- 相關(guān)推薦
七年級(jí)上冊(cè)數(shù)學(xué)幾何圖形初步知識(shí)點(diǎn)
在平時(shí)的學(xué)習(xí)中,是不是聽(tīng)到知識(shí)點(diǎn),就立刻清醒了?知識(shí)點(diǎn)是知識(shí)中的最小單位,最具體的內(nèi)容,有時(shí)候也叫“考點(diǎn)”。掌握知識(shí)點(diǎn)是我們提高成績(jī)的關(guān)鍵!下面是小編為大家整理的七年級(jí)上冊(cè)數(shù)學(xué)幾何圖形初步知識(shí)點(diǎn),歡迎大家分享。
數(shù)學(xué)幾何圖形初步知識(shí)點(diǎn)
本章的主要內(nèi)容是圖形的初步認(rèn)識(shí),從生活周?chē)煜さ奈矬w入手,對(duì)物體的形狀的認(rèn)識(shí)從感性逐步上升到抽象的幾何圖形。通過(guò)從不同方向看立體圖形和展開(kāi)立體圖形,初步認(rèn)識(shí)立體圖形與平面圖形的聯(lián)系。在此基礎(chǔ)上,認(rèn)識(shí)一些簡(jiǎn)單的平面圖形--直線、射線、線段和角。
一、目標(biāo)與要求
1.能從現(xiàn)實(shí)物體中抽象得出幾何圖形,正確區(qū)分立體圖形與平面圖形;能把一些立體圖形的問(wèn)題,轉(zhuǎn)化為平面圖形進(jìn)行研究和處理,探索平面圖形與立體圖形之間的關(guān)系。
2.經(jīng)歷探索平面圖形與立體圖形之間的關(guān)系,發(fā)展空間觀念,培養(yǎng)提高觀察、分析、抽象、概括的能力,培養(yǎng)動(dòng)手操作能力,經(jīng)歷問(wèn)題解決的過(guò)程,提高解決問(wèn)題的能力。
3.積極參與教學(xué)活動(dòng)過(guò)程,形成自覺(jué)、認(rèn)真的學(xué)習(xí)態(tài)度,培養(yǎng)敢于面對(duì)學(xué)習(xí)困難的精神,感受幾何圖形的美感;倡導(dǎo)自主學(xué)習(xí)和小組合作精神,在獨(dú)立思考的基礎(chǔ)上,能從小組交流中獲益,并對(duì)學(xué)習(xí)過(guò)程進(jìn)行正確評(píng)價(jià),體會(huì)合作學(xué)習(xí)的重要性。
二、知識(shí)框架
三、重點(diǎn)
從現(xiàn)實(shí)物體中抽象出幾何圖形,把立體圖形轉(zhuǎn)化為平面圖形是重點(diǎn);
正確判定圍成立體圖形的面是平面還是曲面,探索點(diǎn)、線、面、體之間的關(guān)系是重點(diǎn);
畫(huà)一條線段等于已知線段,比較兩條線段的長(zhǎng)短是一個(gè)重點(diǎn),在現(xiàn)實(shí)情境中,了解線段的性質(zhì)“兩點(diǎn)之間,線段最短”是另一個(gè)重點(diǎn)。
四、難點(diǎn)
立體圖形與平面圖形之間的轉(zhuǎn)化是難點(diǎn);
探索點(diǎn)、線、面、體運(yùn)動(dòng)變化后形成的圖形是難點(diǎn);
畫(huà)一條線段等于已知線段的尺規(guī)作圖方法,正確比較兩條線段長(zhǎng)短是難點(diǎn)。
五、知識(shí)點(diǎn)、概念總結(jié)
1.幾何圖形:點(diǎn)、線、面、體這些可幫助人們有效的刻畫(huà)錯(cuò)綜復(fù)雜的世界,它們都稱(chēng)為幾何圖形。從實(shí)物中抽象出的各種圖形統(tǒng)稱(chēng)為幾何圖形。有些幾何圖形的各部分不在同一平面內(nèi),叫做立體圖形。有些幾何圖形的各部分都在同一平面內(nèi),叫做平面圖形。雖然立體圖形與平面圖形是兩類(lèi)不同的幾何圖形,但它們是互相聯(lián)系的。
2.幾何圖形的分類(lèi):幾何圖形一般分為立體圖形和平面圖形。
3.直線:幾何學(xué)基本概念,是點(diǎn)在空間內(nèi)沿相同或相反方向運(yùn)動(dòng)的軌跡。從平面解析幾何的角度來(lái)看,平面上的直線就是由平面直角坐標(biāo)系中的一個(gè)二元一次方程所表示的圖形。求兩條直線的交點(diǎn),只需把這兩個(gè)二元一次方程聯(lián)立求解,當(dāng)這個(gè)聯(lián)立方程組無(wú)解時(shí),二直線平行;有無(wú)窮多解時(shí),二直線重合;只有一解時(shí),二直線相交于一點(diǎn)。常用直線與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱(chēng)直線的斜率)來(lái)表示平面上直線(對(duì)于X軸)的傾斜程度。
