高一關(guān)于集合間的基本關(guān)系的數(shù)學(xué)知識(shí)點(diǎn)歸納
【例1】
已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},則M,N,P滿足關(guān)系
A) M=N P B) M N=P C) M N P D) N P M
分析一:從判斷元素的共性與區(qū)別入手。
解答一:對(duì)于集合M:{x|x= ,m∈Z};對(duì)于集合N:{x|x= ,n∈Z},
對(duì)于集合P:{x|x= ,p∈Z},由于3(n—1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以M N=P,故選B。
分析二:簡(jiǎn)單列舉集合中的元素。
解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},這時(shí)不要急于判斷三個(gè)集合間的關(guān)系,應(yīng)分析各集合中不同的元素。
= ∈N, ∈N,∴M N,又 = M,∴M N,
變式:設(shè)集合 , ,則( B ),
A。M=N B。M N C。N M D。
解:
當(dāng) 時(shí),2k+1是奇數(shù),k+2是整數(shù),選B
【例2】
定義集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},則A*B的子集個(gè)數(shù)為A)1 B)2 C)3 D)4。
分析:確定集合A*B子集的個(gè)數(shù),首先要確定元素的個(gè)數(shù),然后再利用公式:集合A={a1,a2,…,an}有子集2n個(gè)來(lái)求解。
解答:∵A*B={x|x∈A且x B}, ∴A*B={1,7},有兩個(gè)元素,故A*B的'子集共有22個(gè)。選D。
變式1:已知非空集合M {1,2,3,4,5},且若a∈M,則6?a∈M,那么集合M的個(gè)數(shù)為?
A)5個(gè) B)6個(gè) C)7個(gè) D)8個(gè)
變式2:已知{a,b} A {a,b,c,d,e},求集合A。
解:由已知,集合中必須含有元素a,b。
集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}。
評(píng)析 本題集合A的個(gè)數(shù)實(shí)為集合{c,d,e}的真子集的個(gè)數(shù),所以共有 個(gè) 。
【例3】
已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實(shí)數(shù)p,q,r的值。
解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3。
∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A
∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的兩根為—2和1,
∴ ∴
變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實(shí)數(shù)b,c,m的值。
解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=—5
∴B={x|x2—5x+6=0}={2,3} ∵A∪B=B ∴
又 ∵A∩B={2} ∴A={2} ∴b=—(2+2)=4,c=2×2=4
∴b=—4,c=4,m=—5
【例4】
已知集合A={x|(x—1)(x+1)(x+2)>0},集合B滿足:A∪B={x|x>—2},且A∩B={x|1
分析:先化簡(jiǎn)集合A,然后由A∪B和A∩B分別確定數(shù)軸上哪些元素屬于B,哪些元素不屬于B。
解答:A={x|—21}。由A∩B={x|1—2}可知[—1,1] B,而(—∞,—2)∩B=ф。
綜合以上各式有B={x|—1≤x≤5}
變式1:若A={x|x3+2x2—8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>—4},A∩B=,求a,b。(答案:a=—2,b=0)
變式2:設(shè)M={x|x2—2x—3=0},N={x|ax—1=0},若M∩N=N,求所有滿足條件的a的集合。
解答:M={—1,3} , ∵M(jìn)∩N=N, ∴N M
、佼(dāng) 時(shí),ax—1=0無(wú)解,∴a=0 ②
綜①②得:所求集合為{—1,0, }
【例5】
已知集合 ,函數(shù)y=log2(ax2—2x+2)的定義域?yàn)镼,若P∩Q≠,求實(shí)數(shù)a的取值范圍。
分析:先將原問(wèn)題轉(zhuǎn)化為不等式ax2—2x+2>0在 有解,再利用參數(shù)分離求解。
解答:(1)若 , 在 內(nèi)有有解
令 當(dāng) 時(shí),
所以a>—4,所以a的取值范圍是
變式:若關(guān)于x的方程 有實(shí)根,求實(shí)數(shù)a的取值范圍。
【高一間的基本關(guān)系的數(shù)學(xué)知識(shí)點(diǎn)歸納】相關(guān)文章:
高一數(shù)學(xué)必修1集合間的基本關(guān)系知識(shí)點(diǎn)歸納12-05
高三數(shù)學(xué)集合間的基本關(guān)系的知識(shí)點(diǎn)02-03
高一數(shù)學(xué)集合的基本關(guān)系知識(shí)點(diǎn)01-27
數(shù)學(xué)必修1集合間的基本關(guān)系的知識(shí)點(diǎn)12-09
高一數(shù)學(xué)集合知識(shí)點(diǎn)歸納02-18
數(shù)學(xué)必修1第一章知識(shí)點(diǎn):集合間的基本關(guān)系12-11
高一數(shù)學(xué)必修五知識(shí)點(diǎn)歸納08-13