數(shù)學實數(shù)知識點(精選8篇)
在日復一日的學習中,不管我們學什么,都需要掌握一些知識點,知識點也可以通俗的理解為重要的內容。那么,都有哪些知識點呢?下面是小編幫大家整理的數(shù)學實數(shù)知識點(精選8篇),僅供參考,歡迎大家閱讀。
數(shù)學實數(shù)知識點1
實數(shù),是有理數(shù)和無理數(shù)的總稱。數(shù)學上,實數(shù)定義為與數(shù)軸上的點相對應的數(shù)。實數(shù)可以直觀地看作有限小數(shù)與無限小數(shù),它們能把數(shù)軸“填滿”。但僅僅以列舉的方式不能描述實數(shù)的整體。實數(shù)和虛數(shù)共同構成復數(shù)。
1、實數(shù)的分類:有理數(shù)和無理數(shù)
2、數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫數(shù)軸。實數(shù)和數(shù)軸上點一一對應。
3、相反數(shù):符號不同的兩個數(shù),叫做互為相反數(shù)。a的相反數(shù)是-a,0的相反數(shù)是0。(若a與b護衛(wèi)相反數(shù),則a+b=0)
4、絕對值:在數(shù)軸上表示數(shù)a的點到原點的距離叫數(shù)a的絕對值,記作∣a∣,正數(shù)的絕對值是它本身;負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。
5、倒數(shù):乘積為1的兩個數(shù)
6、乘方:求相同因數(shù)的積的運算叫乘方,乘方運算的結果叫冪。(平方和立方)
7、平方根:一般地,如果一個數(shù)x的平方等于a,即x2=a那么這個數(shù)x就叫做a的平方根(也叫做二次方根)。一個正數(shù)有兩個平方根,它們互為相反數(shù);0只有一個平方根,它是0本身;負數(shù)沒有平方根。(算術平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x就叫做a的算術平方根,0的算術平方根是0。)
數(shù)學實數(shù)知識點2
1.數(shù)的分類及概念數(shù)系表:
說明:分類的原則:
1)相稱(不重、不漏)
2)有標準
2.非負數(shù):正實數(shù)與零的統(tǒng)稱。(表為:x0)
性質:若干個非負數(shù)的和為0,則每個非負數(shù)均為0。
3.倒數(shù):
①定義及表示法
、谛再|:A.a1/a(a1);B.1/a中,aC.0
4.相反數(shù):
、俣x及表示法
②性質:A.a0時,aB.a與-a在數(shù)軸上的位置;C.和為0,商為-1。
5.數(shù)軸:
、俣x(三要素)
、谧饔茫篈.直觀地比較實數(shù)的大小;B.明確體現(xiàn)絕對值意義;C.建立點與實數(shù)的一一對應關系。
6.奇數(shù)、偶數(shù)、質數(shù)、合數(shù)(正整數(shù)自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7.絕對值:
、俣x(兩種):
代數(shù)定義:xxxx
幾何定義:數(shù)a的絕對值頂?shù)膸缀我饬x是實數(shù)a在數(shù)軸上所對應的點到原點的距離。
、讴│0,符號││是非負數(shù)的標志;
③數(shù)a的絕對值只有一個;
、芴幚砣魏晤愋偷念}目,只要其中有││出現(xiàn),其關鍵一步是去掉││符號。
數(shù)學實數(shù)知識點3
實數(shù):—有理數(shù)與無理數(shù)統(tǒng)稱為實數(shù)。
有理數(shù):整數(shù)和分數(shù)統(tǒng)稱為有理數(shù)。
無理數(shù):無理數(shù)是指無限不循環(huán)小數(shù)。
自然數(shù):表示物體的個數(shù)0、1、2、3、4~(0包括在內)都稱為自然數(shù)。
數(shù)軸:規(guī)定了圓點、正方向和單位長度的直線叫做數(shù)軸。
相反數(shù):符號不同的兩個數(shù)互為相反數(shù)。
倒數(shù):乘積是1的兩個數(shù)互為倒數(shù)。
絕對值:數(shù)軸上表示數(shù)a的點與圓點的距離稱為a的絕對值。一個正數(shù)的絕對值是本身,一個負數(shù)的絕對值是它的相反數(shù),0的絕對值是0。
數(shù)學實數(shù)知識點4
1、平方根
如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x叫做a的算術平方根。a的算術平方根記為,讀作“根號a”,a叫做被開方數(shù)。如果一個數(shù)的平方等于a,那么這個數(shù)叫做a的平方根或二次方根。求一個數(shù)a的平方根的運算,叫做開平方。
2、立方根
如果一個數(shù)的立方等于a,那么這個數(shù)叫做a的立方根或三次方根。求一個數(shù)的立方根的運算,叫做開立方。
3、實數(shù)
無限不循環(huán)小數(shù)又叫做無理數(shù)。有理數(shù)和無理數(shù)統(tǒng)稱實數(shù)。一個正實數(shù)的絕對值是它本身;一個負實數(shù)的絕對值是它的相反數(shù);0的絕對值是0。
數(shù)學實數(shù)知識點5
實數(shù)中的幾個概念
1、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。
。1)實數(shù)a的相反數(shù)是-a;
。2)a和b互為相反數(shù)a+b=0
2、倒數(shù):
。1)實數(shù)a(a≠0)的倒數(shù)是;
。2)a和b互為倒數(shù);
。3)注意0沒有倒數(shù)
3、絕對值:
