亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

數(shù)學(xué) 百文網(wǎng)手機(jī)站

高考數(shù)學(xué)知識(shí)點(diǎn)

時(shí)間:2022-02-15 16:35:16 數(shù)學(xué) 我要投稿

高考數(shù)學(xué)知識(shí)點(diǎn)(集合15篇)

  在平日的學(xué)習(xí)中,是不是經(jīng)常追著老師要知識(shí)點(diǎn)?知識(shí)點(diǎn)就是掌握某個(gè)問題/知識(shí)的學(xué)習(xí)要點(diǎn)。還在苦惱沒有知識(shí)點(diǎn)總結(jié)嗎?以下是小編整理的高考數(shù)學(xué)知識(shí)點(diǎn),歡迎閱讀與收藏。

高考數(shù)學(xué)知識(shí)點(diǎn)(集合15篇)

高考數(shù)學(xué)知識(shí)點(diǎn)1

  高考數(shù)學(xué)知識(shí)點(diǎn)歸納:判斷函數(shù)值域的方法

  1、配方法:利用二次函數(shù)的配方法求值域,需注意自變量的取值范圍。

  2、換元法:常用代數(shù)或三角代換法,把所給函數(shù)代換成值域容易確定的另一函數(shù),從而得到原函數(shù)值域,如y=ax+b+_√cx-d(a,b,c,d均為常數(shù)且ac不等于0)的函數(shù)常用此法求解。

  3、判別式法:若函數(shù)為分式結(jié)構(gòu),且分母中含有未知數(shù)x?,則常用此法。通常去掉分母轉(zhuǎn)化為一元二次方程,再由判別式△≥0,確定y的'范圍,即原函數(shù)的值域

  4、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函數(shù)值域時(shí),要時(shí)刻注意不等式成立的條件,即“一正,二定,三相等”。

  5、反函數(shù)法:若原函數(shù)的值域不易直接求解,則可以考慮其反函數(shù)的定義域,根據(jù)互為反函數(shù)的兩個(gè)函數(shù)定義域與值域互換的特點(diǎn),確定原函數(shù)的值域,如y=cx+d/ax+b(a≠0)型函數(shù)的值域,可采用反函數(shù)法,也可用分離常數(shù)法。

  6、單調(diào)性法:首先確定函數(shù)的定義域,然后在根據(jù)其單調(diào)性求函數(shù)值域,常用到函數(shù)y=x+p/x(p>0)的單調(diào)性:增區(qū)間為(-∞,-√p)的左開右閉區(qū)間和(√p,+∞)的左閉右開區(qū)間,減區(qū)間為(-√p,0)和(0,√p)

  7、數(shù)形結(jié)合法:分析函數(shù)解析式表達(dá)的集合意義,根據(jù)其圖像特點(diǎn)確定值域。

  高考數(shù)學(xué)知識(shí)點(diǎn)歸納:對數(shù)函數(shù)性質(zhì)

  定義域求解:對數(shù)函數(shù)y=logax的定義域是{x丨x>0},但如果遇到對數(shù)型復(fù)合函數(shù)的定義域的求解,除了要注意大于0以外,還應(yīng)注意底數(shù)大于0且不等于1,如求函數(shù)y=logx(2x-1)的定義域,需同時(shí)滿足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定義域?yàn)閧x丨x>1/2且x≠1}

  值域:實(shí)數(shù)集R,顯然對數(shù)函數(shù)無界。

  定點(diǎn):函數(shù)圖像恒過定點(diǎn)(1,0)。

  單調(diào)性:a>1時(shí),在定義域上為單調(diào)增函數(shù);

  奇偶性:非奇非偶函數(shù)

  周期性:不是周期函數(shù)

  對稱性:無

  最值:無

  零點(diǎn):x=1

  注意:負(fù)數(shù)和0沒有對數(shù)。

  兩句經(jīng)典話:底真同對數(shù)正,底真異對數(shù)負(fù)。解釋如下:

  也就是說:若y=logab (其中a>0,a≠1,b>0)

  當(dāng)a>1,b>1時(shí),y=logab>0;

  當(dāng)01時(shí),y=logab<0;

  當(dāng)a>1,0

  高考數(shù)學(xué)必考知識(shí)點(diǎn):方差的性質(zhì)

  1.設(shè)C為常數(shù),則D(C) = 0(常數(shù)無波動(dòng));

  2. D(CX )=C2 D(X ) (常數(shù)平方提取);

  證:

  特別地D(-X ) = D(X ),D(-2X ) = 4D(X )(方差無負(fù)值)

  3.若X 、Y相互獨(dú)立,則

  證:

  記則前面兩項(xiàng)恰為D(X )和D(Y ),第三項(xiàng)展開后為

  當(dāng)X、Y相互獨(dú)立時(shí),故第三項(xiàng)為零。

  特別地獨(dú)立前提的逐項(xiàng)求和,可推廣到有限項(xiàng)。

  高考數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)

  高考數(shù)學(xué)必考知識(shí)點(diǎn):判斷函數(shù)值域的方法

  1、配方法:利用二次函數(shù)的配方法求值域,需注意自變量的取值范圍。

  2、換元法:常用代數(shù)或三角代換法,把所給函數(shù)代換成值域容易確定的另一函數(shù),從而得到原函數(shù)值域,如y=ax+b+_√cx-d(a,b,c,d均為常數(shù)且ac不等于0)的函數(shù)常用此法求解。

  3、判別式法:若函數(shù)為分式結(jié)構(gòu),且分母中含有未知數(shù)x?,則常用此法。通常去掉分母轉(zhuǎn)化為一元二次方程,再由判別式△≥0,確定y的'范圍,即原函數(shù)的值域

  4、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函數(shù)值域時(shí),要時(shí)刻注意不等式成立的條件,即“一正,二定,三相等”。

  5、反函數(shù)法:若原函數(shù)的值域不易直接求解,則可以考慮其反函數(shù)的定義域,根據(jù)互為反函數(shù)的兩個(gè)函數(shù)定義域與值域互換的特點(diǎn),確定原函數(shù)的值域,如y=cx+d/ax+b(a≠0)型函數(shù)的值域,可采用反函數(shù)法,也可用分離常數(shù)法。

  6、單調(diào)性法:首先確定函數(shù)的定義域,然后在根據(jù)其單調(diào)性求函數(shù)值域,常用到函數(shù)y=x+p/x(p>0)的單調(diào)性:增區(qū)間為(-∞,-√p)的左開右閉區(qū)間和(√p,+∞)的左閉右開區(qū)間,減區(qū)間為(-√p,0)和(0,√p)

  7、數(shù)形結(jié)合法:分析函數(shù)解析式表達(dá)的集合意義,根據(jù)其圖像特點(diǎn)確定值域。

  高考數(shù)學(xué)必考知識(shí)點(diǎn):對數(shù)函數(shù)性質(zhì)

  定義域求解:對數(shù)函數(shù)y=logax的定義域是{x丨x>0},但如果遇到對數(shù)型復(fù)合函數(shù)的定義域的求解,除了要注意大于0以外,還應(yīng)注意底數(shù)大于0且不等于1,如求函數(shù)y=logx(2x-1)的定義域,需同時(shí)滿足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定義域?yàn)閧x丨x>1/2且x≠1}

  值域:實(shí)數(shù)集R,顯然對數(shù)函數(shù)無界。

  定點(diǎn):函數(shù)圖像恒過定點(diǎn)(1,0)。

  單調(diào)性:a>1時(shí),在定義域上為單調(diào)增函數(shù);

  奇偶性:非奇非偶函數(shù)

  周期性:不是周期函數(shù)

  對稱性:無

  最值:無

  零點(diǎn):x=1

  注意:負(fù)數(shù)和0沒有對數(shù)。

  兩句經(jīng)典話:底真同對數(shù)正,底真異對數(shù)負(fù)。解釋如下:

  也就是說:若y=logab (其中a>0,a≠1,b>0)

  當(dāng)a>1,b>1時(shí),y=logab>0;

  當(dāng)01時(shí),y=logab<0;

  當(dāng)a>1,0

  高考數(shù)學(xué)必考知識(shí)點(diǎn):方差的性質(zhì)

  1.設(shè)C為常數(shù),則D(C) = 0(常數(shù)無波動(dòng));

  2. D(CX )=C2 D(X ) (常數(shù)平方提取);

  證:

  特別地D(-X ) = D(X ),D(-2X ) = 4D(X )(方差無負(fù)值)

  3.若X 、Y相互獨(dú)立,則

  證:

  記則前面兩項(xiàng)恰為D(X )和D(Y ),第三項(xiàng)展開后為

  當(dāng)X、Y相互獨(dú)立時(shí),故第三項(xiàng)為零。

  特別地獨(dú)立前提的逐項(xiàng)求和,可推廣到有限項(xiàng)。

  提升數(shù)學(xué)成績的方法

  第一部分:學(xué)習(xí)的方法

  一、預(yù)習(xí)是聰明的選擇

  最好老師指定預(yù)習(xí)內(nèi)容,每天不超過十分鐘,預(yù)習(xí)的目的就是強(qiáng)制記憶基本概念。

  二、基本概念是根本

  基本概念要一個(gè)字一個(gè)字理解并記憶,要準(zhǔn)確掌握基本概念的內(nèi)涵外延。只有思維鉆進(jìn)去才能了解內(nèi)涵,思維要發(fā)散才能了解外延。只有概念過關(guān),作題才能又快又準(zhǔn)。

  三、作業(yè)可鞏固所學(xué)知識(shí)

  作業(yè)一定要認(rèn)真做,不要為節(jié)約時(shí)間省步驟,作業(yè)不要自檢,全面暴露存在的問題是好事。

  四、難題要獨(dú)立完成

  想得高分一定要過難題關(guān),難題的關(guān)鍵是學(xué)會(huì)三種語言的熟練轉(zhuǎn)換。(文字語言、符號(hào)語言、圖形語言)

  第二部分:復(fù)習(xí)的方法

  五、加倍遞減訓(xùn)練法

  通過訓(xùn)練,從心理上、精力上、準(zhǔn)確度上逐漸調(diào)整到考試的最佳狀態(tài),該訓(xùn)練一定要在專業(yè)人員指導(dǎo)下進(jìn)行,否則達(dá)不到效果。

  六、考前不要做新題

  考前找到你近期做過的試卷,把錯(cuò)的題重做一遍,這才是有的放矢的復(fù)習(xí)方法。

  第三部分:考試的方法

  七、良好心態(tài)

  考生要自信,要有客觀的考試目標(biāo)。追求正常發(fā)揮,而不要期望自己超長表現(xiàn),這樣心態(tài)會(huì)放的很平和。沉著冷靜的同時(shí)也要適度緊張,要使大腦處于最佳活躍狀態(tài)

  八、考試從審題開始

  審題要避免“猜”、“漏”兩種不良習(xí)慣,為此審題要從字到詞再到句。

  九、學(xué)會(huì)使用演算紙

  要把演算紙看成是試卷的一部分,要工整有序,為了方便檢查要寫上題號(hào)。

  十、正確對待難題

  難題是用來拉開分?jǐn)?shù)的,不管你水平高低,都應(yīng)該學(xué)會(huì)繞開難題最后做,不要被難題搞亂思緒,只有這樣才能保證無論什么考試,你都能排前幾名。

