亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

初三數(shù)學(xué)知識點(diǎn)

時(shí)間:2023-12-21 08:51:45 賽賽 數(shù)學(xué) 我要投稿

初三數(shù)學(xué)知識點(diǎn)

  在日復(fù)一日的學(xué)習(xí)中,看到知識點(diǎn),都是先收藏再說吧!知識點(diǎn)就是“讓別人看完能理解”或者“通過練習(xí)我能掌握”的內(nèi)容。哪些知識點(diǎn)能夠真正幫助到我們呢?下面是小編為大家收集的初三數(shù)學(xué)知識點(diǎn),希望對大家有所幫助。

初三數(shù)學(xué)知識點(diǎn)

  初三數(shù)學(xué)知識點(diǎn)1

  1、數(shù)軸

 。1)數(shù)軸的概念:規(guī)定了原點(diǎn)、正方向、單位長度的直線叫做數(shù)軸。

  數(shù)軸的三要素:原點(diǎn),單位長度,正方向。

 。2)數(shù)軸上的點(diǎn):所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)表示,但數(shù)軸上的點(diǎn)不都表示有理數(shù)。(一般取右方向?yàn)檎较,?shù)軸上的點(diǎn)對應(yīng)任意實(shí)數(shù),包括無理數(shù)。)

 。3)用數(shù)軸比較大小:一般來說,當(dāng)數(shù)軸方向朝右時(shí),右邊的數(shù)總比左邊的數(shù)大。

  重點(diǎn)知識:

  初中數(shù)學(xué)第一課,認(rèn)識正數(shù)與負(fù)數(shù)!新初一的來~

  2、相反數(shù)

 。1)相反數(shù)的概念:只有符號不同的兩個(gè)數(shù)叫做互為相反數(shù)。

  (2)相反數(shù)的意義:掌握相反數(shù)是成對出現(xiàn)的,不能單獨(dú)存在,從數(shù)軸上看,除0外,互為相反數(shù)的兩個(gè)數(shù),它們分別在原點(diǎn)兩旁且到原點(diǎn)距離相等。

 。3)多重符號的化簡:與“+”個(gè)數(shù)無關(guān),有奇數(shù)個(gè)“﹣”號結(jié)果為負(fù),有偶數(shù)個(gè)“﹣”號,結(jié)果為正。

  (4)規(guī)律方法總結(jié):求一個(gè)數(shù)的相反數(shù)的方法就是在這個(gè)數(shù)的前邊添加“﹣”,如a的相反數(shù)是﹣a,m+n的相反數(shù)是﹣(m+n),這時(shí)m+n是一個(gè)整體,在整體前面添負(fù)號時(shí),要用小括號。

  3、絕對值

  1)概念:數(shù)軸上某個(gè)數(shù)與原點(diǎn)的距離叫做這個(gè)數(shù)的絕對值。

 、倩橄喾磾(shù)的兩個(gè)數(shù)絕對值相等;

  ②絕對值等于一個(gè)正數(shù)的數(shù)有兩個(gè),絕對值等于0的數(shù)有一個(gè),沒有絕對值等于負(fù)數(shù)的數(shù)。

 、塾欣頂(shù)的絕對值都是非負(fù)數(shù)。

  2)如果用字母a表示有理數(shù),則數(shù)a 絕對值要由字母a本身的取值來確定:

  ①當(dāng)a是正有理數(shù)時(shí),a的絕對值是它本身a;

 、诋(dāng)a是負(fù)有理數(shù)時(shí),a的絕對值是它的相反數(shù)﹣a;

  ③當(dāng)a是零時(shí),a的絕對值是零。

  即|a|={a(a>0)0(a=0)﹣a(a<0)

  初三數(shù)學(xué)知識點(diǎn)2

  1、反比例函數(shù)的概念

  一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實(shí)數(shù),函數(shù)的取值范圍也是一切非零實(shí)數(shù)。

