亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

數(shù)學(xué) 百文網(wǎng)手機(jī)站

數(shù)學(xué)之圓知識(shí)點(diǎn)

時(shí)間:2022-10-27 14:13:00 數(shù)學(xué) 我要投稿

數(shù)學(xué)之圓知識(shí)點(diǎn)

  圓雖然是最熟悉的幾何圖形之一,但它有很多新的知識(shí)點(diǎn),尤其是這里重要的知識(shí)點(diǎn),都與前面的知識(shí)緊密聯(lián)系著,下面是小編整理的初中數(shù)學(xué)之圓知識(shí)點(diǎn),歡迎大家閱讀分享借鑒。

數(shù)學(xué)之圓知識(shí)點(diǎn)

  數(shù)學(xué)之圓知識(shí)點(diǎn)1

  圓的周長(zhǎng)公式C=2π r 中的π是定義;

  圓的面積公式S=π*r*r,

  圓周率是指平面上圓的周長(zhǎng)與直徑之比。用希臘字母 π (讀"Pài")表示。中國(guó)古代有圓率、周率、周等名稱。(在一般計(jì)算時(shí)π人們都把π這無(wú)限不循環(huán)小數(shù)化成3.14)

  圓周率—π

  什么是圓周率?

  圓周率是一個(gè)常數(shù),是代表圓周和直徑的比例。它是一個(gè)無(wú)理數(shù),即是一個(gè)無(wú)限不循環(huán)小數(shù)。但在日常生活中,通常都用3.14來(lái)代表圓周率去進(jìn)行計(jì)算,即使是工程師或物理學(xué)家要進(jìn)行較精密的計(jì)算,也只取值至小數(shù)點(diǎn)后約20位。

  什么是π?

  π是第十六個(gè)希臘字母,本來(lái)它是和圓周率沒(méi)有關(guān)系的,但大數(shù)學(xué)家歐拉在一七三六年開(kāi)始,在書(shū)信和論文中都用π來(lái)代表圓周率。既然他是大數(shù)學(xué)家,所以人們也有樣學(xué)樣地用π來(lái)表圓周率了。但π除了表示圓周率外,也可以用來(lái)表示其他事物,在統(tǒng)計(jì)學(xué)中也能看到它的出現(xiàn)。

  (背圓周率的口訣】

  3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6

  山巔一寺一壺酒,爾樂(lè)苦煞吾,把酒吃,酒殺爾,殺不死,樂(lè)爾樂(lè)。

  4 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9 3 9 9 3 7

  死珊珊,霸占二妻。救我靈兒吧!不只要救妻,一路救三舅,救三妻。

  5 1 0 5 8 2 0 9 7 4 9 4 4 5 9 2 3 0 7

  我一拎我爸,二拎舅(其實(shí)就是撕我舅耳)三拎妻。

  8 1 6 4 0 6 2 8 6 2 0 8 9 9 8 6

  不要溜!司令溜,兒不溜!兒拎爸,久久不溜!

  數(shù)學(xué)之圓知識(shí)點(diǎn)2

  1、圓是由一條曲線圍成的平面圖形。(以前所學(xué)的圖形如長(zhǎng)方形、梯形等都是由幾條線段圍成的平面圖形)

  2、畫(huà)圓時(shí),針尖固定的一點(diǎn)是圓心,通常用字母O表示;連接圓心和圓上任意一點(diǎn)的線段是半徑,通常用字母r表示;通過(guò)圓心并且兩端都在圓上的線段是直徑,通常用字母d表示。在同一個(gè)圓里,有無(wú)數(shù)條半徑和直徑。在同一個(gè)圓里,所有半徑的長(zhǎng)度都相等,所有直徑的長(zhǎng)度都相等。

  3、用圓規(guī)畫(huà)圓的過(guò)程:先兩腳叉開(kāi),再固定針尖,最后旋轉(zhuǎn)成圓。畫(huà)圓時(shí)要注意:針尖必須固定在一點(diǎn),不可移動(dòng);兩腳間的距離必須保持不變;要旋轉(zhuǎn)一周。

  4、在同一個(gè)圓里,半徑是直徑的一半,直徑是半徑的2倍。(d=2r, r=d2)