高考數(shù)學(xué)知識(shí)點(diǎn)2

  1易錯(cuò)點(diǎn)遺忘空集致誤

  錯(cuò)因分析:由于空集是任何非空集合的真子集,因此,對于集合B,就有B=A,B,B,三種情況,在解題中如果思維不夠縝密就有可能忽視了B這種情況,導(dǎo)致解題結(jié)果錯(cuò)誤。尤其是在解含有參數(shù)的集合問題時(shí),更要充分注意當(dāng)參數(shù)在某個(gè)范圍內(nèi)取值時(shí)所給的集合可能是空集這種情況?占且粋(gè)特殊的集合,由于思維定式的原因,考生往往會(huì)在解題中遺忘了這個(gè)集合,導(dǎo)致解題錯(cuò)誤或是解題不全面。

  2易錯(cuò)點(diǎn)忽視集合元素的三性致誤

  錯(cuò)因分析:集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對字母參數(shù)的一些要求。在解題時(shí)也可以先確定字母參數(shù)的范圍后,再具體解決問題。

  3易錯(cuò)點(diǎn)四種命題的結(jié)構(gòu)不明致誤

  錯(cuò)因分析:如果原命題是若A則B,則這個(gè)命題的逆命題是若B則A,否命題是若┐A則┐B,逆否命題是若┐B則┐A。

  這里面有兩組等價(jià)的命題,即原命題和它的逆否命題等價(jià),否命題與逆命題等價(jià)。在解答由一個(gè)命題寫出該命題的其他形式的命題時(shí),一定要明確四種命題的結(jié)構(gòu)以及它們之間的等價(jià)關(guān)系。

  另外,在否定一個(gè)命題時(shí),要注意全稱命題的否定是特稱命題,特稱命題的否定是全稱命題。如對a,b都是偶數(shù)的否定應(yīng)該是a,b不都是偶數(shù),而不應(yīng)該是a,b都是奇數(shù)。

  4易錯(cuò)點(diǎn)充分必要條件顛倒致誤

  錯(cuò)因分析:對于兩個(gè)條件A,B,如果A=B成立,則A是B的充分條件,B是A的必要條件;如果B=A成立,則A是B的必要條件,B是A的充分條件;如果AB,則A,B互為充分必要條件。解題時(shí)最容易出錯(cuò)的就是顛倒了充分性與必要性,所以在解決這類問題時(shí)一定要根據(jù)充要條件的概念作出準(zhǔn)確的判斷。

  5易錯(cuò)點(diǎn)邏輯聯(lián)結(jié)詞理解不準(zhǔn)致誤

  錯(cuò)因分析:在判斷含邏輯聯(lián)結(jié)詞的命題時(shí)很容易因?yàn)槔斫獠粶?zhǔn)確而出現(xiàn)錯(cuò)誤,在這里我們給出一些常用的判斷方法,希望對大家有所幫助:

  p=p真或q真,

  p=p假且q假(概括為一真即真);

  pq真p真且q真,

  pq假p假或q假(概括為一假即假);

  ┐p真p假,┐p假p真(概括為一真一假)。

  函數(shù)與導(dǎo)數(shù)

  6易錯(cuò)點(diǎn)求函數(shù)定義域忽視細(xì)節(jié)致誤

  錯(cuò)因分析:函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,因此要求定義域就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。

  在求一般函數(shù)定義域時(shí)要注意下面幾點(diǎn):

  (1)分母不為0;

  (2)偶次被開放式非負(fù);

  (3)真數(shù)大于0;

  (4)0的0次冪沒有意義。

  函數(shù)的定義域是非空的數(shù)集,在解決函數(shù)定義域時(shí)不要忘記了這點(diǎn)。對于復(fù)合函數(shù),要注意外層函數(shù)的定義域是由內(nèi)層函數(shù)的值域決定的。

  7易錯(cuò)點(diǎn)帶有絕對值的函數(shù)單調(diào)性判斷錯(cuò)誤

  錯(cuò)因分析:帶有絕對值的函數(shù)實(shí)質(zhì)上就是分段函數(shù),對于分段函數(shù)的單調(diào)性,有兩種基本的判斷方法:

  一是在各個(gè)段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,最后對各個(gè)段上的單調(diào)區(qū)間進(jìn)行整合;

  二是畫出這個(gè)分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)進(jìn)行直觀的判斷。研究函數(shù)問題離不開函數(shù)圖象,函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),在研究函數(shù)問題時(shí)要時(shí)時(shí)刻刻想到函數(shù)的圖象,學(xué)會(huì)從函數(shù)圖象上去分析問題,尋找解決問題的方案。

  對于函數(shù)的幾個(gè)不同的單調(diào)遞增(減)區(qū)間,千萬記住不要使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

  8易錯(cuò)點(diǎn)求函數(shù)奇偶性的常見錯(cuò)誤

  錯(cuò)因分析:求函數(shù)奇偶性的常見錯(cuò)誤有求錯(cuò)函數(shù)定義域或是忽視函數(shù)定義域,對函數(shù)具有奇偶性的前提條件不清,對分段函數(shù)奇偶性判斷方法不當(dāng)?shù)取?/p>

  判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶的函數(shù)。

  在定義域區(qū)間關(guān)于原點(diǎn)對稱的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷,在用定義進(jìn)行判斷時(shí)要注意自變量在定義域區(qū)間內(nèi)的任意性。

  9易錯(cuò)點(diǎn)抽象函數(shù)中推理不嚴(yán)密致誤

  錯(cuò)因分析:很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同特征而設(shè)計(jì)出來的,在解決問題時(shí),可以通過類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)的性質(zhì)。

  解答抽象函數(shù)問題要注意特殊賦值法的應(yīng)用,通過特殊賦值可以找到函數(shù)的不變性質(zhì),這個(gè)不變性質(zhì)往往是進(jìn)一步解決問題的突破口。

  抽象函數(shù)性質(zhì)的證明是一種代數(shù)推理,和幾何推理證明一樣,要注意推理的嚴(yán)謹(jǐn)性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過程要層次分明,書寫規(guī)范。

  10易錯(cuò)點(diǎn)函數(shù)零點(diǎn)定理使用不當(dāng)致誤

  錯(cuò)因分析:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c(a,b),使得f(c)=0,這個(gè)c也是方程f(c)=0的根,這個(gè)結(jié)論我們一般稱之為函數(shù)的零點(diǎn)定理。

  函數(shù)的零點(diǎn)有變號(hào)零點(diǎn)和不變號(hào)零點(diǎn),對于不變號(hào)零點(diǎn),函數(shù)的零點(diǎn)定理是無能為力的,在解決函數(shù)的零點(diǎn)時(shí)要注意這個(gè)問題。

  11易錯(cuò)點(diǎn)混淆兩類切線致誤

  錯(cuò)因分析:曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過一個(gè)點(diǎn)的切線是指過這個(gè)點(diǎn)的曲線的所有切線,這個(gè)點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過一個(gè)點(diǎn)的切線可能不止一條。因此求解曲線的切線問題時(shí),首先要區(qū)分是什么類型的切線。

  12易錯(cuò)點(diǎn)混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系致誤

  錯(cuò)因分析:對于一個(gè)函數(shù)在某個(gè)區(qū)間上是增函數(shù),如果認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,就會(huì)出錯(cuò)。

  研究函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時(shí)一定要注意:一個(gè)函數(shù)的導(dǎo)函數(shù)在某個(gè)區(qū)間上單調(diào)遞增(減)的充要條件是這個(gè)函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。

  13易錯(cuò)點(diǎn)導(dǎo)數(shù)與極值關(guān)系不清致誤

  錯(cuò)因分析:在使用導(dǎo)數(shù)求函數(shù)極值時(shí),很容易出現(xiàn)的錯(cuò)誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),而沒有對這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號(hào)進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn)。

  出現(xiàn)這些錯(cuò)誤的原因是對導(dǎo)數(shù)與極值關(guān)系不清?蓪(dǎo)函數(shù)在一個(gè)點(diǎn)處的導(dǎo)函數(shù)值為零只是這個(gè)函數(shù)在此點(diǎn)處取到極值的必要條件,在此提醒廣大考生在使用導(dǎo)數(shù)求函數(shù)極值時(shí)一定要注意對極值點(diǎn)進(jìn)行檢驗(yàn)。

  數(shù)列

  14易錯(cuò)點(diǎn)用錯(cuò)基本公式致誤

  錯(cuò)因分析:等差數(shù)列的首項(xiàng)為a1、公差為d,則其通項(xiàng)公式an=a1+(n-1)d,前n項(xiàng)和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比數(shù)列的首項(xiàng)為a1、公比為q,則其通項(xiàng)公式an=a1pn-1,當(dāng)公比q1時(shí),前n項(xiàng)和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當(dāng)公比q=1時(shí),前n項(xiàng)和公式Sn=na1。在數(shù)列的基礎(chǔ)性試題中,等差數(shù)列、等比數(shù)列的這幾個(gè)公式是解題的根本,用錯(cuò)了公式,解題就失去了方向。

  15易錯(cuò)點(diǎn)an,Sn關(guān)系不清致誤

  錯(cuò)因分析:在數(shù)列問題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在關(guān)系:

  這個(gè)關(guān)系是對任意數(shù)列都成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n2時(shí)這個(gè)關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯(cuò)的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其分段的特點(diǎn)。

  當(dāng)題目中給出了數(shù)列{an}的an與Sn之間的關(guān)系時(shí),這兩者之間可以進(jìn)行相互轉(zhuǎn)換,知道了an的具體表達(dá)式可以通過數(shù)列求和的方法求出Sn,知道了Sn可以求出an,解題時(shí)要注意體會(huì)這種轉(zhuǎn)換的相互性。

  16易錯(cuò)點(diǎn)對等差、等比數(shù)列的性質(zhì)理解錯(cuò)誤

  錯(cuò)因分析:等差數(shù)列的前n項(xiàng)和在公差不為0時(shí)是關(guān)于n的常數(shù)項(xiàng)為0的二次函數(shù)。

  一般地,有結(jié)論若數(shù)列{an}的前N項(xiàng)和Sn=an2+bn+c(a,b,cR),則數(shù)列{an}為等差數(shù)列的充要條件是c=0在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(mN*)是等差數(shù)列。

  解決這類題目的一個(gè)基本出發(fā)點(diǎn)就是考慮問題要全面,把各種可能性都考慮進(jìn)去,認(rèn)為正確的命題給以證明,認(rèn)為不正確的命題舉出反例予以駁斥。在等比數(shù)列中公比等于-1時(shí)是一個(gè)很特殊的情況,在解決有關(guān)問題時(shí)要注意這個(gè)特殊情況。

  17易錯(cuò)點(diǎn)數(shù)列中的最值錯(cuò)誤

  錯(cuò)因分析:數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式都是關(guān)于正整數(shù)的函數(shù),要善于從函數(shù)的觀點(diǎn)認(rèn)識(shí)和理解數(shù)列問題。

