:根據(jù)只把底增加8米,面積就增加40平方米, 可求出原來平行四邊形的高。根據(jù)只把高增加5米,面積就增加40平方米,可求出原來平行四邊形的底。再用原來的底乘以原來的高就是要求的面積。

  解:(40÷5)×(40÷8)=40(平方米)

  答:平行四邊形地原來的面積是40平方米。

【小學奧數(shù)經(jīng)典應用題答案詳解】相關(guān)文章:

小學奧數(shù)應用題習題及答案07-26

小學奧數(shù)應用題整理匯總04-10

小學六年級奧數(shù)應用題及答案10-24

小學奧數(shù)時間行程應用題及解析04-17

小學奧數(shù)專題之分數(shù)應用題03-14

小學5年級奧數(shù)應用題08-24

小學奧數(shù)培優(yōu)題:年齡問題應用題20道07-07

小學六年級奧數(shù)應用題04-08

小學一年級奧數(shù)應用題盤點11-06

小學六年級奧數(shù)題及答案05-16