  2、反比例函數(shù)的圖像

  反比例函數(shù)的圖像是雙曲線,它有兩個(gè)分支,這兩個(gè)分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點(diǎn)對稱。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒有交點(diǎn),即雙曲線的兩個(gè)分支無限接近坐標(biāo)軸,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。

  3、反比例函數(shù)的性質(zhì)

  反比例函數(shù)k的符號k>0k<0圖像yO xyO x性質(zhì)①x的取值范圍是x0,

  y的取值范圍是y0;

  ②當(dāng)k>0時(shí),函數(shù)圖像的兩個(gè)分支分別

  在第一、三象限。在每個(gè)象限內(nèi),y

  隨x 的增大而減小。

 、賦的取值范圍是x0,

  y的取值范圍是y0;

 、诋(dāng)k<0時(shí),函數(shù)圖像的兩個(gè)分支分別

  在第二、四象限。在每個(gè)象限內(nèi),y

  隨x 的增大而增大。

  4、反比例函數(shù)解析式的確定

  確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個(gè)待定系數(shù),因此只需要一對對應(yīng)值或圖像上的一個(gè)點(diǎn)的坐標(biāo),即可求出k的值,從而確定其解析式。

  5、反比例函數(shù)的幾何意義

  設(shè)是反比例函數(shù)圖象上任一點(diǎn),過點(diǎn)P作軸、軸的垂線,垂足為A,則

  (1)△OPA的面積.

  (2)矩形OAPB的面積。這就是系數(shù)的幾何意義.并且無論P(yáng)怎樣移動,△OPA的面積和矩形OAPB的面積都保持不變。

  矩形PCEF面積=,平行四邊形PDEA面積=

  初三數(shù)學(xué)知識點(diǎn)3

  二次函數(shù)的解析式有三種形式:

  (1)一般式:

  (2)頂點(diǎn)式:

  (3)當(dāng)拋物線與x軸有交點(diǎn)時(shí),即對應(yīng)二次好方程有實(shí)根和存在時(shí),根據(jù)二次三項(xiàng)式的分解因式,二次函數(shù)可轉(zhuǎn)化為兩根式。如果沒有交點(diǎn),則不能這樣表示。

  注意:拋物線位置由決定.

  (1)決定拋物線的開口方向

 、匍_口向上.

 、陂_口向下.

  (2)決定拋物線與y軸交點(diǎn)的位置.

 、賵D象與y軸交點(diǎn)在x軸上方.

 、趫D象過原點(diǎn).

  ③圖象與y軸交點(diǎn)在x軸下方.

  (3)決定拋物線對稱軸的位置(對稱軸:)

 、偻枌ΨQ軸在y軸左側(cè).

 、趯ΨQ軸是y軸.

 、郛愄枌ΨQ軸在y軸右側(cè).

  (4)頂點(diǎn)坐標(biāo).

  (5)決定拋物線與x軸的交點(diǎn)情況.、

 、佟>0拋物線與x軸有兩個(gè)不同交點(diǎn).

 、凇=0拋物線與x軸有的公共點(diǎn)(相切).

 、邸<0拋物線與x軸無公共點(diǎn).

  (6)二次函數(shù)是否具有、最小值由a判斷.

 、佼(dāng)a>0時(shí),拋物線有最低點(diǎn),函數(shù)有最小值.

 、诋(dāng)a<0時(shí),拋物線有點(diǎn),函數(shù)有值.

  (7)的符號的判定:

  表達(dá)式,請代值,對應(yīng)y值定正負(fù);

  對稱軸,用處多,三種式子相約;

  軸兩側(cè)判,左同右異中為0;

  1的兩側(cè)判,左同右異中為0;

  -1兩側(cè)判,左異右同中為0.