  但是考生很容易忽視n為正整數(shù)的特點(diǎn),或即使考慮了n為正整數(shù),但對于n取何值時(shí),能夠取到最值求解出錯(cuò)。在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點(diǎn)要根據(jù)正整數(shù)距離二次函數(shù)的對稱軸遠(yuǎn)近而定。

  18易錯(cuò)點(diǎn)錯(cuò)位相減求和時(shí)項(xiàng)數(shù)處理不當(dāng)致誤

  錯(cuò)因分析:錯(cuò)位相減求和法的適用環(huán)境是:數(shù)列是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對應(yīng)項(xiàng)的乘積所組成的,求其前n項(xiàng)和;痉椒ㄊ窃O(shè)這個(gè)和式為Sn,在這個(gè)和式兩端同時(shí)乘以等比數(shù)列的公比得到另一個(gè)和式,這兩個(gè)和式錯(cuò)一位相減,得到的和式要分三個(gè)部分:

  (1)原來數(shù)列的第一項(xiàng);

  (2)一個(gè)等比數(shù)列的前(n-1)項(xiàng)的和;

  (3)原來數(shù)列的第n項(xiàng)乘以公比后在作差時(shí)出現(xiàn)的。在用錯(cuò)位相減法求數(shù)列的和時(shí)一定要注意處理好這三個(gè)部分,否則就會(huì)出錯(cuò)。

高考數(shù)學(xué)知識(shí)點(diǎn)3

  1、向考生強(qiáng)調(diào):確保簡單題全拿分,中檔題少失分

  《考試說明》中要求“高考數(shù)學(xué)考查中學(xué)的基礎(chǔ)知識(shí)、基本技能的掌握程度”,在“考查基礎(chǔ)知識(shí)的同時(shí),注重考查能力”!霸囶}設(shè)計(jì)力求情境熟、入口寬、方法多、有層次!

  高考試題很大部分是簡單題與中檔題,所以,學(xué)生如果基礎(chǔ)知識(shí)不掌握,那么還談什么能力呢?因此建議:老師們一定要引導(dǎo)考生在最后一個(gè)學(xué)期,加強(qiáng)基礎(chǔ)知識(shí)、基本方法的鞏固,保證簡單題全拿分、中檔題少失分。

  對于難題,則要鼓勵(lì)考生切不可放棄,第一小題要拿下,最后小題多角度地思考努力尋找恰當(dāng)方法,盡可能多拿分,平時(shí)一定要養(yǎng)成不會(huì)做的難題拿步驟分的習(xí)慣。

  2、引導(dǎo)考生學(xué)會(huì)反思?xì)w納,學(xué)會(huì)反思命題者出題意圖

  《考試說明》指出,試題要“注重通性通法”、“常規(guī)方法”。根據(jù)此,老師們要做的是:

  首先,引導(dǎo)考生反思?xì)w納,尋找“通性通法”“常規(guī)方法”。

  數(shù)學(xué)需要一定的訓(xùn)練量,幾天不練就會(huì)感覺手生,但題海戰(zhàn)術(shù)并不可取,因?yàn)轭}海戰(zhàn)術(shù)會(huì)擠占反思的時(shí)間。因此平時(shí)在做練習(xí)模擬卷時(shí),做完題目,除了訂正,還應(yīng)該反思。

  《考試說明》中關(guān)于空間想象能力是這樣敘述的:“能根據(jù)條件作出正確的圖形,根據(jù)圖形想象出直觀形象;能正確地分析出圖形中基本元素及其相互關(guān)系;能對圖形進(jìn)行分解、組合;會(huì)運(yùn)用圖形與圖表等手段形象地揭示問題的本質(zhì)!

  其次,引導(dǎo)考生反思命題人為什么出這個(gè)題,想考查什么?

  比如立體幾何解答題為什么是這樣出題的?顯而易見,要考查空間想象能力。因此做完立體幾何解答題后,要再審視一下,這個(gè)幾何體是怎樣構(gòu)成的,幾何元素間有哪些關(guān)系。再比如,對于很多考生而言,解析幾何難于計(jì)算,為什么難?因?yàn)椴粫?huì)“尋找與設(shè)計(jì)合理、簡捷的運(yùn)算途徑”!

  解析幾何解答題沒有過關(guān)的學(xué)生,引導(dǎo)他們反思下自己的運(yùn)算求解能力,平時(shí)遇到計(jì)算時(shí),不可畏難退卻,認(rèn)認(rèn)真真地做透幾個(gè)解析幾何解答題,體會(huì)其中的基本技巧,運(yùn)算求解能力也就培養(yǎng)起來了。

  3、用考試說明,引導(dǎo)考生查漏補(bǔ)缺,提高復(fù)習(xí)效率

  用《考試說明》引導(dǎo)學(xué)生查漏補(bǔ)缺,看看有哪些知識(shí)點(diǎn)考生已經(jīng)達(dá)到了考試要求,有哪些還沒有達(dá)到。比如“會(huì)求一些簡單的函數(shù)的值域”,考生不僅要能夠說出求值域的常用方法——觀察法、配方法、換元法、圖象法、單調(diào)性法等,還應(yīng)該說得出與方法對應(yīng)的經(jīng)典例題。對于沒有達(dá)到考試要求的知識(shí)點(diǎn),就需要重點(diǎn)加強(qiáng)、專項(xiàng)突破。

  對于不知道的“數(shù)學(xué)概念、性質(zhì)、法則、公式、公理、定理”,需要認(rèn)真地看教材,補(bǔ)上短板。比如“理解函數(shù)的最大(小)值及其幾何意義,并能求出函數(shù)的最大值”,如果說不出最值的幾何意義,就應(yīng)該再看一遍教材上關(guān)于最大(小)的定義。

  通過研讀考試說明,把考試說明先讀厚再讀薄,對基礎(chǔ)知識(shí)、基本技能進(jìn)行網(wǎng)絡(luò)化的加工整理,發(fā)現(xiàn)知識(shí)內(nèi)在的聯(lián)系與規(guī)律,形成脈絡(luò)清晰、主線突出的知識(shí)體系,從而有利于快速提取知識(shí)解決問題。

  比如關(guān)于“恒成立問題”的知識(shí)網(wǎng)絡(luò)構(gòu)建,應(yīng)該知道有四種常見的解法,一是變量分離,二是轉(zhuǎn)化為最值問題,三是圖象法,四是轉(zhuǎn)換主元法,應(yīng)該知道四種解法內(nèi)在的聯(lián)系與區(qū)別是什么,除此之外,還應(yīng)該知道“恒成立問題”與“存在性問題”的區(qū)別。建議考生畫出這張知識(shí)網(wǎng)絡(luò),在考試中遇到“恒成立問題”,就可以根據(jù)這張網(wǎng)絡(luò)快速探索合適的解題方法。

  數(shù)學(xué)對于文科生來說是個(gè)大難題,有些同學(xué)甚至“談數(shù)學(xué)色變”。其實(shí)只要掌握恰當(dāng)?shù)膶W(xué)習(xí)方法,文科生一樣可以學(xué)好數(shù)學(xué)并在高考中取得滿意的分?jǐn)?shù)。

  ■杜絕負(fù)面的自我暗示

  首先對數(shù)學(xué)學(xué)習(xí)不要抱有放棄的想法。有些同學(xué)認(rèn)為數(shù)學(xué)差一點(diǎn)沒關(guān)系,只要在其他三門文科上多用功就可以把總分補(bǔ)回來,這種想法是非常錯(cuò)誤的。我高三時(shí)的班主任曾經(jīng)說過一個(gè)“木桶原理”:一只木桶盛水量的多少取決于它最短的一塊木板。高考也是如此,只有各科全面發(fā)展才能取得好成績。其次是要杜絕負(fù)面的自我暗示。高三一年會(huì)有許許多多的考試,不可能每一次都取得自己理想的成績。在失敗的時(shí)候不要有“我肯定沒希望了”、“我是學(xué)不好了”這樣的暗示,相反的,要對自己始終充滿信心,最終成功會(huì)到你的身邊。

  ■抄筆記別丟了“西瓜”

  高考數(shù)學(xué)試卷中大部分的題目都是基礎(chǔ)題,只要把這些基礎(chǔ)題做好,分?jǐn)?shù)便不會(huì)低了。要想做好基礎(chǔ)題,平時(shí)上課時(shí)的聽課效率便顯得格外重要。一般教高三的都是有著豐富經(jīng)驗(yàn)的老師,他們上課時(shí)的內(nèi)容可謂是精華,認(rèn)真聽講45分鐘要比自己在家復(fù)習(xí)2個(gè)小時(shí)還要有效。聽課時(shí)可以適當(dāng)?shù)刈鲂┕P記,但前提是不影響聽課的效果。有些同學(xué)光顧著抄筆記卻忽略了老師解題的思路,這樣就是“撿了芝麻丟了西瓜”,反而有些得不償失。

  ■題目最好做兩遍

  要想學(xué)好數(shù)學(xué),平時(shí)的練習(xí)必不可少,但這并不意味著要進(jìn)行題海戰(zhàn)術(shù),做練習(xí)也要講究科學(xué)性。在選擇參考書方面可以聽一下老師的意見,一般來說老師會(huì)根據(jù)自己的教學(xué)方式和進(jìn)度給出一定的建議,數(shù)量基本在1—2本左右,不要太多。在選好參考書以后要認(rèn)真完整地做,每一本好的參考書都存在著一個(gè)知識(shí)體系,有些同學(xué)這本書做一點(diǎn),那本書做一點(diǎn),到最后做了許多本書但都沒有做完,無法形成一個(gè)完整的知識(shí)體系,效果反而不好。做題的時(shí)候要多做簡單題,并且要定好時(shí)間,這樣可以提高解題速度。在高考前的沖刺階段要保證1—2天做一套試卷來保持狀態(tài)。最重要的'是要通過做題發(fā)現(xiàn)并解決自己已有的問題,總結(jié)出各類題目的解題方法并且熟練掌握。在這里有兩個(gè)小建議:一是在做填空選擇題時(shí)可以在旁邊的空白處寫一些解題過程以方便以后復(fù)習(xí);二是題目最好做兩遍以上,可以加深印象。

  ■應(yīng)考時(shí)要舍得放棄

  對于大部分?jǐn)?shù)學(xué)基礎(chǔ)不是很扎實(shí)的同學(xué)來說,放棄最后兩題應(yīng)該是一個(gè)比較明智的選擇。高考數(shù)學(xué)試卷的最后兩題對于能力的要求較高,數(shù)學(xué)較弱的同學(xué)不要花太多的時(shí)間在上面,而應(yīng)把精力放在前面的基礎(chǔ)題上,這樣成績反而會(huì)有所提高。高考的大題目都是按過程給分的,所以萬一遇到不會(huì)的題也不要空著,應(yīng)根據(jù)題意盡量多寫一些步驟。在對待粗心這個(gè)常見問題上,我有兩個(gè)建議:一是少打草稿,把步驟都寫在試卷上;二是規(guī)范草稿,讓草稿一目了然,這樣便不太會(huì)出現(xiàn)看錯(cuò)或抄錯(cuò)的現(xiàn)象了?荚囍杏袝r(shí)可以用代數(shù)字、特殊情況和計(jì)算器等方法來提高解題速度解決難題,但在考試過后一定要把題目正規(guī)的解題思路了解清楚。每一次考試的試卷和高考前各區(qū)的模擬卷都是珍貴的復(fù)習(xí)資料,一定要妥善保存。