  5、圓是軸對(duì)稱圖形,有無(wú)數(shù)條對(duì)稱軸,對(duì)稱軸就是直徑。

  6、圓心決定圓的位置,半徑?jīng)Q定圓的大小。所以要比較兩圓的大小,就是比較兩個(gè)圓的直徑或半徑。

  7、正方形里最大的圓。兩者聯(lián)系:邊長(zhǎng)=直徑

  畫(huà)法:(1)畫(huà)出正方形的兩條對(duì)角線;(2)以對(duì)角線交點(diǎn)為圓心,以邊長(zhǎng)為直徑畫(huà)圓。

  8、長(zhǎng)方形里最大的圓。兩者聯(lián)系:寬=直徑

  畫(huà)法:(1)畫(huà)出長(zhǎng)方形的兩條對(duì)角線;(2)以對(duì)角線交點(diǎn)為圓心,以邊長(zhǎng)為直徑畫(huà)圓。

  9、同一個(gè)圓內(nèi)的所有線段中,圓的直徑是最長(zhǎng)的。

  10、車輪滾動(dòng)一周前進(jìn)的路程就是車輪的周長(zhǎng)。

  每分前進(jìn)米數(shù)(速度)=車輪的周長(zhǎng)轉(zhuǎn)數(shù)

  11、任何一個(gè)圓的周長(zhǎng)除以它直徑的商都是一個(gè)固定的數(shù),我們把它叫做圓周率。

  用字母(讀pi)表示。是一個(gè)無(wú)限不循環(huán)小數(shù)。=3.141592653

  我們?cè)谟?jì)算時(shí),一般保留兩位小數(shù),取它的近似值3.14.3.14

  12、如果用C表示圓的周長(zhǎng),那么C=d或C = 2r

  13、求圓的半徑或直徑的方法:d = C圓 r= C圓 2= C圓2

  14、半圓的周長(zhǎng)等于圓周長(zhǎng)的一半加一條直徑。 C半圓= r+2r C半圓= d2+d

  15、常用的3.14的倍數(shù):

  3.142=6.28 3.143=9.42 3.144=12.56 3.145=15.7 3.146=18.84

  3.147=21.98 3.148=25.12 3.149=28.26 3.1412=37.68 3.1414=43.96

  3.1416=50.24 3.1418=56.52 3.1424=75.36 3.1425=78.5

  3.1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34

  16、圓的面積公式:S圓=r2。圓的面積是半徑平方的倍。

  17、圓的面積推導(dǎo):圓可以切拼成近似的長(zhǎng)方形,長(zhǎng)方形的面積與圓的面積相等(即S長(zhǎng)方形=S圓);長(zhǎng)方形的寬是圓的半徑(即b=r);長(zhǎng)方形的長(zhǎng)是圓周長(zhǎng)的一半(即a=2(C)=r)。即:S長(zhǎng)方形= a b

  S圓 = r r= r2

  S圓 = r2

  注意:切拼后的長(zhǎng)方形的周長(zhǎng)比圓的周長(zhǎng)多了兩條半徑。C長(zhǎng)方形=2r+2r=C圓+d

  18、半圓的面積是圓面積的一半。S半圓=r22

  19、大小兩個(gè)圓比較,半徑的倍數(shù)=直徑的倍數(shù)=周長(zhǎng)的倍數(shù),

  面積的倍數(shù)=半徑的倍數(shù)2

  20、周長(zhǎng)相等的平面圖形中,圓的面積最大;面積相等的平面圖形中,圓的周長(zhǎng)最短。

  21、求圓環(huán)的面積一般是用外圓的面積減去內(nèi)圓的面積,還可以利用乘法分配律進(jìn)行簡(jiǎn)便計(jì)算。S圓環(huán)=r2=(R2-r2)

  22、常用的平方數(shù):112=121 122=144 132=169 142=196 152=225

  162=256 172=289 182=324 192=361 202=400

  數(shù)學(xué)之圓知識(shí)點(diǎn)3

  1、 圓的有關(guān)概念:

  (1)、確定一個(gè)圓的要素是圓心和半徑。

  (2)

 、龠B結(jié)圓上任意兩點(diǎn)的線段叫做弦。

 、诮(jīng)過(guò)圓心的弦叫做直徑。

 、蹐A上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧。

  ④小于半圓周的圓弧叫做劣弧。

 、荽笥诎雸A周的圓弧叫做優(yōu)弧。

  ⑥在同圓或等圓中,能夠互相重合的弧叫做等弧。

 、唔旤c(diǎn)在圓上,并且兩邊和圓相交的角叫圓周角。

 、嘟(jīng)過(guò)三角形三個(gè)頂點(diǎn)可以畫(huà)一個(gè)圓,并且只能畫(huà)一個(gè),經(jīng)過(guò)三角形三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,三角形外接圓的圓心叫做這個(gè)三角形的外心,這個(gè)三角形叫做這個(gè)圓的內(nèi)接三角形,外心是三角形各邊中垂線的交點(diǎn);直角三角形外接圓半徑等于斜邊的一半。