。1)一個數(shù)a的絕對值有以下三種情況:
(2)實數(shù)的絕對值是一個非負數(shù),從數(shù)軸上看,一個實數(shù)的絕對值,就是數(shù)軸上表示這個數(shù)的點到原點的距離。
。3)去掉絕對值符號(化簡)必須要對絕對值符號里面的實數(shù)進行數(shù)性(正、負)確認,再去掉絕對值符號。
4、n次方根
。1)平方根,算術平方根:設a≥0,稱叫a的平方根,叫a的算術平方根。
(2)正數(shù)的平方根有兩個,它們互為相反數(shù);0的平方根是0;負數(shù)沒有平方根。
。3)立方根:叫實數(shù)a的立方根。
(4)一個正數(shù)有一個正的立方根;0的立方根是0;一個負數(shù)有一個負的立方根。
數(shù)學實數(shù)知識點6
無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)
平方根:
、偃绻粋正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術平方根。
②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。
、垡粋正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。
、芮笠粋數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。
立方根:
①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。
、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。
、矍笠粋數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。
實數(shù):
①實數(shù)分有理數(shù)和無理數(shù)。
②在實數(shù)范圍內,相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內的相反數(shù),倒數(shù),絕對值的意義完全一樣。
、勖恳粋實數(shù)都可以在數(shù)軸上的一個點來表示。
代數(shù)式:
單獨一個數(shù)或者一個字母也是代數(shù)式。
合并同類項:
、偎帜赶嗤,并且相同字母的指數(shù)也相同的項,叫做同類項。
、诎淹愴椇喜⒊梢豁椌徒凶龊喜⑼愴棥
、墼诤喜⑼愴棔r,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。
有理數(shù):
、僬麛(shù)→正整數(shù)/0/負整數(shù)
②分數(shù)→正分數(shù)/負分數(shù)
數(shù)軸:
、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。
、谌魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示。
③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側,并且與原點距離相等。
、軘(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。
絕對值:
①在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值。
②正數(shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。
有理數(shù)的運算:
加法:
、偻栂嗉樱∠嗤姆,把絕對值相加。
、诋愄栂嗉,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。
③一個數(shù)與0相加不變。
減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
乘法:
、賰蓴(shù)相乘,同號得正,異號得負,絕對值相乘。
②任何數(shù)與0相乘得0。
③乘積為1的兩個有理數(shù)互為倒數(shù)。
除法:
、俪砸粋數(shù)等于乘以一個數(shù)的倒數(shù)。
、0不能作除數(shù)。
乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
數(shù)學實數(shù)知識點7
1、算術平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術平方根,記作。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。
2、平方根:一般地,如果一個數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。
3、正數(shù)有兩個平方根(一正一負)它們互為相反數(shù);0只有一個平方根,就是它本身;負數(shù)沒有平方根。
4、正數(shù)的立方根是正數(shù);0的.立方根是0;負數(shù)的立方根是負數(shù)。
5、數(shù)a的相反數(shù)是-a,一個正實數(shù)的絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),0的絕對值是0
實數(shù)部分主要要求學生了解無理數(shù)和實數(shù)的概念,知道實數(shù)和數(shù)軸上的點一一對應,能估算無理數(shù)的大小;了解實數(shù)的運算法則及運算律,會進行實數(shù)的運算。重點是實數(shù)的意義和實數(shù)的分類;實數(shù)的運算法則及運算律。
數(shù)學的學習思維方法