高考數(shù)學(xué)知識(shí)點(diǎn)4

  三角函數(shù)。

  注意歸一公式、誘導(dǎo)公式的正確性。

  數(shù)列題。

  1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰為首項(xiàng),誰為公差(公比)的等差(等比)數(shù)列;

  2、最后一問證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證;

  3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單

  立體幾何題。

  1、證明線面位置關(guān)系,一般不需要去建系,更簡單;

  2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時(shí),要建系;

  3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

  概率問題。

  1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);

  2、搞清是什么概率模型,套用哪個(gè)公式;

  3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;

  4、求概率時(shí),正難則反(根據(jù)p1+p2+……+pn=1);

  5、注意計(jì)數(shù)時(shí)利用列舉、樹圖等基本方法;

  6、注意放回抽樣,不放回抽樣;

  正弦、余弦典型例題。

  1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

  2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°

  3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°

  4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

  5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。

  正弦、余弦解題訣竅。

  1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。

  2、已知三邊,或兩邊及其夾角用余弦定理

  3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。

高考數(shù)學(xué)知識(shí)點(diǎn)5

  一、準(zhǔn)確地把握集合的概念,熟練地運(yùn)用集合與集合的關(guān)系解決具體問題

  概念抽象、符號(hào)術(shù)語多是集合單元的一個(gè)顯著特點(diǎn),例如交集、并集、補(bǔ)集的概念及其表示方法,集合與元素的關(guān)系及其表示方法,集合與集合的關(guān)系及其表示方法,子集、真子集和集合相等的定義等等。這些概念、關(guān)系和表示方法,都可以作為求解集合問題的依據(jù)、出發(fā)點(diǎn)甚至是突破口。因此,要想學(xué)好集合的內(nèi)容,就必須在準(zhǔn)確地把握集合的概念,熟練地運(yùn)用集合與集合的關(guān)系解決具體問題上下功夫。

  二、注意弄清集合元素的性質(zhì),學(xué)會(huì)運(yùn)用元素分析法審視集合的有關(guān)問題

  眾所周知,集合可以看成是一些對象的全體,其中的每一個(gè)對象叫做這個(gè)集合的元素。集合中的元素具有“三性”:

  (1)、確定性:集合中的元素應(yīng)該是確定的,不能模棱兩可。

  (2)、互異性:集合中的元素應(yīng)該是互不相同的,相同的元素在集合中只能算作一個(gè)。

  (3)、無序性:集合中的元素是無次序關(guān)系的。

  集合的關(guān)系、集合的運(yùn)算等等都是從元素的角度予以定義的。因此,求解集合問題時(shí),抓住元素的特征進(jìn)行分析,就相當(dāng)于牽牛抓住了牛鼻子。

  三、體會(huì)集合問題中蘊(yùn)含的數(shù)學(xué)思想方法,掌握解決集合問題的基本規(guī)律

  布魯納說過,掌握數(shù)學(xué)思想可使得數(shù)學(xué)更容易理解和記憶,領(lǐng)會(huì)數(shù)學(xué)思想是通向遷移大道的“光明之路”。集合單元中,含有豐富的數(shù)學(xué)思想內(nèi)容,例如數(shù)形結(jié)合的思想、分類討論的思想、等價(jià)轉(zhuǎn)化的思想、正難則反的思想等等,顯得十分活躍。在學(xué)習(xí)過程中,注意對這些數(shù)學(xué)思想進(jìn)行挖掘、提煉和滲透,不僅可以有效地掌握集合的知識(shí),駕馭 集合問題的求解,而且對于開發(fā)智力、培養(yǎng)能力、優(yōu)化思維品質(zhì),都具有十分重要的意義。

  四、重視空集的特殊性,防止由于忽視空集這一特殊情況導(dǎo)致的解題失誤

  空集是一個(gè)十分重要的特殊集合,它具備“空集雖空,但空有所為”的功能。在解題的過程中,要時(shí)刻注意有無可能存在空集的情況,否則極易導(dǎo)致解題失誤。這一點(diǎn),必須引起我們的高度重視。

高考數(shù)學(xué)知識(shí)點(diǎn)6

  一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)

  主要是考函數(shù)和導(dǎo)數(shù),因?yàn)檫@是整個(gè)高中階段中最核心的部分,這部分里還重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析。

  二、平面向量和三角函數(shù)

  對于這部分知識(shí)重點(diǎn)考察三個(gè)方面:是劃減與求值,第一,重點(diǎn)掌握公式和五組基本公式;第二,掌握三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì);第三,正弦定理和余弦定理來解三角形,這方面難度并不大。

  三、數(shù)列

  數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。

  四、空間向量和立體幾何

  在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。

  五、概率和統(tǒng)計(jì)

  概率和統(tǒng)計(jì)主要屬于數(shù)學(xué)應(yīng)用問題的范疇,需要掌握幾個(gè)方面:……等可能的概率;……事件;獨(dú)立事件和獨(dú)立重復(fù)事件發(fā)生的概率。

  六、解析幾何

  這部分內(nèi)容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關(guān)系,要掌握它的通法;第二類動(dòng)點(diǎn)問題;第三類是弦長問題;第四類是對稱問題;第五類重點(diǎn)問題,這類題往往覺得有思路卻沒有一個(gè)清晰的答案,但需要要掌握比較好的算法,來提高做題的準(zhǔn)確度。

  七、壓軸題

  同學(xué)們在最后的備考復(fù)習(xí)中,還應(yīng)該把重點(diǎn)放在不等式計(jì)算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時(shí)多做些壓軸題真題,爭取能解題就解題,能思考就思考。

  高考數(shù)學(xué)直線方程知識(shí)點(diǎn):什么是直線方程

  從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標(biāo)系中的一個(gè)二元一次方程所表示的圖形。求兩條直線的交點(diǎn),只需把這兩個(gè)二元一次方程聯(lián)立求解,當(dāng)這個(gè)聯(lián)立方程組無解時(shí),兩直線平行;有無窮多解時(shí),兩直線重合;只有一解時(shí),兩直線相交于一點(diǎn)。常用直線向上方向與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度?梢酝ㄟ^斜率來判斷兩條直線是否互相平行或互相垂直,也可計(jì)算它們的交角。直線與某個(gè)坐標(biāo)軸的交點(diǎn)在該坐標(biāo)軸上的坐標(biāo),稱為直線在該坐標(biāo)軸上的截距。直線在平面上的位置,由它的斜率和一個(gè)截距完全確定。在空間,兩個(gè)平面相交時(shí),交線為一條直線。因此,在空間直角坐標(biāo)系中,用兩個(gè)表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。

高考數(shù)學(xué)知識(shí)點(diǎn)7

  掌握每一個(gè)公式定理

  做課本的例題,課本的例題的思路比較簡單,其知識(shí)點(diǎn)也是單一不會(huì)交叉的,如果課本上的例題你拿出來都會(huì)做了,說明你已經(jīng)具備了一定的理解力。

  做課后練習(xí)題,前面的題是和課本例題一個(gè)級別的,如果課本上所有的題都會(huì)做了,那么基礎(chǔ)夯實(shí)可以告一段落。

  進(jìn)行專題訓(xùn)練提高數(shù)學(xué)成績

  1、做高中數(shù)學(xué)題的時(shí)候千萬不能怕難題!有很多人數(shù)學(xué)分?jǐn)?shù)提不動(dòng),很大一部分原因是他們的畏懼心理。有的人看到圓錐曲線和導(dǎo)數(shù),看到稍微長一點(diǎn)的復(fù)雜一點(diǎn)的敘述,甚至看到21、22就已經(jīng)開始退卻了。這部分的分?jǐn)?shù),如果你不去努力,永遠(yuǎn)都不會(huì)掙到的,所以第一個(gè)建議,就是大膽的去做。前面虧欠數(shù)學(xué)這門學(xué)科太多,就算讓它打腫了又怎樣,后面一點(diǎn)一點(diǎn)的強(qiáng)大起來,總有那么一天你去打它的臉。

  2、錯(cuò)題本怎么用。和記筆記一樣,整理錯(cuò)題不是謄寫不是照抄,而是摘抄。你只顧著去采擷問題,就失去了理解和挑選題目的過程,筆記同理,如果老師說什么記什么,那只能說明你這節(jié)課根本沒聽,真正有效率的人,是會(huì)把知識(shí)簡化,把書本讀薄的。先學(xué)學(xué)你能思考到答案的哪一步,學(xué)著去偷分。當(dāng)然,因人而異,如果你覺得還有哪些題需要整理也可以記下來。

  3、如何學(xué)好高中數(shù)學(xué)

  1)先看筆記后做作業(yè)。有的高中學(xué)生感到。老師講過的,自己已經(jīng)聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學(xué)生對教師所講的內(nèi)容的理解,還沒能達(dá)到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關(guān)內(nèi)容和當(dāng)天的課堂筆記先看一看。能否堅(jiān)持如此,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其練習(xí)題不太配套時(shí),作業(yè)中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實(shí),天長日久,就會(huì)造成極大損失。

  2)做題之后加強(qiáng)反思。學(xué)生一定要明確,現(xiàn)在正坐著的題,一定不是考試的題目。而是要運(yùn)用現(xiàn)在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思?偨Y(jié)一下自己的收獲。要總結(jié)出,這是一道什么內(nèi)容的題,用的是什么方法。做到知識(shí)成片,問題成串,日久天長,構(gòu)建起一個(gè)內(nèi)容與方法的科學(xué)的網(wǎng)絡(luò)系統(tǒng)。

  3)主動(dòng)復(fù)習(xí)總結(jié)提高。進(jìn)行章節(jié)總結(jié)是非常重要的。初中時(shí)是教師替學(xué)生做總結(jié),做得細(xì)致,深刻,完整。高中是自己給自己做總結(jié),老師不但不給做,而且是講到哪,考到哪,不留復(fù)習(xí)時(shí)間,也沒有明確指出做總結(jié)的時(shí)間。

高考數(shù)學(xué)知識(shí)點(diǎn)8

  一、集合與函數(shù)

  1.進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解。

  2.在應(yīng)用條件時(shí),易忽略是空集的情況。

  3.你會(huì)用補(bǔ)集的思想解決有關(guān)問題嗎?

  4.簡單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?

  5.你知道“否命題”與“命題的否定形式”的區(qū)別。

  6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則。

  7.判斷函數(shù)奇偶性時(shí),易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對稱。

  8.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽略標(biāo)注該函數(shù)的定義域。

  9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)。

  10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負(fù))和導(dǎo)數(shù)法

  11.求函數(shù)單調(diào)性時(shí),易錯(cuò)誤地在多個(gè)單調(diào)區(qū)間之間添加符號(hào)“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示。

  12.求函數(shù)的值域必須先求函數(shù)的定義域。

  13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問題)。這幾種基本應(yīng)用你掌握了嗎?