4.射線:在歐幾里德幾何學(xué)中,直線上的一點(diǎn)和它一旁的部分所組成的圖形稱(chēng)為射線或半直線。
5.線段:指一個(gè)或一個(gè)以上不同線素組成一段連續(xù)的或不連續(xù)的圖線,如實(shí)線的線段或由“長(zhǎng)劃、短間隔、點(diǎn)、短間隔、點(diǎn)、短間隔”組成的雙點(diǎn)長(zhǎng)劃線的線段。
線段有如下性質(zhì):兩點(diǎn)之間線段最短。
6.兩點(diǎn)間的距離:連接兩點(diǎn)間線段的長(zhǎng)度叫做這兩點(diǎn)間的距離。
7.端點(diǎn):直線上兩個(gè)點(diǎn)和它們之間的部分叫做線段,這兩個(gè)點(diǎn)叫做線段的端點(diǎn)。
線段用表示它兩個(gè)端點(diǎn)的字母或一個(gè)小寫(xiě)字母表示,有時(shí)這些字母也表示線段長(zhǎng)度,記作線段AB或線段BA,線段a。其中AB表示直線上的任意兩點(diǎn)。
8.直線、射線、線段區(qū)別:直線沒(méi)有距離。射線也沒(méi)有距離。因?yàn)橹本沒(méi)有端點(diǎn),射線只有一個(gè)端點(diǎn),可以無(wú)限延長(zhǎng)。
9.角:具有公共端點(diǎn)的兩條不重合的射線組成的圖形叫做角。這個(gè)公共端點(diǎn)叫做角的頂點(diǎn),這兩條射線叫做角的兩條邊。
一條射線繞著它的端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形叫做角。所旋轉(zhuǎn)射線的端點(diǎn)叫做角的頂點(diǎn),開(kāi)始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊。
10.角的靜態(tài)定義:具有公共端點(diǎn)的兩條不重合的射線組成的圖形叫做角。這個(gè)公共端點(diǎn)叫做角的頂點(diǎn),這兩條射線叫做角的兩條邊。
11.角的動(dòng)態(tài)定義:一條射線繞著它的端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形叫做角。所旋轉(zhuǎn)射線的端點(diǎn)叫做角的頂點(diǎn),開(kāi)始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊
12.角的符號(hào):角的符號(hào):∠
13.角的種類(lèi):角的大小與邊的長(zhǎng)短沒(méi)有關(guān)系;角的大小決定于角的兩條邊張開(kāi)的程度,張開(kāi)的越大,角就越大,相反,張開(kāi)的越小,角則越小。在動(dòng)態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負(fù)角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱(chēng)為角度制。此外,還有密位制、弧度制等。
銳角:大于0°,小于90°的角叫做銳角。
直角:等于90°的角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:等于180°的角叫做平角。
優(yōu)角:大于180°小于360°叫優(yōu)角。
劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。
周角:等于360°的角叫做周角。
負(fù)角:按照順時(shí)針?lè)较蛐D(zhuǎn)而成的角叫做負(fù)角。
正角:逆時(shí)針旋轉(zhuǎn)的角為正角。
0角:等于零度的角。
余角和補(bǔ)角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補(bǔ)角。等角的余角相等,等角的補(bǔ)角相等。
對(duì)頂角:兩條直線相交后所得的只有一個(gè)公共頂點(diǎn)且兩個(gè)角的兩邊互為反向延長(zhǎng)線,這樣的兩個(gè)角叫做互為對(duì)頂角。兩條直線相交,構(gòu)成兩對(duì)對(duì)頂角;閷(duì)頂角的兩個(gè)角相等。
還有許多種角的關(guān)系,如內(nèi)錯(cuò)角,同位角,同旁?xún)?nèi)角(三線八角中,主要用來(lái)判斷平行)!