 、崤c三角形各邊都相切的圓叫做三角形的內(nèi)切圓,三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心,這個(gè)三角形叫做圓外切三角形,三角形的內(nèi)心就是三角形三條內(nèi)角平分線的交點(diǎn)。

  2、 圓的有關(guān)性質(zhì)

  (1)定理在同圓或等圓中,如果圓心角相等,那么它所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等。推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對(duì)的其余各組量都分別相等。

  (2)垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。

  推論1:

  ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧。

 、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧。

  ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧。

  推論2:圓的兩條平行弦所夾的弧相等。

  (3)圓周角定理:一條弧所對(duì)的圓周角等于該弧所對(duì)的圓心角的一半。推論1在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,相等的圓周角所對(duì)的弧也相等。推論2半圓或直徑所對(duì)的圓周角都相等,都等于90 。90 的圓周角所對(duì)的弦是圓的直徑。推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。

  (4)切線的判定與性質(zhì):判定定理:經(jīng)過(guò)半徑的外端且垂直與這條半徑的直線是圓的切線。性質(zhì)定理:圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑;經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn);經(jīng)過(guò)切點(diǎn)切垂直于切線的直線必經(jīng)過(guò)圓心。

  (5)定理:不在同一條直線上的三個(gè)點(diǎn)確定一個(gè)圓。

  (6)圓的切線上某一點(diǎn)與切點(diǎn)之間的線段的長(zhǎng)叫做這點(diǎn)到圓的切線長(zhǎng);切線長(zhǎng)定理:從圓外一點(diǎn)可以引圓的兩條切線,它們的切線長(zhǎng)相等,這一點(diǎn)和圓心的連線平分這兩條切線的夾角。

  (7)圓內(nèi)接四邊形對(duì)角互補(bǔ),一個(gè)外角等于內(nèi)對(duì)角;圓外切四邊形對(duì)邊和相等;

  (8)弦切角定理:弦切角等于它所它所夾弧對(duì)的圓周角。

  (9)和圓有關(guān)的比例線段:相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等。如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)。切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)。從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓交點(diǎn)的兩條線段長(zhǎng)的積相等。

  (10)兩圓相切,連心線過(guò)切點(diǎn);兩圓相交,連心線垂直平分公共弦。

  數(shù)學(xué)之圓知識(shí)點(diǎn)4

  一、圓

  1、圓的有關(guān)性質(zhì)

  在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線段OA叫半徑。

  由圓的意義可知:

  圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長(zhǎng)的點(diǎn)都在圓上。

  就是說(shuō):圓是到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。

  圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結(jié)圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過(guò)圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡(jiǎn)稱弧。

  圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)。恍∮诎雸A的弧叫劣弧。由弦及其所對(duì)的弧組成的圓形叫弓形。

  圓心相同,半徑不相等的兩個(gè)圓叫同心圓。

  能夠重合的兩個(gè)圓叫等圓。

  同圓或等圓的半徑相等。

  在同圓或等圓中,能夠互相重合的弧叫等弧。

  二、過(guò)三點(diǎn)的圓

  l、過(guò)三點(diǎn)的圓

  過(guò)三點(diǎn)的圓的作法:利用中垂線找圓心

  定理不在同一直線上的'三個(gè)點(diǎn)確定一個(gè)圓。

  經(jīng)過(guò)三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內(nèi)接三角形。

  2、反證法

  反證法的三個(gè)步驟:

  ①假設(shè)命題的結(jié)論不成立;

 、趶倪@個(gè)假設(shè)出發(fā),經(jīng)過(guò)推理論證,得出矛盾;