  14.解對數(shù)函數(shù)問題時(shí),你注意到真數(shù)與底數(shù)的限制條件了嗎?

  (真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論

  15.三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?

  16.用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數(shù)的范圍。

  17.“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時(shí),你是否注意到:當(dāng)時(shí),“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項(xiàng)系數(shù)可能為的零的情形?

  二、不等式

  18.利用均值不等式求最值時(shí),你是否注意到:“一正;二定;三等”。

  19.絕對值不等式的解法及其幾何意義是什么?

  20.解分式不等式應(yīng)注意什么問題?用“根軸法”解整式(分式)不等式的注意事項(xiàng)是什么?

  21.解含參數(shù)不等式的通法是“定義域?yàn)榍疤,函?shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”。

  22.在求不等式的解集、定義域及值域時(shí),其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示。

  23.兩個(gè)不等式相乘時(shí),必須注意同向同正時(shí)才能相乘,即同向同正可乘;同時(shí)要注意“同號(hào)可倒”。

  三、數(shù)列

  24.解決一些等比數(shù)列的前項(xiàng)和問題,你注意到要對公比及兩種情況進(jìn)行討論了嗎?

  25.在“已知,求”的問題中,你在利用公式時(shí)注意到了嗎?需要驗(yàn)證,有些題目通項(xiàng)是分段函數(shù)。

  26.數(shù)列單調(diào)性問題能否等同于對應(yīng)函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)

  27.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過程中,先假設(shè)時(shí)成立,再結(jié)合一些數(shù)學(xué)方法用來證明時(shí)也成立。

  四、三角函數(shù)

  28.正角、負(fù)角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標(biāo)軸上,那它歸哪個(gè)象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?

  29.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?

  30.在解三角問題時(shí),你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?

  31.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角。異角化同角,異名化同名,高次化低次)

  32.你還記得某些特殊角的三角函數(shù)值嗎?

  33.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì)。你會(huì)寫三角函數(shù)的單調(diào)區(qū)間嗎?會(huì)寫簡單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?

  34.函數(shù)的圖象的平移,方程的平移易混:

  (1)函數(shù)的圖象的平移為“左+右-,上+下-”。

  (2)方程表示的圖形的平移為“左+右-,上-下+”。

  35.在三角函數(shù)中求一個(gè)角時(shí),注意考慮兩方面了嗎?(先求出某一個(gè)三角函數(shù)值,再判定角的范圍)

  36.正弦定理時(shí)易忘比值還等于2R.

  五、平面向量

  37.數(shù)0有區(qū)別,0的模為數(shù)0,它不是沒有方向,而是方向不定?梢钥闯膳c任意向量平行,但與任意向量都不垂直。

  38.數(shù)量積與兩個(gè)實(shí)數(shù)乘積的區(qū)別:

  在實(shí)數(shù)中:若a≠0,且ab=0,則b=0,但在向量的數(shù)量積中,若a≠0,且a?b=0,不能推出b=0。

  39.a?b<0是向量和向量夾角為鈍角的必要而不充分條件。

  六、解析幾何

  40.在用點(diǎn)斜式、斜截式求直線的方程時(shí),你是否注意到不存在的情況?

  41.直線在兩坐標(biāo)軸上的截距相等,直線方程可以理解為,但不要忘記當(dāng)時(shí),直線在兩坐標(biāo)軸上的截距都是0,亦為截距相等。

  42.解決線性規(guī)劃問題的基本步驟是什么?請你注意解題格式和完整的文字表達(dá)。(①設(shè)出變量,寫出目標(biāo)函數(shù)②寫出線性約束條件③畫出可行域④作出目標(biāo)函數(shù)對應(yīng)的系列平行線,找到并求出最優(yōu)解⑦應(yīng)用題一定要有答。)

  43.三種圓錐曲線的定義、圖形、標(biāo)準(zhǔn)方程、幾何性質(zhì),橢圓與雙曲線中的兩個(gè)特征三角形你掌握了嗎?

  44.圓、和橢圓的參數(shù)方程是怎樣的?常用參數(shù)方程的方法解決哪一些問題?

  45.通徑是拋物線的所有焦點(diǎn)弦中最短的弦。(想一想在雙曲線中的結(jié)論?)

  46.在用圓錐曲線與直線聯(lián)立求解時(shí),消元后得到的方程中要注意:二次項(xiàng)的系數(shù)是否為零?橢圓,雙曲線二次項(xiàng)系數(shù)為零時(shí)直線與其只有一個(gè)交點(diǎn),判別式的限制。(求交點(diǎn),弦長,中點(diǎn),斜率,對稱,存在性問題都在下進(jìn)行)。

  47.解析幾何問題的求解中,平面幾何知識(shí)利用了嗎?題目中是否已經(jīng)有坐標(biāo)系了,是否需要建立直角坐標(biāo)系?

  七、立體幾何

  48.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。

  49.線面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯(lián)系和轉(zhuǎn)化在解決立幾問題中的應(yīng)用是怎樣的?每種平行之間轉(zhuǎn)換的條件是什么?

  50.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關(guān)鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關(guān)鍵)一面四直線,立柱是關(guān)鍵,垂直三處見

  51.線面平行的判定定理和性質(zhì)定理在應(yīng)用時(shí)都是三個(gè)條件,但這三個(gè)條件易混為一談;面面平行的判定定理易把條件錯(cuò)誤地記為”一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面內(nèi)的兩條相交直線分別平行”而導(dǎo)致證明過程跨步太大。

  52.求兩條異面直線所成的角、直線與平面所成的角和二面角時(shí),如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。

  53.異面直線所成角利用“平移法”求解時(shí),一定要注意平移后所得角等于所求角(或其補(bǔ)角),特別是題目告訴異面直線所成角,應(yīng)用時(shí)一定要從題意出發(fā),是用銳角還是其補(bǔ)角,還是兩種情況都有可能。

  54.兩條異面直線所成的角的范圍:0°≤α≤90°

  直線與平面所成的角的范圍:0°≤α≤90°

  二面角的平面角的取值范圍:0°≤α≤180°

  55.平面圖形的翻折,立體圖形的展開等一類問題,要注意翻折,展開前后有關(guān)幾何元素的“不變量”與“不變性”。

  56.棱柱及其性質(zhì)、平行六面體與長方體及其性質(zhì)。這些知識(shí)你掌握了嗎?(注意運(yùn)用向量的方法解題)

  57.球及其性質(zhì);經(jīng)緯度定義易混。經(jīng)度為二面角,緯度為線面角、球面距離的求法;球的表面積和體積公式。這些知識(shí)你掌握了嗎?

  八、排列、組合和概率

  58.解排列組合問題的依據(jù)是:分類相加,分步相乘,有序排列,無序組合。

  解排列組合問題的規(guī)律是:相鄰問題捆綁法;不鄰問題插空法;多排問題單排法;定位問題優(yōu)先法;定序問題倍縮法;多元問題分類法;有序分配問題法;選取問題先排后排法;至多至少問題間接法。

  59.二項(xiàng)式系數(shù)與展開式某一項(xiàng)的系數(shù)易混,第r+1項(xiàng)的二項(xiàng)式系數(shù)為。二項(xiàng)式系數(shù)最大項(xiàng)與展開式中系數(shù)最大項(xiàng)易混。二項(xiàng)式系數(shù)最大項(xiàng)為中間一項(xiàng)或兩項(xiàng);展開式中系數(shù)最大項(xiàng)的求法要用解不等式組來確定r.

  60.你掌握了三種常見的概率公式嗎?(①等可能事件的概率公式;②互斥事件有一個(gè)發(fā)生的概率公式;③相互獨(dú)立事件同時(shí)發(fā)生的概率公式。)

  61.求分布列的解答題你能把步驟寫全嗎?

  62.如何對總體分布進(jìn)行估計(jì)?(用樣本估計(jì)總體,是研究統(tǒng)計(jì)問題的一個(gè)基本思想方法,一般地,樣本容量越大,這種估計(jì)就越精確,要求能畫出頻率分布表和頻率分布直方圖;理解頻率分布直方圖矩形面積的幾何意義。)

  63.你還記得一般正態(tài)總體如何化為標(biāo)準(zhǔn)正態(tài)總體嗎?(對任一正態(tài)總體來說,取值小于x的概率,其中表示標(biāo)準(zhǔn)正態(tài)總體取值小于的概率)

  九、導(dǎo)數(shù)及其應(yīng)用

  64.在點(diǎn)處可導(dǎo)的定義你還記得嗎?它的幾何意義和物理意義分別是什么?利用導(dǎo)數(shù)可解決哪些問題?具體步驟還記得嗎?

  65.你會(huì)用“在其定義域內(nèi)可導(dǎo),且不恒為零,則在某區(qū)間上單調(diào)遞增(減)對恒成立。”解決有關(guān)函數(shù)的單調(diào)性問題嗎?

  66.你知道“函數(shù)在點(diǎn)處可導(dǎo)”是“函數(shù)在點(diǎn)處連續(xù)”的什么條件嗎?

高考數(shù)學(xué)知識(shí)點(diǎn)9

  圓與圓的位置關(guān)系的判斷方法

  一、設(shè)兩個(gè)圓的半徑為R和r,圓心距為d。

  則有以下五種關(guān)系:

  1、d>R+r兩圓外離;兩圓的圓心距離之和大于兩圓的半徑之和。

  2、d=R+r兩圓外切;兩圓的圓心距離之和等于兩圓的半徑之和。

  3、d=R—r兩圓內(nèi)切;兩圓的圓心距離之和等于兩圓的半徑之差。

  4、d

  5、d

  二、圓和圓的位置關(guān)系,還可用有無公共點(diǎn)來判斷:

  1、無公共點(diǎn),一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含。

  2、有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切。

  3、有兩個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。

高考數(shù)學(xué)知識(shí)點(diǎn)10

  一、函數(shù)的單調(diào)性

  在(a,b)內(nèi)可導(dǎo)函數(shù)f(x),f(x)在(a,b)任意子區(qū)間內(nèi)都不恒等于0.

  f(x)f(x)在(a,b)上為增函數(shù).

  f(x)f(x)在(a,b)上為減函數(shù).

  二、函數(shù)的極值

  1、函數(shù)的極小值:

  函數(shù)y=f(x)在點(diǎn)x=a的函數(shù)值f(a)比它在點(diǎn)x=a附近其它點(diǎn)的函數(shù)值都小,f(a)=0,而且在點(diǎn)x=a附近的左側(cè)f(x)0,右側(cè)f(x)0,則點(diǎn)a叫做函數(shù)y=f(x)的極小值點(diǎn),f(a)叫做函數(shù)y=f(x)的極小值.

  2、函數(shù)的極大值:

  函數(shù)y=f(x)在點(diǎn)x=b的函數(shù)值f(b)比它在點(diǎn)x=b附近的其他點(diǎn)的函數(shù)值都大,f(b)=0,而且在點(diǎn)x=b附近的左側(cè)f(x)0,右側(cè)f(x)0,則點(diǎn)b叫做函數(shù)y=f(x)的極大值點(diǎn),f(b)叫做函數(shù)y=f(x)的極大值.

