人教版數(shù)學(xué)不等式與不等式組知識(shí)點(diǎn)
在我們的學(xué)習(xí)時(shí)代,大家都背過不少知識(shí)點(diǎn),肯定對(duì)知識(shí)點(diǎn)非常熟悉吧!知識(shí)點(diǎn)是知識(shí)中的最小單位,最具體的內(nèi)容,有時(shí)候也叫“考點(diǎn)”。你知道哪些知識(shí)點(diǎn)是真正對(duì)我們有幫助的嗎?以下是小編為大家整理的人教版數(shù)學(xué)不等式與不等式組知識(shí)點(diǎn),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
數(shù)學(xué)不等式與不等式組知識(shí)點(diǎn) 篇1
1.不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
2.一元一次不等式:不等式的左、右兩邊都是整式,只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。
3.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一個(gè)一元一次不等式組。
4.一元一次不等式組的解集:一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
5.不等式的性質(zhì):
不等式的基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變。
不等式的基本性質(zhì)2:不等式的兩邊都乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變。
不等式的基本性質(zhì)3:不等式的兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。
1、單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。
2、單項(xiàng)式或多項(xiàng)式都是整式。
3、整式不一定是單項(xiàng)式。
4、整式不一定是多項(xiàng)式。
5、分母中含有字母的代數(shù)式不是整式;而是今后將要學(xué)習(xí)的分式。
數(shù)學(xué)不等式與不等式組知識(shí)點(diǎn) 篇2
1.二元一次方程:含有兩個(gè)未知數(shù),并且含未知數(shù)項(xiàng)的次數(shù)是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數(shù)個(gè)解.
2.二元一次方程組:兩個(gè)二元一次方程聯(lián)立在一起是二元一次方程組.
3.二元一次方程組的解:使二元一次方程組的兩個(gè)方程,左右兩邊都相等的兩個(gè)未知數(shù)的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).
4.二元一次方程組的解法:
(1)代入消元法;(2)加減消元法;
(3)注意:判斷如何解簡(jiǎn)單是關(guān)鍵.
※5.一次方程組的應(yīng)用:
(1)對(duì)于一個(gè)應(yīng)用題設(shè)出的未知數(shù)越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解
(2)對(duì)于方程組,若方程個(gè)數(shù)與未知數(shù)個(gè)數(shù)相等時(shí),一般可求出未知數(shù)的'值;
(3)對(duì)于方程組,若方程個(gè)數(shù)比未知數(shù)個(gè)數(shù)少一個(gè)時(shí),一般求不出未知數(shù)的值,但總可以求出任何兩個(gè)未知數(shù)的關(guān)系.
一元一次不等式(組)
1.不等式:用不等號(hào),把兩個(gè)代數(shù)式連接起來的式子叫不等式.
2.不等式的基本性質(zhì):
不等式的基本性質(zhì)1:不等式兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,不等號(hào)的方向不變;
不等式的基本性質(zhì)2:不等式兩邊都乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變;
不等式的基本性質(zhì)3:不等式兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向要改變.
3.不等式的解集:能使不等式成立的未知數(shù)的值,叫做這個(gè)不等式的解;不等式所有解的集合,叫做這個(gè)不等式的解集.
4.一元一次不等式:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,系數(shù)不等于零的不等式,叫做一元一次不等式;它的標(biāo)準(zhǔn)形式是ax+b0或ax+b0,(a0).
5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質(zhì)3的應(yīng)用;注意:在數(shù)軸上表示不等式的解集時(shí),要注意空圈和實(shí)點(diǎn).