  ③由矛盾得出假設(shè)不正確,從而肯定命題的結(jié)論正確。

  例如:求證三角形中最多只有一個(gè)角是鈍角。

  證明:設(shè)有兩個(gè)以上是鈍角

  則兩個(gè)鈍角之和>180°

  與三角形內(nèi)角和等于180°矛盾。

  ∴不可能有二個(gè)以上是鈍角。

  即最多只能有一個(gè)是鈍角。

  三、垂直于弦的直徑

  圓是軸對(duì)稱圖形,經(jīng)過(guò)圓心的每一條直線都是它的對(duì)稱軸。

  垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。

  推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)兩條弧。

  弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧。

  平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一個(gè)條弧。

  推理2:圓兩條平行弦所夾的弧相等。

  四、圓心角、弧、弦、弦心距之間的關(guān)系

  圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。

  實(shí)際上,圓繞圓心旋轉(zhuǎn)任意一個(gè)角度,都能夠與原來(lái)的圖形重合。

  頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

  定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦心距相等。

  推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。

  五、圓周角

  頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。

  推理1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。

  推理2:半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。

  推理3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。

  由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。

  數(shù)學(xué)之圓知識(shí)點(diǎn)5

  數(shù)學(xué)圓的知識(shí)點(diǎn)

  1.平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長(zhǎng)稱為半徑。

  2.圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過(guò)圓心的弦叫做直徑。

  3.頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。

  4.過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

  5.直線與圓有3種位置關(guān)系:無(wú)公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線有公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)的公共點(diǎn)叫做切點(diǎn)。

  6.兩圓之間有5種位置關(guān)系:無(wú)公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。

  7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開(kāi)圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線。

  圓--⊙半徑—r弧--⌒直徑—d

  扇形弧長(zhǎng)/圓錐母線—l周長(zhǎng)—C面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個(gè))

  1.點(diǎn)P與圓O的位置關(guān)系(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離):

  P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO

  2.圓是軸對(duì)稱圖形,其對(duì)稱軸是任意一條過(guò)圓心的直線。圓也是中心對(duì)稱圖形,其對(duì)稱中心是圓心。

  3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的弧。

  4.在同圓或等圓中,如果2個(gè)圓心角,2個(gè)圓周角,2條弧,2條弦中有一組量相等,那么他們所對(duì)應(yīng)的其余各組量都分別相等。

  5.一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。

  6.直徑所對(duì)的圓周角是直角。90度的圓周角所對(duì)的弦是直徑。

  7.不在同一直線上的3個(gè)點(diǎn)確定一個(gè)圓。

  8.一個(gè)三角形有確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形3個(gè)頂點(diǎn)距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形3邊距離相等。

  9.直線AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距

  離):

  AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO

  10.圓的切線垂直于過(guò)切點(diǎn)的直徑;經(jīng)過(guò)直徑的一端,并且垂直于這條直徑的直線,是這個(gè)圓的切線。

  11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P):

  外離P>R+r;外切P=R+r;相交R-r

  1.圓的周長(zhǎng)C=2πr=πd

  2.圓的面積S=s=πr?

  3.扇形弧長(zhǎng)l=nπr/180

  4.扇形面積S=nπr?/360=rl/2

  5.圓錐側(cè)面積S=πrl

  數(shù)學(xué)學(xué)習(xí)方法

  1.先看筆記后做作業(yè)。

  有的同學(xué)感到,老師講過(guò)的,自己已經(jīng)聽(tīng)得明明白白了。但是為什么你這么做有那么多困難呢?原因是學(xué)生對(duì)教師所說(shuō)的理解沒(méi)有達(dá)到教師要求的水平。

  因此,每天做作業(yè)之前,我們必須先看一下課本的相關(guān)內(nèi)容和當(dāng)天的課堂筆記。能否如此堅(jiān)持,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其是當(dāng)練習(xí)不匹配時(shí),老師通常沒(méi)有剛剛講過(guò)的練習(xí)類型,因此它們不能被比較和消化。如果你不重視這個(gè)實(shí)施,在很長(zhǎng)一段時(shí)間內(nèi),會(huì)造成很大的損失。

  2.做題之后加強(qiáng)反思。

  學(xué)生一定要明確,現(xiàn)在正做著的題,一定不是考試的題目。但使用現(xiàn)在做主題的解決問(wèn)題的思路和方法。因此,我們應(yīng)該反思我們所做的每一個(gè)問(wèn)題,并總結(jié)我們自己的收獲。

  要總結(jié)出:這是一道什么內(nèi)容的題,用的是什么方法。做到知識(shí)成片,問(wèn)題成串。日復(fù)一日,建立科學(xué)的網(wǎng)絡(luò)系統(tǒng)的內(nèi)容和方法。俗話說(shuō): 有錢(qián)難買回頭看 。做完作業(yè),回頭細(xì)看,價(jià)值極大。這一回顧,是學(xué)習(xí)過(guò)程中一個(gè)非常重要的環(huán)節(jié)。