  極小值點(diǎn),極大值點(diǎn)統(tǒng)稱為極值點(diǎn),極大值和極小值統(tǒng)稱為極值.

  三、函數(shù)的最值

  1、在閉區(qū)間[a,b]上連續(xù)的函數(shù)f(x)在[a,b]上必有最大值與最小值.

  2、若函數(shù)f(x)在[a,b]上單調(diào)遞增,則f(a)為函數(shù)的最小值,f(b)為函數(shù)的最大值;若函數(shù)f(x)在[a,b]上單調(diào)遞減,則f(a)為函數(shù)的最大值,f(b)為函數(shù)的最小值.

  四、求可導(dǎo)函數(shù)單調(diào)區(qū)間的一般步驟和方法

  1、確定函數(shù)f(x)的定義域;

  2、求f(x),令f(x)=0,求出它在定義域內(nèi)的一切實(shí)數(shù)根;

  3、把函數(shù)f(x)的間斷點(diǎn)(即f(x)的無定義點(diǎn))的橫坐標(biāo)和上面的各實(shí)數(shù)根按由小到大的順序排列起來,然后用這些點(diǎn)把函數(shù)f(x)的定義區(qū)間分成若干個(gè)小區(qū)間;

  4、確定f(x)在各個(gè)開區(qū)間內(nèi)的符號(hào),根據(jù)f(x)的符號(hào)判定函數(shù)f(x)在每個(gè)相應(yīng)小開區(qū)間內(nèi)的增減性.

  五、求函數(shù)極值的步驟

  1、確定函數(shù)的定義域;

  2、求方程f(x)=0的根;

  3、用方程f(x)=0的根順次將函數(shù)的定義域分成若干個(gè)小開區(qū)間,并形成表格;

  4、由f(x)=0根的兩側(cè)導(dǎo)數(shù)的符號(hào)來判斷f(x)在這個(gè)根處取極值的情況.

  六、求函數(shù)f(x)在[a,b]上的最大值和最小值的步驟

  1、求函數(shù)在(a,b)內(nèi)的極值;

  2、求函數(shù)在區(qū)間端點(diǎn)的函數(shù)值f(a),f(b);

  3、將函數(shù)f(x)的各極值與f(a),f(b)比較,其中最大的一個(gè)為最大值,最小的一個(gè)為最小值.

  特別提醒:

  1、f(x)0與f(x)為增函數(shù)的關(guān)系:f(x)0能推出f(x)為增函數(shù),但反之不一定.如函數(shù)f(x)=x3在(-,+)上單調(diào)遞增,但f(x)0,所以f(x)0是f(x)為增函數(shù)的充分不必要條件.

  2、可導(dǎo)函數(shù)的極值點(diǎn)必須是導(dǎo)數(shù)為0的點(diǎn),但導(dǎo)數(shù)為0的點(diǎn)不一定是極值點(diǎn),即f(x0)=0是可導(dǎo)函數(shù)f(x)在x=x0處取得極值的必要不充分條件.例如函數(shù)y=x3在x=0處有y|x=0=0,但x=0不是極值點(diǎn).此外,函數(shù)不可導(dǎo)的點(diǎn)也可能是函數(shù)的極值點(diǎn).

  3、可導(dǎo)函數(shù)的極值表示函數(shù)在一點(diǎn)附近的情況,是在局部對函數(shù)值的比較;函數(shù)的最值是表示函數(shù)在一個(gè)區(qū)間上的情況,是對函數(shù)在整個(gè)區(qū)間上的函數(shù)值的比較.

高考數(shù)學(xué)知識(shí)點(diǎn)11

  一、高中數(shù)學(xué)誘導(dǎo)公式全集:

  常用的誘導(dǎo)公式有以下幾組:

  公式一:

  設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

  sin(2kπ+α)=sinα (k∈Z)

  cos(2kπ+α)=cosα (k∈Z)

  tan(2kπ+α)=tanα (k∈Z)

  cot(2kπ+α)=cotα (k∈Z)

  公式二:

  設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  公式三:

  任意角α與 -α的三角函數(shù)值之間的關(guān)系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  公式五:

  利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  公式六:

  π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  (以上k∈Z)

  注意:在做題時(shí),將a看成銳角來做會(huì)比較好做。

  誘導(dǎo)公式記憶口訣

  ※規(guī)律總結(jié)※

  上面這些誘導(dǎo)公式可以概括為:

  對于π/2*k ±α(k∈Z)的三角函數(shù)值,

 、佼(dāng)k是偶數(shù)時(shí),得到α的同名函數(shù)值,即函數(shù)名不改變;

 、诋(dāng)k是奇數(shù)時(shí),得到α相應(yīng)的余函數(shù)值,即sin→cos;cos→sin;tan→cot,cot→tan.

  (奇變偶不變)

  然后在前面加上把α看成銳角時(shí)原函數(shù)值的符號(hào)。

  (符號(hào)看象限)

  例如:

  sin(2π-α)=sin(4·π/2-α),k=4為偶數(shù),所以取sinα。

  當(dāng)α是銳角時(shí),2π-α∈(270°,360°),sin(2π-α)<0,符號(hào)為“-”。

  所以sin(2π-α)=-sinα

  上述的記憶口訣是:

  奇變偶不變,符號(hào)看象限。

  公式右邊的符號(hào)為把α視為銳角時(shí),角k·360°+α(k∈Z),-α、180°±α,360°-α

  所在象限的原三角函數(shù)值的符號(hào)可記憶

  水平誘導(dǎo)名不變;符號(hào)看象限。

  各種三角函數(shù)在四個(gè)象限的符號(hào)如何判斷,也可以記住口訣“一全正;二正弦(余割);三兩切;四余弦(正割)”.

  這十二字口訣的意思就是說:

  第一象限內(nèi)任何一個(gè)角的四種三角函數(shù)值都是“+”;

  第二象限內(nèi)只有正弦是“+”,其余全部是“-”;

  第三象限內(nèi)切函數(shù)是“+”,弦函數(shù)是“-”;

  第四象限內(nèi)只有余弦是“+”,其余全部是“-”.

  上述記憶口訣,一全正,二正弦,三內(nèi)切,四余弦

  還有一種按照函數(shù)類型分象限定正負(fù):

  函數(shù)類型 第一象限 第二象限 第三象限 第四象限

  正弦 ...........+............+............—............—........

  余弦 ...........+............—............—............+........

  正切 ...........+............—............+............—........

  余切 ...........+............—............+............—........

  同角三角函數(shù)基本關(guān)系

  同角三角函數(shù)的基本關(guān)系式

  倒數(shù)關(guān)系:

  tanα ·cotα=1

  sinα ·cscα=1

  cosα ·secα=1

  商的關(guān)系:

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方關(guān)系:

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  同角三角函數(shù)關(guān)系六角形記憶法

  六角形記憶法:(參看圖片或參考資料鏈接)

  構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

  (1)倒數(shù)關(guān)系:對角線上兩個(gè)函數(shù)互為倒數(shù);

  (2)商數(shù)關(guān)系:六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積。

  (主要是兩條虛線兩端的三角函數(shù)值的乘積)。由此,可得商數(shù)關(guān)系式。

  (3)平方關(guān)系:在帶有陰影線的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。

  兩角和差公式

  兩角和與差的三角函數(shù)公式

  sin(α+β)=sinαcosβ+cosαsinβ

  sin(α-β)=sinαcosβ-cosαsin&beta,考試技巧;

  cos(α+β)=cosαcosβ-sinαsinβ

  cos(α-β)=cosαcosβ+sinαsinβ

  tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  二倍角公式

  二倍角的正弦、余弦和正切公式(升冪縮角公式)

  sin2α=2sinαcosα

  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

  tan2α=2tanα/[1-tan^2(α)]

  半角公式

  半角的正弦、余弦和正切公式(降冪擴(kuò)角公式)

  sin^2(α/2)=(1-cosα)/2

  cos^2(α/2)=(1+cosα)/2

  tan^2(α/2)=(1-cosα)/(1+cosα)

  另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)

  萬能公式

  sinα=2tan(α/2)/[1+tan^2(α/2)]

  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

  tanα=2tan(α/2)/[1-tan^2(α/2)]

  萬能公式推導(dǎo)

  附推導(dǎo):

  sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,

  (因?yàn)閏os^2(α)+sin^2(α)=1)

  再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))

  然后用α/2代替α即可。

  同理可推導(dǎo)余弦的萬能公式。正切的萬能公式可通過正弦比余弦得到。

  三倍角公式

  三倍角的正弦、余弦和正切公式

  sin3α=3sinα-4sin^3(α)

  cos3α=4cos^3(α)-3cosα

  tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

  三倍角公式推導(dǎo)

  附推導(dǎo):

  tan3α=sin3α/cos3α

  =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

  =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

  上下同除以cos^3(α),得:

  tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

  sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

  =2sinαcos^2(α)+(1-2sin^2(α))sinα

  =2sinα-2sin^3(α)+sinα-2sin^3(α)

  =3sinα-4sin^3(α)

  cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

  =(2cos^2(α)-1)cosα-2cosαsin^2(α)

  =2cos^3(α)-cosα+(2cosα-2cos^3(α))

  =4cos^3(α)-3cosα

  即

  sin3α=3sinα-4sin^3(α)

  cos3α=4cos^3(α)-3cosα

  三倍角公式聯(lián)想記憶

  ★記憶方法:諧音、聯(lián)想

  正弦三倍角:3元 減 4元3角(欠債了(被減成負(fù)數(shù)),所以要“掙錢”(音似“正弦”))

  余弦三倍角:4元3角 減 3元(減完之后還有“余”)

  ☆☆注意函數(shù)名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

  ★另外的記憶方法:

  正弦三倍角: 山無司令 (諧音為 三無四立) 三指的是"3倍"sinα, 無指的是減號(hào), 四指的是"4倍", 立指的是sinα立方

  余弦三倍角: 司令無山 與上同理

  和差化積公式

  三角函數(shù)的和差化積公式

  sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

  積化和差公式

  三角函數(shù)的積化和差公式

  sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]

  cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]

  cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]

  sinα ·sinβ=-0.5[cos(α+β)-cos(α-β)]

  和差化積公式推導(dǎo)

  附推導(dǎo):

  首先,我們知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb

  我們把兩式相加就得到sin(a+b)+sin(a-b)=2sina*cosb

  所以,sina*cosb=(sin(a+b)+sin(a-b))/2

  同理,若把兩式相減,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2

  同樣的,我們還知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb

  所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosa*cosb

  所以我們就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2

  同理,兩式相減我們就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

  這樣,我們就得到了積化和差的四個(gè)公式:

  sina*cosb=(sin(a+b)+sin(a-b))/2

  cosa*sinb=(sin(a+b)-sin(a-b))/2

  cosa*cosb=(cos(a+b)+cos(a-b))/2

  sina*sinb=-(cos(a+b)-cos(a-b))/2

  好,有了積化和差的四個(gè)公式以后,我們只需一個(gè)變形,就可以得到和差化積的四個(gè)公式.