1、比較法
通過對比數(shù)學條件及問題的異同點,研究產生異同點的原因,從而發(fā)現(xiàn)解決問題的方法,叫比較法。
比較法要注意:
(1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。
(2)找聯(lián)系與區(qū)別,這是比較的實質。
(3)必須在同一種關系下(同一種標準)進行比較,這是“比較”的基本條件。
(4)要抓住主要內容進行比較,盡量少用“窮舉法”進行比較,那樣會使重點不突出。
(5)因為數(shù)學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯。
2、公式法
運用定律、公式、規(guī)則、法則來解決問題的方法。它體現(xiàn)的是由一般到特殊的演繹思維。公式法簡便、有效,也是孩子學習數(shù)學必須學會和掌握的一種方法。但一定要讓孩子對公式、定律、規(guī)則、法則有一個正確而深刻的理解,并能準確運用。
初中數(shù)學重點知識點
平行:
、偻黄矫鎯,不相交的兩條直線叫做平行線。
、诮涍^直線外一點,有且只有一條直線與這條直線平行。
③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:
①如果兩條直線相交成直角,那么這兩條直線互相垂直。
、诨ハ啻怪钡膬蓷l直線的交點叫做垂足。
③平面內,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關,再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關于畫法,后面會講)一定要把線段穿出2點。
數(shù)學實數(shù)知識點8
一、實數(shù)的概念及分類
1、實數(shù)的分類、正有理數(shù)、有理數(shù)零有限小數(shù)和無限循環(huán)小數(shù)
負有理數(shù)
正無理數(shù)
無理數(shù)無限不循環(huán)小數(shù)
負無理數(shù)
整數(shù)包括正整數(shù)、零、負整數(shù)。
正整數(shù)又叫自然數(shù)。
正整數(shù)、零、負整數(shù)、正分數(shù)、負分數(shù)統(tǒng)稱為有理數(shù)。
2、無理數(shù)
在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:
(1)開方開不盡的數(shù),如7,2等;
(2)π有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;3
(3)有特定結構的數(shù),如0、1010010001…等;
二、實數(shù)的倒數(shù)、相反數(shù)和絕對值
1、相反數(shù)
實數(shù)與它的相反數(shù)時一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應的點關于原點對稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。
2、絕對值
一個數(shù)的絕對值就是表示這個數(shù)的點與原點的距離,|a|≥0。零的絕對值時它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。正數(shù)大于零,負數(shù)小于
零,正數(shù)大于一切負數(shù),兩個負數(shù),絕對值大的反而小。
3、倒數(shù)
如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。
4、實數(shù)與數(shù)軸上點的關系:
每一個無理數(shù)都可以用數(shù)軸上的一個點表示出來,
數(shù)軸上的點有些表示有理數(shù),有些表示無理數(shù),
實數(shù)與數(shù)軸上的點就是一一對應的,即每一個實數(shù)都可以用數(shù)軸上的一個點來表示;反過來,數(shù)軸上的每一個點都是表示一個實數(shù)。
初中數(shù)學線段的性質
(1)線段公理:所有連接兩點的線中,線段最短。也可簡單說成:兩點之間線段最短。
(2)連接兩點的線段的長度,叫做這兩點的距離。
(3)線段的中點到兩端點的距離相等。
(4)線段的大小關系和它們的長度的大小關系是一致的。
初一學數(shù)學的最快方法
課前預習閱讀
預習課文時,要準備一張紙、一支筆,將課本中的關鍵詞語、產生的疑問和需要思考的問題隨手記下,對定義、公理、公式、法則等,可以在紙上進行簡單的復述,推理。重點知識可在課本上批、劃、圈、點。這樣做,不但有助于理解課文,還能幫助我們在課堂上集中精力聽講,有重點地聽講。
課后鞏固
課后鞏固自己的知識點也很重要。課后鞏固可以讓你的知識點得到一個再記憶的效果,加深記憶數(shù)學知識點的效果。
會比較
在學習基礎知識(如概念、定義、法則、定理等)時,要運用對比、類比、舉反例等思維方式,理解它們的內涵和外延,將類似的、易混淆的基礎知識加以區(qū)分、如學習棱柱時,我們可以將其和我們已經熟悉的圓柱作對比,總結歸納他們的相同點和不同點,達到加深記憶和理解目的。
寫數(shù)學學習總結
每周寫一次數(shù)學學習總結,也是一種提高初中數(shù)學學習成績的好方法。在寫初中數(shù)學學習總結的時候,我們可以回顧一下本周的數(shù)學學習概況,同時可以寫一些自己下一周、下一個月的數(shù)學學習規(guī)劃,這樣既能對過去的學習有所總結,還能夠對未來的數(shù)學學習有所計劃,兩者加起來的話,將會讓我們的數(shù)學學習思路和目標更加明確。
【數(shù)學實數(shù)知識點(精選8篇)】相關文章:
實數(shù)中考數(shù)學知識點10-22