  我們應(yīng)該看看我們做得對(duì)不對(duì);還有什么解決辦法;問(wèn)題在知識(shí)體系中的地位是什么;解決辦法的實(shí)質(zhì)是什么;問(wèn)題中的知識(shí)是否可以與我們所要求的交換,以及我們是否可以作出適當(dāng)?shù)难a(bǔ)充或刪除。有了以上五個(gè)回頭看,解題能力才能與日俱增。投入的時(shí)間雖少,效果卻很大?煞Q為事半功倍。

  有人認(rèn)為,要想學(xué)好數(shù)學(xué),只要多做題,功到自然成。數(shù)學(xué)要不要刷題?一般說(shuō)做的題太少,很多熟能生巧的問(wèn)題就會(huì)無(wú)從談起。因此,應(yīng)該適當(dāng)?shù)囟嗨㈩}。但是,只顧鉆入題海,堆積題目,在考試中一般也是難有作為的。要把提高當(dāng)成自己的目標(biāo),要把自己的活動(dòng)合理地系統(tǒng)地組織起來(lái),要總結(jié)反思,進(jìn)行章節(jié)總結(jié)是非常重要的。

  數(shù)學(xué)學(xué)習(xí)技巧

  養(yǎng)成良好的課前和課后學(xué)習(xí)習(xí)慣:在當(dāng)前高中數(shù)學(xué)學(xué)習(xí)中,培養(yǎng)正確的學(xué)習(xí)習(xí)慣是一項(xiàng)重要的學(xué)習(xí)技能。雖然有一種刻板印象的猜疑,但在高中數(shù)學(xué)學(xué)習(xí)真的是反復(fù)嘗試和錯(cuò)誤的。學(xué)生們不得不預(yù)習(xí)課本。我準(zhǔn)備的數(shù)學(xué)教科書(shū)不是簡(jiǎn)單的閱讀,而是一個(gè)例子,至少十分鐘的思考。在使用前不能通過(guò)學(xué)習(xí)知識(shí)解決問(wèn)題的情況下,可以在教學(xué)內(nèi)容中找到答案,然后在教材中考察問(wèn)題的解決過(guò)程,掌握解決問(wèn)題的思路。同時(shí),在課堂上安排筆記也是必要的。在高中數(shù)學(xué)研究中,建議采用兩種形式的筆記,一種是課堂速記,另一種是課后筆記。這不僅提高了課堂記憶的吸收能力,而且有助于對(duì)筆記內(nèi)容的查詢。

  數(shù)學(xué)之圓知識(shí)點(diǎn)6

  圓的一般方程

  圓的標(biāo)準(zhǔn)方程是一個(gè)關(guān)于x和y的二次方程,將它展開(kāi)并按x、y的降冪排列,得:

  x+y—2ax—2by+a+b—R=0

  設(shè)D=—2a,E=—2b,F(xiàn)=a+b—R;則方程變成:

  x+y+Dx+Ey+F=0

  任意一個(gè)圓的方程都可寫(xiě)成上述形式。把它和下述的一般形式的二元二次方程比較,可以看出它有這樣的特點(diǎn):

  (1)x2項(xiàng)和y2項(xiàng)的系數(shù)相等且不為0(在這里為1);

  (2)沒(méi)有xy的乘積項(xiàng)。

  Ax+Bxy+Cy+Dx+Ey+F=0

  圓的端點(diǎn)式:

  若已知兩點(diǎn)A(a1,b1),B(a2,b2),則以線段AB為直徑的圓的方程為(x—a1)(x—a2)+(y—b1)(y—b2)=0

  圓的離心率e=0,在圓上任意一點(diǎn)的曲率半徑都是r。

  經(jīng)過(guò)圓x+y=r上一點(diǎn)M(a0,b0)的切線方程為a0·x+b0·y=r

  在圓(x+y=r)外一點(diǎn)M(a0,b0)引該圓的兩條切線,且兩切點(diǎn)為A,B,則A,B兩點(diǎn)所在直線的方程也為a0·x+b0·y=r。

  圓的性質(zhì)有哪些

  1、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  2、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  3、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  4、同圓或等圓的半徑相等。