14.幾何圖形分類(lèi)
(1)立體幾何圖形可以分為以下幾類(lèi):
第一類(lèi):柱體;
包括:圓柱和棱柱,棱柱又可分為直棱柱和斜棱柱,棱柱體按底面邊數(shù)的多少又可分為三棱柱、四棱柱、N棱柱;
棱柱體積統(tǒng)一等于底面面積乘以高,即V=SH,
第二類(lèi):錐體;
包括:圓錐體和棱錐體,棱錐分為三棱錐、四棱錐以及N棱錐;
棱錐體積統(tǒng)一為V=SH/3,
第三類(lèi):球體;
此分類(lèi)只包含球一種幾何體,
體積公式V=4πR3/3,
其他不常用分類(lèi):圓臺(tái)、棱臺(tái)、球冠等很少接觸到。
大多幾何體都由這些幾何體組成。
(2)平面幾何圖形如何分類(lèi)
a.圓形
b.多邊形:三角形(分為一般三角形,直角三角形,等腰三角形,等邊三角形)、四邊形(分為不規(guī)則四邊形,體形,平行四邊形,平行四邊形又分:矩形,菱形,正方形)、五邊形、六……
注:正方形既是矩形也是菱形
初中幾何圖形知識(shí)點(diǎn)歸納
A、圖形的認(rèn)識(shí)
1、點(diǎn),線,面
點(diǎn),線,面:①圖形是由點(diǎn),線,面構(gòu)成的。②面與面相交得線,線與線相交得點(diǎn)。③點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。
展開(kāi)與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。②N棱柱就是底面圖形有N條邊的棱柱。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個(gè)扇形。
2、角
線:①線段有兩個(gè)端點(diǎn)。②將線段向一個(gè)方向無(wú)限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。③將線段的兩端無(wú)限延長(zhǎng)就形成了直線。直線沒(méi)有端點(diǎn)。④經(jīng)過(guò)兩點(diǎn)有且只有一條直線。
比較長(zhǎng)短:①兩點(diǎn)之間的所有連線中,線段最短。②兩點(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。②一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。③從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。
平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。②經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點(diǎn)叫做垂足。③平面內(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無(wú)限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫(huà)垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì)講)一定要把線段穿出2點(diǎn)。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;
判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上
角平分線:把一個(gè)角平分的射線叫該角的角平分線。
定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱(chēng)軸才會(huì)用直線的,這也涉及到軌跡的問(wèn)題,一個(gè)角個(gè)角平分線就是到角兩邊距離相等的點(diǎn)
性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
判定:1、對(duì)角線相等的菱形2、鄰邊相等的矩形
3、相交線與平行線
角:①如果兩個(gè)角的和是直角,那么稱(chēng)和兩個(gè)角互為余角;如果兩個(gè)角的和是平角,那么稱(chēng)這兩個(gè)角互為補(bǔ)角。②同角或等角的余角/補(bǔ)角相等。③對(duì)頂角相等。④同位角相等/內(nèi)錯(cuò)角相等/同旁?xún)?nèi)角互補(bǔ),兩直線平行,反之亦然。
4、三角形