  我們把上述四個(gè)公式中的a+b設(shè)為x,a-b設(shè)為y,那么a=(x+y)/2,b=(x-y)/2

  把a(bǔ),b分別用x,y表示就可以得到和差化積的四個(gè)公式:

  sinx+siny=2sin((x+y)/2)*cos((x-y)/2)

  sinx-siny=2cos((x+y)/2)*sin((x-y)/2)

  cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

  cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

高考數(shù)學(xué)知識(shí)點(diǎn)12

  考點(diǎn)一:集合與簡易邏輯

  集合部分一般以選擇題出現(xiàn),屬容易題。重點(diǎn)考查集合間關(guān)系的理解和認(rèn)識(shí)。近年的試題加強(qiáng)了對集合計(jì)算化簡能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時(shí),要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達(dá)數(shù)學(xué)解題過程和邏輯推理。

  考點(diǎn)二:函數(shù)與導(dǎo)數(shù)

  函數(shù)是高考的重點(diǎn)內(nèi)容,以選擇題和填空題的為載體針對性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運(yùn)算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問題、參數(shù)的取值范圍問題、方程根的個(gè)數(shù)問題、不等式的證明等問題。

  考點(diǎn)三:三角函數(shù)與平面向量

  一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運(yùn)算等,另一道對三角知識(shí)點(diǎn)的補(bǔ)充。大題中如果沒有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補(bǔ)充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點(diǎn)考查平面向量數(shù)量積的概念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問題是“新熱點(diǎn)”題型.

  考點(diǎn)四:數(shù)列與不等式

  不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規(guī)劃問題、基本不等式的應(yīng)用等,通常會(huì)在小題中設(shè)置1到2道題。對不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進(jìn)行考查.在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識(shí)為工具,綜合運(yùn)用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目.

  考點(diǎn)五:立體幾何與空間向量

  一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點(diǎn)、線、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個(gè)客觀題和一個(gè)解答題,多為中檔題。

  考點(diǎn)六:解析幾何

  一般有1~2個(gè)客觀題和1個(gè)解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的定義應(yīng)用、標(biāo)準(zhǔn)方程的求解、離心率的計(jì)算等,解答題則主要考查直線與橢圓、拋物線等的位置關(guān)系問題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問題、證明問題、定點(diǎn)與定值、最值與范圍問題等。

  考點(diǎn)七:算法復(fù)數(shù)推理與證明

  高考對算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”.考查的熱點(diǎn)是流程圖的識(shí)別與算法語言的閱讀理解.算法與數(shù)列知識(shí)的網(wǎng)絡(luò)交匯命題是考查的主流.復(fù)數(shù)考查的重點(diǎn)是復(fù)數(shù)的有關(guān)概念、復(fù)數(shù)的代數(shù)形式、運(yùn)算及運(yùn)算的幾何意義,一般是選擇題、填空題,難度不大.推理證明部分命題的方向主要會(huì)在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨(dú)出題的可能性較小。對于理科,數(shù)學(xué)歸納法可能作為解答題的一小問.

  高考數(shù)學(xué)學(xué)習(xí)方法

  1.先看筆記后做作業(yè)。

  有的同學(xué)感到,老師講過的,自己已經(jīng)聽得明明白白了。但是為什么你這么做有那么多困難呢?原因是學(xué)生對教師所說的理解沒有達(dá)到教師要求的水平。

  因此,每天做作業(yè)之前,我們必須先看一下課本的相關(guān)內(nèi)容和當(dāng)天的課堂筆記。能否如此堅(jiān)持,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其是當(dāng)練習(xí)不匹配時(shí),老師通常沒有剛剛講過的練習(xí)類型,因此它們不能被比較和消化。如果你不重視這個(gè)實(shí)施,在很長一段時(shí)間內(nèi),會(huì)造成很大的損失。

  2.做題之后加強(qiáng)反思。

  學(xué)生一定要明確,現(xiàn)在正做著的題,一定不是考試的題目。但使用現(xiàn)在做主題的解決問題的思路和方法。因此,我們應(yīng)該反思我們所做的每一個(gè)問題,并總結(jié)我們自己的收獲。

  要總結(jié)出:這是一道什么內(nèi)容的題,用的是什么方法。做到知識(shí)成片,問題成串。日復(fù)一日,建立科學(xué)的網(wǎng)絡(luò)系統(tǒng)的內(nèi)容和方法。俗話說:有錢難買回頭看。做完作業(yè),回頭細(xì)看,價(jià)值極大。這一回顧,是學(xué)習(xí)過程中一個(gè)非常重要的環(huán)節(jié)。

高考數(shù)學(xué)知識(shí)點(diǎn)13

  (1)定義式:

  任意兩項(xiàng)

  的關(guān)系為

  (5)等比中項(xiàng):

  若

  為

  或者

  無窮遞縮等比數(shù)列各項(xiàng)和公式:公比的絕對值小于1的無窮等比數(shù)列,當(dāng)n無限增大時(shí)的極限叫做這個(gè)無窮等比數(shù)列各項(xiàng)的和。

  (7)由等比數(shù)列組成的新的等比數(shù)列的公比:

  {an}是公比為q的等比數(shù)列

  1.若A=a1+a2+……+an

  B=an+1+……+a2n

  C=a2n+1+……a3n

  則,A、B、C構(gòu)成新的等比數(shù)列,公比Q=q^n

  2.若A=a1+a4+a7+……+a3n-2

  B=a2+a5+a8+……+a3n-1

  C=a3+a6+a9+……+a3n

  則,A、B、C構(gòu)成新的等比數(shù)列,公比Q=q

  性質(zhì)

  (1)若m、n、p、q∈N*,且m+n=p+q,則am*an=ap*aq。

  (2)在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列。

  (3)若“G是a、b的等比中項(xiàng)”則“G^2=ab(G≠0)”。

  (4)若{an}是等比數(shù)列,公比為q1,{bn}也是等比數(shù)列,公比是q2,則

  {a2n},{a3n}…是等比數(shù)列,公比為q1^2,q1^3…

  {can},c是常數(shù),{an*bn},{an/bn}是等比數(shù)列,公比為q1,q1q2,q1/q2。

  (5)等比數(shù)列中,連續(xù)的,等長的,間隔相等的片段和為等比。

  (6)若(an)為等比數(shù)列且各項(xiàng)為正,公比為q,則(log以a為底an的對數(shù))成等差,公差為log以a為底q的對數(shù)。

  (7) 等比數(shù)列前n項(xiàng)之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)

  在等比數(shù)列中,首項(xiàng)A1與公比q都不為零。

  注意:上述公式中A^n表示A的n次方。

  (8)由于首項(xiàng)為a1,公比為q的等比數(shù)列的通項(xiàng)公式可以寫成an=(a1/q)*q^n,它的指數(shù)函數(shù)y=a^x有著密切的聯(lián)系,從而可以利用指數(shù)函數(shù)的性質(zhì)來研究等比數(shù)列。

  求通項(xiàng)方法

  (1)待定系數(shù)法:已知a(n+1)=2an+3,a1=1,求an?

  構(gòu)造等比數(shù)列a(n+1)+x=2(an+x)

  a(n+1)=2an+x,∵a(n+1)=2an+3 ∴x=3

  ∴(a(n+1)+3)/(an+3)=2

  ∴{an+3}為首項(xiàng)為4,公比為2的等比數(shù)列,所以an+3=a1*q^(n-1)=4*2^(n-1),an=2^(n+1)-3

  (2)定義法:已知Sn=a·2^n+b,,求an的通項(xiàng)公式?

  ∵Sn=a·2^n+b∴Sn-1=a·2^n-1+b

  ∴an=Sn-Sn-1=a·2^n-1

  實(shí)際應(yīng)用

  等比數(shù)列在生活中也是常常運(yùn)用的。

  如:銀行有一種支付利息的方式——復(fù)利。

  即把前一期的利息和本金加在一起算作本金,

  在計(jì)算下一期的利息,也就是人們通常說的“利滾利”。

  按照復(fù)利計(jì)算本利和的公式:本利和=本金*(1+利率)^存期。

高考數(shù)學(xué)知識(shí)點(diǎn)14

  易錯(cuò)點(diǎn) 遺忘空集導(dǎo)致錯(cuò)誤

  錯(cuò)因分析:由于空集是任何非空集合的真子集,因此,對于集合B,就有B=A,B,B,三種情況,在解題中如果思維不夠縝密就有可能忽視了 B這種情況,導(dǎo)致解題結(jié)果錯(cuò)誤。尤其是在解含有參數(shù)的集合問題時(shí),更要充分注意當(dāng)參數(shù)在某個(gè)范圍內(nèi)取值時(shí)所給的集合可能是空集這種情況?占且粋(gè)特殊的集合,由于思維定式的原因,考生往往會(huì)在解題中遺忘了這個(gè)集合,導(dǎo)致解題錯(cuò)誤或是解題不全面。

  易錯(cuò)點(diǎn) 忽視集合元素的三性致誤

  錯(cuò)因分析:集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對字母參數(shù)的一些要求。在解題時(shí)也可以先確定字母參數(shù)的范圍后,再具體解決問題。

  易錯(cuò)點(diǎn) 四種命題的結(jié)構(gòu)不明致誤

  錯(cuò)因分析:如果原命題是若 A則B,則這個(gè)命題的逆命題是若B則A,否命題是若┐A則┐B,逆否命題是若┐B則┐A。

  這里面有兩組等價(jià)的命題,即原命題和它的逆否命題等價(jià),否命題與逆命題等價(jià)。在解答由一個(gè)命題寫出該命題的其他形式的命題時(shí),一定要明確四種命題的結(jié)構(gòu)以及它們之間的等價(jià)關(guān)系。

  另外,在否定一個(gè)命題時(shí),要注意全稱命題的否定是特稱命題,特稱命題的否定是全稱命題。如對a,b都是偶數(shù)的否定應(yīng)該是a,b不都是偶數(shù),而不應(yīng)該是a ,b都是奇數(shù)。

  易錯(cuò)點(diǎn) 充分必要條件顛倒致誤

  錯(cuò)因分析:對于兩個(gè)條件A,B,如果A=B成立,則A是B的充分條件,B是A的必要條件;如果B=A成立,則A是B的必要條件,B是A的充分條件;如果AB,則A,B互為充分必要條件。解題時(shí)最容易出錯(cuò)的就是顛倒了充分性與必要性,所以在解決這類問題時(shí)一定要根據(jù)充要條件的概念作出準(zhǔn)確的判斷。

  易錯(cuò)點(diǎn) 邏輯聯(lián)結(jié)詞理解不準(zhǔn)致誤

  錯(cuò)因分析:在判斷含邏輯聯(lián)結(jié)詞的命題時(shí)很容易因?yàn)槔斫獠粶?zhǔn)確而出現(xiàn)錯(cuò)誤,在這里我們給出一些常用的判斷方法,希望對大家有所幫助:

  p=p真或q真,

  p=p假且q假(概括為一真即真);

  pq真p真且q真,

  pq假p假或q假(概括為一假即假);