  圓是一種幾何圖形,指的是平面中到一個(gè)定點(diǎn)距離為定值的所有點(diǎn)的集合。這個(gè)給定的點(diǎn)稱為圓的圓心。作為定值的距離稱為圓的半徑。當(dāng)一條線段繞著它的一個(gè)端點(diǎn)在平面內(nèi)旋轉(zhuǎn)一周時(shí),它的另一個(gè)端點(diǎn)的軌跡就是一個(gè)圓。圓的直徑有無(wú)數(shù)條;圓的對(duì)稱軸有無(wú)數(shù)條。圓的直徑是半徑的2倍,圓的半徑是直徑的一半。

  用圓規(guī)畫(huà)圓時(shí),針尖所在的點(diǎn)叫做圓心,一般用字母O表示。連接圓心和圓上任意一點(diǎn)的線段叫做半徑,一般用字母r表示,半徑的長(zhǎng)度就是圓規(guī)兩個(gè)角之間的距離。通過(guò)圓心并且兩端都在圓上的線段叫做直徑,一般用字母d表示。

  數(shù)學(xué)指數(shù)與指數(shù)冪的運(yùn)算

  1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈x。

  當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù)。此時(shí),的次方根用符號(hào)表示。式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開(kāi)方數(shù)(radicand)。

  當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù)。此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)—表示。正的次方根與負(fù)的次方根可以合并成±(>0)。由此可得:負(fù)數(shù)沒(méi)有偶次方根;0的任何次方根都是0,記作。

  注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),

  2、分?jǐn)?shù)指數(shù)冪

  正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

  0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義

  指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。

  數(shù)學(xué)的學(xué)習(xí)方法

  1、養(yǎng)成良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會(huì)使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過(guò)程中,要把教師所傳授的知識(shí)翻譯成為自己的特殊語(yǔ)言,并永久記憶在自己的腦海中。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣包括課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。

  2、及時(shí)了解、掌握常用的數(shù)學(xué)思想和方法,學(xué)好高中數(shù)學(xué),需要我們從數(shù)學(xué)思想與方法高度來(lái)掌握它。中學(xué)數(shù)學(xué)學(xué)習(xí)要重點(diǎn)掌握的的數(shù)學(xué)思想有以上幾個(gè):集合與對(duì)應(yīng)思想,分類討論思想,數(shù)形結(jié)合思想,運(yùn)動(dòng)思想,轉(zhuǎn)化思想,變換思想。

  3、逐步形成“以我為主”的學(xué)習(xí)模式數(shù)學(xué)不是靠老師教會(huì)的,而是在老師的引導(dǎo)下,靠自己主動(dòng)的思維活動(dòng)去獲取的。學(xué)習(xí)數(shù)學(xué)就要積極主動(dòng)地參與學(xué)習(xí)過(guò)程,養(yǎng)成實(shí)事求是的科學(xué)態(tài)度,獨(dú)立思考、勇于探索的創(chuàng)新精神。

  4、記數(shù)學(xué)筆記,特別是對(duì)概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識(shí)。記錄下來(lái)本章你覺(jué)得最有價(jià)值的思想方法或例題,以及你還存在的未解決的問(wèn)題,以便今后將其補(bǔ)上。

  數(shù)學(xué)之圓知識(shí)點(diǎn)7

  1、圓的定義

  平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。

  2、圓的方程

  (x-a)^2+(y-b)^2=r^2

 。1)標(biāo)準(zhǔn)方程,圓心(a,b),半徑為r;

 。2)求圓方程的方法:

  一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

  另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。

  3、直線與圓的位置關(guān)系

  直線與圓的位置關(guān)系有相離,相切,相交三種情況:

 。1)設(shè)直線,圓,圓心到l的距離為,則有;;

  (2)過(guò)圓外一點(diǎn)的切線:

 、賙不存在,驗(yàn)證是否成立

 、趉存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

  (3)過(guò)圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2

【數(shù)學(xué)之圓知識(shí)點(diǎn)】相關(guān)文章:

中考數(shù)學(xué)知識(shí)點(diǎn)之圓的總結(jié)07-16

中考數(shù)學(xué)圓知識(shí)點(diǎn)07-22

小學(xué)數(shù)學(xué)圓的知識(shí)點(diǎn)07-19

高考數(shù)學(xué)圓的知識(shí)點(diǎn)07-31

數(shù)學(xué)圓知識(shí)點(diǎn)歸納01-20

初中數(shù)學(xué)試題精選之圓08-31

中考數(shù)學(xué)圓必考知識(shí)點(diǎn)07-22

初中數(shù)學(xué)中考圓知識(shí)點(diǎn)07-25

中考數(shù)學(xué)圓知識(shí)點(diǎn)總結(jié)07-25