小學(xué)數(shù)學(xué)圓的知識點
在日常過程學(xué)習(xí)中,說到知識點,大家是不是都習(xí)慣性的重視?知識點是知識中的最小單位,最具體的內(nèi)容,有時候也叫“考點”。那么,都有哪些知識點呢?以下是小編幫大家整理的小學(xué)數(shù)學(xué)圓的知識點,僅供參考,希望能夠幫助到大家。
1.圓:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。
2.圓心:圓任意兩條對稱軸的交點為圓心。 注:圓心一般符號O表示
3.直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
4.半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。
圓的直徑和半徑都有無數(shù)條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=d/2。
圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。
5.圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。
6.圓周率:圓的周長與直徑的比值叫做圓周率。
圓的周長除以直徑的商是一個固定的數(shù),把它叫做圓周率,它是一個無限不循環(huán)小數(shù)(無理數(shù)),用字母π表示。計算時,通常取它的近似值,π≈3.14。
直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。
7.圓的面積公式:圓所占平面的大小叫做圓的面積。πr^2;,用字母S表示。
一條弧所對的圓周角是圓心角的二分之一。
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。
在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。
8.周長計算公式
(1)已知直徑:C=πd
(2)已知半徑:C=2πr
(3)已知周長:D=c/π
(4)圓周長的一半:1/2周長(曲線)
(5)半圓的周長:1/2周長+直徑(π÷2+1)
9.面積計算公式:
(1)已知半徑:S=πr2
(2)已知直徑:S=π(d/2)2
(3)已知周長:S=π[c÷(2π)]2
擴展資料
1、圓是定點的距離等于定長的點的集合
2、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
3、圓的外部可以看作是圓心的距離大于半徑的點的集合
4、同圓或等圓的半徑相等
5、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
6、和已知線段兩個端點的距離相等的點的軌跡,是這條線段的垂直平分線
7、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
8、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
9、定理不在同一直線上的三點確定一個圓。
10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
11、推論1:
、倨椒窒(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。
12、推論2:圓的兩條平行弦所夾的弧相等
13、圓是以圓心為對稱中心的中心對稱圖形
14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
15、推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
16、定理:一條弧所對的圓周角等于它所對的圓心角的一半
17、推論:同弧或等弧所對的'圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
18、推論:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
19、推論:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
20、定理:圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
21、①直線L和⊙O相交d﹤r
②直線L和⊙O相切d=r
、壑本L和⊙O相離d﹥r
22、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
23、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑
24、推論:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
25、推論:經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
26、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
27、圓的外切四邊形的兩組對邊的和相等
28、弦切角定理:弦切角等于它所夾的弧對的圓周角
29、推論:如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
30、相交弦定理:圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等
31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
32、切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
33、推論:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
34、如果兩個圓相切,那么切點一定在連心線上
35、①兩圓外離d﹥R+r
、趦蓤A外切d=R+r
③兩圓相交R-r﹤d﹤R+r(R﹥r)
、軆蓤A內(nèi)切d=R-r(R﹥r)
⑤兩圓內(nèi)含d﹤R-r(R﹥r)
36、定理:相交兩圓的連心線垂直平分兩圓的公共弦
37、定理:把圓分成n(n≥3):
、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形
、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
38、定理:
任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
39、正n邊形的每個內(nèi)角都等于(n-2)×180°/n
40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
41、正n邊形的面積Sn=pr/2p表示正n邊形的周長,r為邊心距
42、正三角形面積√3a2/4a表示邊長
43、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此
k(n-2)180°/n=360°化為(n-2)(k-2)=4
44、弧長計算公式:L=n兀R/180
45、扇形面積公式:
S扇形=n兀R2/360=LR/2
外公切線長=d-(R+r)
數(shù)學(xué)學(xué)習(xí)中常見問題分析
大部分學(xué)生在學(xué)習(xí)中或多或少的都會積累一些問題,這些問題平時我們可能不是很在意,那么到了初二后就會突顯出來。首先新生在學(xué)習(xí)數(shù)學(xué)的時候常遇到的就是對于知識點的理解不到位,還停留在一知半解的層次上面。有的學(xué)生在解答數(shù)學(xué)題的時候始終不能把握解題技巧,也就是說學(xué)生缺乏對待數(shù)學(xué)的舉一反三能力。
還有的學(xué)生在解答數(shù)學(xué)題時效率太低,無法再規(guī)定的時間內(nèi)完成解題,對于初中的考試節(jié)奏還沒辦法適應(yīng)。一些學(xué)生還沒有養(yǎng)成一個總結(jié)歸納的習(xí)慣,不會歸納知識點,不會歸納錯題。這些都是導(dǎo)致學(xué)生學(xué)不好數(shù)學(xué)的原因。
正確對待考試
首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠(yuǎn)鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎(chǔ)題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會嘗試得分,使自己的水平正常甚至超常發(fā)揮。
【小學(xué)數(shù)學(xué)圓的知識點】相關(guān)文章:
數(shù)學(xué)圓知識點歸納01-20
中考數(shù)學(xué)圓知識點10-07
高考數(shù)學(xué)圓的知識點07-31
數(shù)學(xué)中考關(guān)于圓的知識點06-02
《圓》中考數(shù)學(xué)知識點10-20
數(shù)學(xué)圓的相關(guān)量的知識點03-08
數(shù)學(xué)知識點之圓03-08
數(shù)學(xué)中圓的知識點匯總03-08