三角形:①由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。②三角形任意兩邊之和大于第三邊。三角形任意兩邊之差小于第三邊。③三角形三個(gè)內(nèi)角的和等于180度。④三角形分銳角三角形/直角三角形/鈍角三角形。⑤直角三角形的兩個(gè)銳角互余。⑥三角形中一個(gè)內(nèi)角的角平分線與他的對(duì)邊相交,這個(gè)角的頂點(diǎn)與交點(diǎn)之間的線段叫做三角形的角平分線。⑦三角形中,連接一個(gè)頂點(diǎn)與他對(duì)邊中點(diǎn)的線段叫做這個(gè)三角形的中線。⑧三角形的三條角平分線交于一點(diǎn),三條中線交于一點(diǎn)。⑨從三角形的一個(gè)頂點(diǎn)向他的對(duì)邊所在的直線作垂線,頂點(diǎn)和垂足之間的線段叫做三角形的高。⑩三角形的三條高所在的直線交于一點(diǎn)。
圖形的全等:全等圖形的形狀和大小都相同。兩個(gè)能夠重合的圖形叫全等圖形。
全等三角形:①全等三角形的對(duì)應(yīng)邊/角相等。
②條件:SSS、AAS、ASA、SAS、HL。
勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方,反之亦然。
5、四邊形
平行四邊形的性質(zhì):①兩組對(duì)邊分別平行的四邊形叫做平行四邊形。②平行四邊形不相鄰的兩個(gè)頂點(diǎn)連成的線段叫他的對(duì)角線。③平行四邊形的對(duì)邊/對(duì)角相等。④平行四邊形的對(duì)角線互相平分。
平行四邊形的判定條件:兩條對(duì)角線互相平分的四邊形、一組對(duì)邊平行且相等的四邊形、兩組對(duì)邊分別相等的四邊形/定義。
菱形:①一組鄰邊相等的平行四邊形是菱形。②領(lǐng)心的四條邊相等,兩條對(duì)角線互相垂直平分,每一組對(duì)角線平分一組對(duì)角。③判定條件:定義/對(duì)角線互相垂直的平行四邊形/四條邊都相等的四邊形。
矩形與正方形:①有一個(gè)內(nèi)角是直角的平行四邊形叫做矩形。②矩形的對(duì)角線相等,四個(gè)角都是直角。③對(duì)角線相等的平行四邊形是矩形。④正方形具有平行四邊形,矩形,菱形的一切性質(zhì)。⑤一組鄰邊相等的矩形是正方形。
梯形:①一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形叫梯形。②兩條腰相等的梯形叫等腰梯形。③一條腰和底垂直的梯形叫做直角梯形。④等腰梯形同一底上的兩個(gè)內(nèi)角相等,對(duì)角線星等,反之亦然。
多邊形:①N邊形的內(nèi)角和等于(N-2)180度。②多邊心內(nèi)角的一邊與另一邊的反向延長(zhǎng)線所組成的角叫做這個(gè)多邊形的外角,在每個(gè)頂點(diǎn)處取這個(gè)多邊形的一個(gè)外角,他們的和叫做這個(gè)多邊形的內(nèi)角和(都等于360度)
平面圖形的密鋪:三角形,四邊形和正六邊形可以密鋪。
中心對(duì)稱(chēng)圖形:①在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180度,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱(chēng)圖形,這個(gè)點(diǎn)叫做他的對(duì)稱(chēng)中心。②中心對(duì)稱(chēng)圖形上的每一對(duì)對(duì)應(yīng)點(diǎn)所連成的線段都被對(duì)稱(chēng)中心平分。
B、圖形與變換:
1、圖形的軸對(duì)稱(chēng)
軸對(duì)稱(chēng):如果一個(gè)圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱(chēng)圖形,這條直線叫做對(duì)稱(chēng)軸。
軸對(duì)稱(chēng)圖形:①角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等。②線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等。③等腰三角形的“三線合一”。
軸對(duì)稱(chēng)的性質(zhì):對(duì)應(yīng)點(diǎn)所連的線段被對(duì)稱(chēng)軸垂直平分,對(duì)應(yīng)線段/對(duì)應(yīng)角相等。
2、圖形的平移和旋轉(zhuǎn)
平移:①在平面內(nèi),將一個(gè)圖形沿著某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)叫做平移。②經(jīng)過(guò)平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等,對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等。