  ┐p真p假,┐p假p真(概括為一真一假)。

  二、函數(shù)與導(dǎo)數(shù)

  易錯(cuò)點(diǎn) 求函數(shù)定義域忽視細(xì)節(jié)致誤

  錯(cuò)因分析:函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,因此要求定義域就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。

  在求一般函數(shù)定義域時(shí)要注意下面幾點(diǎn):

  (1)分母不為0;

  (2)偶次被開放式非負(fù);

  (3)真數(shù)大于0;

  (4)0的0次冪沒有意義。

  函數(shù)的定義域是非空的數(shù)集,在解決函數(shù)定義域時(shí)不要忘記了這點(diǎn)。對于復(fù)合函數(shù),要注意外層函數(shù)的定義域是由內(nèi)層函數(shù)的值域決定的。

  易錯(cuò)點(diǎn) 帶有絕對值的函數(shù)單調(diào)性判斷錯(cuò)誤

  錯(cuò)因分析:帶有絕對值的函數(shù)實(shí)質(zhì)上就是分段函數(shù),對于分段函數(shù)的單調(diào)性,有兩種基本的判斷方法:

  一是在各個(gè)段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,最后對各個(gè)段上的單調(diào)區(qū)間進(jìn)行整合;

  二是畫出這個(gè)分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)進(jìn)行直觀的判斷。研究函數(shù)問題離不開函數(shù)圖象,函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),在研究函數(shù)問題時(shí)要時(shí)時(shí)刻刻想到函數(shù)的圖象,學(xué)會(huì)從函數(shù)圖象上去分析問題,尋找解決問題的方案。

  對于函數(shù)的幾個(gè)不同的單調(diào)遞增(減)區(qū)間,千萬記住不要使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

  易錯(cuò)點(diǎn) 求函數(shù)奇偶性的常見錯(cuò)誤

  錯(cuò)因分析:求函數(shù)奇偶性的常見錯(cuò)誤有求錯(cuò)函數(shù)定義域或是忽視函數(shù)定義域,對函數(shù)具有奇偶性的前提條件不清,對分段函數(shù)奇偶性判斷方法不當(dāng)?shù)取?/p>

  判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶的函數(shù)。

  在定義域區(qū)間關(guān)于原點(diǎn)對稱的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷,在用定義進(jìn)行判斷時(shí)要注意自變量在定義域區(qū)間內(nèi)的任意性。

  易錯(cuò)點(diǎn) 抽象函數(shù)中推理不嚴(yán)密致誤

  錯(cuò)因分析:很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同特征而設(shè)計(jì)出來的,在解決問題時(shí),可以通過類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)的性質(zhì)。

  解答抽象函數(shù)問題要注意特殊賦值法的應(yīng)用,通過特殊賦值可以找到函數(shù)的不變性質(zhì),這個(gè)不變性質(zhì)往往是進(jìn)一步解決問題的突破口。

  抽象函數(shù)性質(zhì)的證明是一種代數(shù)推理,和幾何推理證明一樣,要注意推理的嚴(yán)謹(jǐn)性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過程要層次分明,書寫規(guī)范。

  易錯(cuò)點(diǎn) 函數(shù)零點(diǎn)定理使用不當(dāng)致誤

  錯(cuò)因分析:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c(a,b),使得f(c)=0,這個(gè)c也是方程f(c)=0的根,這個(gè)結(jié)論我們一般稱之為函數(shù)的零點(diǎn)定理。

  函數(shù)的零點(diǎn)有變號(hào)零點(diǎn)和不變號(hào)零點(diǎn),對于不變號(hào)零點(diǎn),函數(shù)的零點(diǎn)定理是無能為力的,在解決函數(shù)的零點(diǎn)時(shí)要注意這個(gè)問題。

  易錯(cuò)點(diǎn) 混淆兩類切線致誤

  錯(cuò)因分析:曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過一個(gè)點(diǎn)的切線是指過這個(gè)點(diǎn)的曲線的所有切線,這個(gè)點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過一個(gè)點(diǎn)的切線可能不止一條。因此求解曲線的切線問題時(shí),首先要區(qū)分是什么類型的切線。

  易錯(cuò)點(diǎn) 混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系致誤

  錯(cuò)因分析:對于一個(gè)函數(shù)在某個(gè)區(qū)間上是增函數(shù),如果認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,就會(huì)出錯(cuò)。

  研究函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時(shí)一定要注意:一個(gè)函數(shù)的導(dǎo)函數(shù)在某個(gè)區(qū)間上單調(diào)遞增(減)的充要條件是這個(gè)函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。

  易錯(cuò)點(diǎn) 導(dǎo)數(shù)與極值關(guān)系不清致誤

  錯(cuò)因分析:在使用導(dǎo)數(shù)求函數(shù)極值時(shí),很容易出現(xiàn)的錯(cuò)誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),而沒有對這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號(hào)進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn)。

  出現(xiàn)這些錯(cuò)誤的原因是對導(dǎo)數(shù)與極值關(guān)系不清。可導(dǎo)函數(shù)在一個(gè)點(diǎn)處的導(dǎo)函數(shù)值為零只是這個(gè)函數(shù)在此點(diǎn)處取到極值的必要條件,在此提醒廣大考生在使用導(dǎo)數(shù)求函數(shù)極值時(shí)一定要注意對極值點(diǎn)進(jìn)行檢驗(yàn)。

  三、數(shù)列

  易錯(cuò)點(diǎn) 用錯(cuò)基本公式致誤

  錯(cuò)因分析:等差數(shù)列的首項(xiàng)為a1、公差為d,則其通項(xiàng)公式an=a1+(n-1)d,前n項(xiàng)和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比數(shù)列的首項(xiàng)為a1、公比為q,則其通項(xiàng)公式an=a1pn-1,當(dāng)公比q1時(shí),前n項(xiàng)和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當(dāng)公比q=1時(shí),前n項(xiàng)和公式Sn=na1。在數(shù)列的基礎(chǔ)性試題中,等差數(shù)列、等比數(shù)列的這幾個(gè)公式是解題的根本,用錯(cuò)了公式,解題就失去了方向。

  易錯(cuò)點(diǎn) an,Sn關(guān)系不清致誤

  錯(cuò)因分析:在數(shù)列問題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在關(guān)系:

  這個(gè)關(guān)系是對任意數(shù)列都成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n2時(shí)這個(gè)關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯(cuò)的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其分段的特點(diǎn)。

  當(dāng)題目中給出了數(shù)列{an}的an與Sn之間的關(guān)系時(shí),這兩者之間可以進(jìn)行相互轉(zhuǎn)換,知道了an的具體表達(dá)式可以通過數(shù)列求和的方法求出Sn,知道了Sn可以求出an,解題時(shí)要注意體會(huì)這種轉(zhuǎn)換的相互性。

  易錯(cuò)點(diǎn) 對等差、等比數(shù)列的性質(zhì)理解錯(cuò)誤

  錯(cuò)因分析:等差數(shù)列的前n項(xiàng)和在公差不為0時(shí)是關(guān)于n的常數(shù)項(xiàng)為0的二次函數(shù)。

  一般地,有結(jié)論若數(shù)列{an}的前N項(xiàng)和Sn=an2+bn+c(a,b,cR),則數(shù)列{an}為等差數(shù)列的充要條件是c=0在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(mN*)是等差數(shù)列。

  解決這類題目的一個(gè)基本出發(fā)點(diǎn)就是考慮問題要全面,把各種可能性都考慮進(jìn)去,認(rèn)為正確的命題給以證明,認(rèn)為不正確的命題舉出反例予以駁斥。在等比數(shù)列中公比等于-1時(shí)是一個(gè)很特殊的情況,在解決有關(guān)問題時(shí)要注意這個(gè)特殊情況。

  易錯(cuò)點(diǎn) 數(shù)列中的最值錯(cuò)誤

  錯(cuò)因分析:數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式都是關(guān)于正整數(shù)的函數(shù),要善于從函數(shù)的觀點(diǎn)認(rèn)識(shí)和理解數(shù)列問題。

  但是考生很容易忽視n為正整數(shù)的特點(diǎn),或即使考慮了n為正整數(shù),但對于n取何值時(shí),能夠取到最值求解出錯(cuò)。在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點(diǎn)要根據(jù)正整數(shù)距離二次函數(shù)的對稱軸遠(yuǎn)近而定。

  易錯(cuò)點(diǎn) 錯(cuò)位相減求和時(shí)項(xiàng)數(shù)處理不當(dāng)致誤

  錯(cuò)因分析:錯(cuò)位相減求和法的適用環(huán)境是:數(shù)列是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對應(yīng)項(xiàng)的乘積所組成的,求其前n項(xiàng)和;痉椒ㄊ窃O(shè)這個(gè)和式為Sn,在這個(gè)和式兩端同時(shí)乘以等比數(shù)列的公比得到另一個(gè)和式,這兩個(gè)和式錯(cuò)一位相減,得到的和式要分三個(gè)部分:

  (1)原來數(shù)列的第一項(xiàng);

  (2)一個(gè)等比數(shù)列的前(n-1)項(xiàng)的和;

  (3)原來數(shù)列的第n項(xiàng)乘以公比后在作差時(shí)出現(xiàn)的。在用錯(cuò)位相減法求數(shù)列的和時(shí)一定要注意處理好這三個(gè)部分,否則就會(huì)出錯(cuò)。

高考數(shù)學(xué)知識(shí)點(diǎn)15

  (1)算法概念:

  在數(shù)學(xué)上,現(xiàn)代意義上的算法通常是指可以用計(jì)算機(jī)來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.

  (2)算法的特點(diǎn):

  ①有限性:一個(gè)算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.

 、诖_定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當(dāng)是模棱兩可.

 、垌樞蛐耘c正確性:算法從初始步驟開始,分為若干明確的步驟,每一個(gè)步驟只能有一個(gè)確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進(jìn)行下一步,并且每一步都準(zhǔn)確無誤,才能完成問題.

 、懿晃ㄒ恍裕呵蠼饽骋粋(gè)問題的解法不一定是唯一的,對于一個(gè)問題可以有不同的算法.

  ⑤普遍性:很多具體的問題,都可以設(shè)計(jì)合理的算法去解決,如心算、計(jì)算器計(jì)算都要經(jīng)過有限、事先設(shè)計(jì)好的步驟加以解決.

【高考數(shù)學(xué)知識(shí)點(diǎn)(集合15篇)】相關(guān)文章:

數(shù)學(xué)高考知識(shí)點(diǎn)11-23

高考數(shù)學(xué)三知識(shí)點(diǎn)11-24

高考數(shù)學(xué)必考知識(shí)點(diǎn)11-21

高考數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)08-24

高考數(shù)學(xué)必備知識(shí)點(diǎn)08-24

高考必需數(shù)學(xué)三知識(shí)點(diǎn)11-08

數(shù)學(xué)高考精選知識(shí)點(diǎn)歸納11-08

高考數(shù)學(xué)圓的知識(shí)點(diǎn)07-31

高考數(shù)學(xué)幾何知識(shí)點(diǎn)歸納09-10

高考數(shù)學(xué)復(fù)習(xí)重要知識(shí)點(diǎn)09-06