數(shù)學(xué)不等式與不等式組知識(shí)點(diǎn) 篇3
1. 不等式
2.不等式及其解集
用或號(hào)表示大小關(guān)系的式子叫做不等式。
使不等式成立的未知數(shù)的值叫做不等式的解。
能使不等式成立的未知數(shù)的取值范圍,叫做不等式解的集合,簡(jiǎn)稱解集。
含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式。
3.不等式的性質(zhì)
不等式有以下性質(zhì):
不等式的性質(zhì)1 不等式兩邊加(或減)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變。
不等式的性質(zhì)2 不等式兩邊乘(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變。
不等式的性質(zhì)3 不等式兩邊乘(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。
4. 實(shí)際問題與一元一次不等式
解一元一次方程,要根據(jù)等式的性質(zhì),將方程逐步化為x=a的形式;而解一元一次不等式,則要根據(jù)不等式的性質(zhì),將不等式逐步化為x
5. 一元一次不等式組
把兩個(gè)不等式合起來,就組成了一個(gè)一元一次不等式組。
幾個(gè)不等式的解集的公共部分,叫做由它們所組成的不等式的解集。解不等式就是求它的解集。
對(duì)于具有多種不等關(guān)系的問題,可通過不等式組解決。解一元一次不等式組時(shí)。一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集。
數(shù)學(xué)不等式與不等式組知識(shí)點(diǎn) 篇4
一、目標(biāo)與要求
1、感受生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義,通過解決簡(jiǎn)單的實(shí)際問題,使學(xué)生自發(fā)地尋找不等式的解,會(huì)把不等式的解集正確地表示到數(shù)軸上;
2、經(jīng)歷由具體實(shí)例建立不等模型的過程,經(jīng)歷探究不等式解與解集的不同意義的過程,滲透數(shù)形結(jié)合思想;
3、通過對(duì)不等式、不等式解與解集的探究,引導(dǎo)學(xué)生在獨(dú)立思考的基礎(chǔ)上積極參與對(duì)數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識(shí);讓學(xué)生充分體會(huì)到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個(gè)領(lǐng)域。
二、知識(shí)框架
三、重點(diǎn)
理解并掌握不等式的性質(zhì);
正確運(yùn)用不等式的性質(zhì);
建立方程解決實(shí)際問題,會(huì)解"ax+b=cx+d"類型的一元一次方程;
尋找實(shí)際問題中的不等關(guān)系,建立數(shù)學(xué)模型;
一元一次不等式組的解集和解法。
四、難點(diǎn)
一元一次不等式組解集的理解;
弄清列不等式解決實(shí)際問題的思想方法,用去括號(hào)法解一元一次不等式;
正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。
五、知識(shí)點(diǎn)、概念總結(jié)
1、不等式:用符號(hào)"<",">","≤","≥"表示大小關(guān)系的式子叫做不等式。
2、不等式分類:不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。
一般地,用純粹的大于號(hào)、小于號(hào)">","<"連接的不等式稱為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào))"≥","≤"連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。
3、不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。
4、不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
5、不等式解集的表示方法:
。1)用不等式表示:一般的,一個(gè)含未知數(shù)的不等式有無數(shù)個(gè)解,其解集是一個(gè)范圍,這個(gè)范圍可用最簡(jiǎn)單的不等式表達(dá)出來,例如:x—1≤2的解集是x≤3
(2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個(gè)解,用數(shù)軸表示不等式的解集要注意兩點(diǎn):一是定邊界線;二是定方向。
6、解不等式可遵循的一些同解原理
。1)不等式F(x)< G(x)與不等式 G(x)>F(x)同解。
。2)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,那么不等式 F(x)< G(x)與不等式H(x)+F(x)
(3)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,并且H(x)>0,那么不等式F(x)< G(x)與不等式H(x)F(x)0,那么不等式F(x)< G(x)與不等式H(x)F(x)>H(x)G(x)同解。
7、不等式的性質(zhì):