旋轉(zhuǎn):①在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)叫做旋轉(zhuǎn)。②經(jīng)過(guò)旋轉(zhuǎn),圖形商店每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度,任意一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。
3、圖形的相似
比:①A/B=C/D,那么AD=BC,反之亦然。②A/B=C/D,那么A土B/B=C土D/D。③A/B=C/D=。。。=M/N,那么A+C+…+M/B+D+…N=A/B。
黃金分割:點(diǎn)C把線段AB分成兩條線段AC與BC,如果AC/AB=BC/AC,那么稱(chēng)線段AB被點(diǎn)C黃金分割,點(diǎn)C叫做線段AB的黃金分割點(diǎn),AC與AB的比叫做黃金比(根號(hào)5-1/2)。
相似:①各角對(duì)應(yīng)相等,各邊對(duì)應(yīng)成比例的兩個(gè)多邊形叫做相似多邊形。②相似多邊形對(duì)應(yīng)邊的比叫做相似比。
相似三角形:①三角對(duì)應(yīng)相等,三邊對(duì)應(yīng)成比例的兩個(gè)三角形叫做相似三角形。②條件:AAA、SSS、SAS。
相似多邊形的性質(zhì):①相似三角形對(duì)應(yīng)高,對(duì)應(yīng)角平分線,對(duì)應(yīng)中線的比都等于相似比。②相似多邊形的周長(zhǎng)比等于相似比,面積比等于相似比的平方。
圖形的放大與縮。孩偃绻麅蓚(gè)圖形不僅是相似圖形,而且每組對(duì)應(yīng)點(diǎn)所在的直線都經(jīng)過(guò)同一個(gè)點(diǎn),那么這樣的兩個(gè)圖形叫做位似圖形,這個(gè)點(diǎn)叫做位似中心,這時(shí)的相似比又稱(chēng)為位似比。②位似圖形上任意一對(duì)對(duì)應(yīng)點(diǎn)到位似中心的距離之比等于位似比。
C、圖形的坐標(biāo)
平面直角坐標(biāo)系:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸與Y軸統(tǒng)稱(chēng)坐標(biāo)軸,他們的公共原點(diǎn)O稱(chēng)為直角坐標(biāo)系的原點(diǎn)。他們分4個(gè)象限。XA,YB記作(A,B)。
D、證明
定義與命題:①對(duì)名稱(chēng)與術(shù)語(yǔ)的含義加以描述,作出明確的規(guī)定,也就是給出他們的定義。②對(duì)事情進(jìn)行判斷的句子叫做命題(分真命題與假命題)。③每個(gè)命題是由條件和結(jié)論兩部分組成。④要說(shuō)明一個(gè)命題是假命題,通常舉出一個(gè)離子,使之具備命題的條件,而不具有命題的結(jié)論,這種例子叫做反例。
公理:①公認(rèn)的真命題叫做公理。②其他真命題的正確性都通過(guò)推理的方法證實(shí),經(jīng)過(guò)證明的真命題稱(chēng)為定理。③同位角相等,兩直線平行,反之亦然;SAS、ASA、SSS,反之亦然;同旁?xún)?nèi)角互補(bǔ),兩直線平行,反之亦然;內(nèi)錯(cuò)角相等,兩直線平行,反之亦然;三角形三個(gè)內(nèi)角的和等于180度;三角形的一個(gè)外交等于和他不相鄰的兩個(gè)內(nèi)角的和;三角心的一個(gè)外角大于任何一個(gè)和他不相鄰的內(nèi)角。④由一個(gè)公理或定理直接推出的定理,叫做這個(gè)公理或定理的推論。
【七年級(jí)上冊(cè)數(shù)學(xué)幾何圖形初步知識(shí)點(diǎn)】相關(guān)文章:
七年級(jí)數(shù)學(xué)《幾何圖形初步》知識(shí)點(diǎn)大全03-08
七年級(jí)上冊(cè)數(shù)學(xué)整式知識(shí)點(diǎn)11-08
數(shù)學(xué)七年級(jí)上冊(cè)基本知識(shí)點(diǎn)09-25
七年級(jí)上冊(cè)數(shù)學(xué)《整式的加減》的知識(shí)點(diǎn)05-15
七年級(jí)上冊(cè)關(guān)于數(shù)學(xué)角的和與差的知識(shí)點(diǎn)07-18
七年級(jí)上冊(cè)數(shù)學(xué):角的種類(lèi)知識(shí)點(diǎn)復(fù)習(xí)04-20
(精選)初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)07-26
初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)02-02
七年級(jí)上冊(cè)數(shù)學(xué)角的種類(lèi)期末知識(shí)點(diǎn)復(fù)習(xí)04-20
七年級(jí)上冊(cè)數(shù)學(xué)角的種類(lèi)知識(shí)點(diǎn)復(fù)習(xí)歸納12-06