。1)如果x>y,那么yy;(對(duì)稱性)
。2)如果x>y,y>z;那么x>z;(傳遞性)
。3)如果x>y,而z為任意實(shí)數(shù)或整式,那么x+z>y+z;(加法則)
。4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz
。5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z
。6)如果x>y,m>n,那么x+m>y+n(充分不必要條件)
(7)如果x>y>0,m>n>0,那么xm>yn
。8)如果x>y>0,那么x的n次冪>y的n次冪(n為正數(shù))
8、一元一次不等式:不等式的左、右兩邊都是整式,只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。
9、解一元一次不等式的一般順序:
。1)去分母 (運(yùn)用不等式性質(zhì)2、3)
。2)去括號(hào)
(3)移項(xiàng) (運(yùn)用不等式性質(zhì)1)
。4)合并同類項(xiàng)
(5)將未知數(shù)的系數(shù)化為1 (運(yùn)用不等式性質(zhì)2、3)
。6)有些時(shí)候需要在數(shù)軸上表示不等式的解集
10、 一元一次不等式與一次函數(shù)的綜合運(yùn)用:
一般先求出函數(shù)表達(dá)式,再化簡(jiǎn)不等式求解。
11、一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一一起,就組成
了一個(gè)一元一次不等式組。
12、解一元一次不等式組的步驟:
。1) 求出每個(gè)不等式的解集;
(2) 求出每個(gè)不等式的解集的公共部分;(一般利用數(shù)軸)
(3) 用代數(shù)符號(hào)語言來表示公共部分。(也可以說成是下結(jié)論)
13、解不等式的訣竅
。1)大于大于取大的(大大大);
例如:X>—1,X>2 ,不等式組的解集是X>2
。2)小于小于取小的(小小。;
例如:X<—4,X<—6,不等式組的解集是X<—6
。3)大于小于交叉取中間;
。4)無公共部分分開無解了;
14、解不等式組的口訣
(1)同大取大
例如,x>2,x>3 ,不等式組的解集是X>3
(2)同小取小
例如,x<2,x<3 ,不等式組的解集是X<2
(3)大小小大中間找
例如,x<2,x>1,不等式組的解集是1
。4)大大小小不用找
例如,x<2,x>3,不等式組無解
15、應(yīng)用不等式組解決實(shí)際問題的步驟
。1)審清題意
(2)設(shè)未知數(shù),根據(jù)所設(shè)未知數(shù)列出不等式組
(3)解不等式組
。4)由不等式組的解確立實(shí)際問題的解
(5)作答
16、用不等式組解決實(shí)際問題:其公共解不一定就為實(shí)際問題的解,所以需結(jié)合生活實(shí)際具體分析,最后確定結(jié)果。
數(shù)學(xué)不等式與不等式組知識(shí)點(diǎn) 篇5
一、目標(biāo)與要求
1、感受生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義,通過解決簡(jiǎn)單的實(shí)際問題,使學(xué)生自發(fā)地尋找不等式的解,會(huì)把不等式的解集正確地表示到數(shù)軸上;
2、經(jīng)歷由具體實(shí)例建立不等模型的過程,經(jīng)歷探究不等式解與解集的不同意義的過程,滲透數(shù)形結(jié)合思想;
3、通過對(duì)不等式、不等式解與解集的探究,引導(dǎo)學(xué)生在獨(dú)立思考的基礎(chǔ)上積極參與對(duì)數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識(shí);讓學(xué)生充分體會(huì)到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個(gè)領(lǐng)域。
二、重點(diǎn)
理解并掌握不等式的性質(zhì);正確運(yùn)用不等式的性質(zhì);建立方程解決實(shí)際問題,會(huì)解ax+b=cx+d類型的一元一次方程;尋找實(shí)際問題中的不等關(guān)系,建立數(shù)學(xué)模型;一元一次不等式組的解集和解法。
三、難點(diǎn)
一元一次不等式組解集的理解;弄清列不等式解決實(shí)際問題的思想方法,用去括號(hào)法解一元一次不等式;正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。
【數(shù)學(xué)不等式與不等式組知識(shí)點(diǎn)】相關(guān)文章:
初中數(shù)學(xué)中考不等式與不等式組的知識(shí)點(diǎn)01-26
中考數(shù)學(xué)不等式與不等式組的知識(shí)點(diǎn)分析02-18
中考數(shù)學(xué)不等式與不等式組熱門知識(shí)點(diǎn)匯總07-20
不等式與不等式組高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)05-26
初一數(shù)學(xué)不等式與不等式組知識(shí)點(diǎn)02-16
初一數(shù)學(xué)《不等式與不等式組》知識(shí)點(diǎn)07-28
不等式與不等式組初一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)06-28