  (8)函數(shù)圖象的平移:左右平移變x,左+右-;上下平移變常數(shù)項(xiàng),上+下-;平移結(jié)果先知道,反向平移是訣竅;平移方式不知道,通過頂點(diǎn)來尋找。

  (9)對稱:關(guān)于x軸對稱的解析式為,關(guān)于y軸對稱的解析式為,關(guān)于原點(diǎn)軸對稱的解析式為,在頂點(diǎn)處翻折后的解析式為(a相反,定點(diǎn)坐標(biāo)不變)。

  (10)結(jié)論:

  ①二次函數(shù)(與x軸只有一個(gè)交點(diǎn)二次函數(shù)的頂點(diǎn)在x軸上Δ=0;

 、诙魏瘮(shù)(的頂點(diǎn)在y軸上二次函數(shù)的圖象關(guān)于y軸對稱;

 、鄱魏瘮(shù)(經(jīng)過原點(diǎn),則。

  (11)二次函數(shù)的解析式:

 、僖话闶剑(用于已知三點(diǎn)。

 、陧旤c(diǎn)式:用于已知頂點(diǎn)坐標(biāo)或最值或?qū)ΨQ軸。

  (3)交點(diǎn)式:其中、是二次函數(shù)與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)。若已知對稱軸和在x軸上的截距,也可用此式。

  初三數(shù)學(xué)知識點(diǎn)4

  1、圖形的相似

  相似多邊形的對應(yīng)邊的比值相等,對應(yīng)角相等;

  兩個(gè)多邊形的對應(yīng)角相等,對應(yīng)邊的比值也相等,那么這兩個(gè)多邊形相似;

  相似比:相似多邊形對應(yīng)邊的比值。

  2、相似三角形

  判定:

  平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形和原三角形相似;

  如果兩個(gè)三角形的三組對應(yīng)邊的比相等,那么這兩個(gè)三角形相似;

  如果兩個(gè)三角形的兩組對應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么兩個(gè)三角形相似;

  如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對應(yīng)相等,那么兩個(gè)三角形相似。

  3相似三角形的周長和面積

  相似三角形(多邊形)的周長的比等于相似比;

  相似三角形(多邊形)的面積的比等于相似比的平方。

  4位似

  位似圖形:兩個(gè)多邊形相似,而且對應(yīng)頂點(diǎn)的連線相交于一點(diǎn),對應(yīng)邊互相平行,這樣的兩個(gè)圖形叫位似圖形,相交的點(diǎn)叫位似中心。

  初三數(shù)學(xué)知識點(diǎn)5

  一、二次根式

  1、二次根式:一般地,式子叫做二次根式。

  注意:

 。1)若這個(gè)條件不成立,則不是二次根式。

  (2)是一個(gè)重要的非負(fù)數(shù),即;≥0。

  2、積的算術(shù)平方根:積的算術(shù)平方根等于積中各因式的算術(shù)平方根的積。

  3、二次根式比較大小的方法:

  (1)利用近似值比大小。

  (2)把二次根式的系數(shù)移入二次根號內(nèi),然后比大小。

 。3)分別平方,然后比大小。

  4、商的算術(shù)平方根:商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根。

  5、二次根式的除法法則:

 。1)分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎健?/p>

  6、最簡二次根式:

 。1)滿足下列兩個(gè)條件的二次根式,叫做最簡二次根式。

 、俦婚_方數(shù)的因數(shù)是整數(shù),因式是整式。

  ②被開方數(shù)中不含能開的盡的因數(shù)或因式。

 。2)最簡二次根式中,被開方數(shù)不能含有小數(shù)、分?jǐn)?shù),字母因式次數(shù)低于2,且不含分母。

 。3)化簡二次根式時(shí),往往需要把被開方數(shù)先分解因數(shù)或分解因式。

 。4)二次根式計(jì)算的最后結(jié)果必須化為最簡二次根式。

  7、同類二次根式:幾個(gè)二次根式化成最簡二次根式后,如果被開方數(shù)相同,這幾個(gè)二次根式叫做同類二次根式。

  8、二次根式的混合運(yùn)算:

 。1)二次根式的混合運(yùn)算包括加、減、乘、除、乘方、開方六種代數(shù)運(yùn)算,以前學(xué)過的,在有理數(shù)范圍內(nèi)的一切公式和運(yùn)算律在二次根式的混合運(yùn)算中都適用。

 。2)二次根式的運(yùn)算一般要先把二次根式進(jìn)行適當(dāng)化簡,例如:化為同類二次根式才能合并;除法運(yùn)算有時(shí)轉(zhuǎn)化為分母有理化或約分更為簡便;使用乘法公式等。

  二、一元二次方程

  1、一元二次方程的一般形式:a≠0時(shí),ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關(guān)問題時(shí),多數(shù)習(xí)題要先化為一般形式,目的是確定一般形式中的a、 b、 c;其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的代數(shù)式。

  2、一元二次方程的解法:一元二次方程的四種解法要求靈活運(yùn)用,其中直接開平方法雖然簡單,但是適用范圍較。还椒m然適用范圍大,但計(jì)算較繁,易發(fā)生計(jì)算錯(cuò)誤;因式分解法適用范圍較大,且計(jì)算簡便,是首選方法;配方法使用較少。

  3、一元二次方程根的判別式:當(dāng)ax2+bx+c=0(a≠0)時(shí),Δ=b2—4ac叫一元二次方程根的判別式。請注意以下等價(jià)命題:

  Δ>0 <=>有兩個(gè)不等的實(shí)根;Δ=0 <=>有兩個(gè)相等的實(shí)根;Δ<0 <=>無實(shí)根。

  4、平均增長率問題——應(yīng)用題的類型題之一(設(shè)增長率為x):

 。1)第一年為a,第二年為a(1+x),第三年為a(1+x)2。

 。2)常利用以下相等關(guān)系列方程:第三年=第三年或第一年+第二年+第三年=總和。

  初三數(shù)學(xué)知識點(diǎn)6

  1、垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的2條弧。

  逆定理:平分弦不是直徑的直徑垂直于弦,并且平分弦所對的2條弧。

  2、有關(guān)圓周角和圓心角的性質(zhì)和定理

 、僭谕瑘A或等圓中,如果兩個(gè)圓心角,兩個(gè)圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那么他們所對應(yīng)的其余各組量都分別相等。

  ②一條弧所對的圓周角等于它所對的圓心角的一半。

  直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

  圓心角計(jì)算公式:θ=L/2πr×360°=180°L/πr=L/r弧度

  即圓心角的度數(shù)等于它所對的弧的度數(shù);圓周角的度數(shù)等于它所對的弧的度數(shù)的一半。

 、廴绻粭l弧的長是另一條弧的2倍,那么其所對的圓周角和圓心角是另一條弧的2倍。

  3、有關(guān)外接圓和內(nèi)切圓的性質(zhì)和定理

 、僖粋(gè)三角形有唯一確定的外接圓和內(nèi)?

  ②內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形三邊距離相等。

 、跼=2S△÷LR:內(nèi)切圓半徑,S:三角形面積,L:三角形周長

  ④兩相切圓的連心線過切點(diǎn)連心線:兩個(gè)圓心相連的直線

 、輬AO中的弦PQ的中點(diǎn)M,過點(diǎn)M任作兩弦AB,CD,弦AD與BC分別交PQ于X,Y,則M為XY之中點(diǎn)。

  4、如果兩圓相交,那么連接兩圓圓心的線段直線也可垂直平分公共弦。

  5、弦切角的度數(shù)等于它所夾的弧的度數(shù)的一半。

  6、圓內(nèi)角的度數(shù)等于這個(gè)角所對的弧的度數(shù)之和的一半。

  7、圓外角的度數(shù)等于這個(gè)角所截兩段弧的度數(shù)之差的一半。

  8、周長相等,圓面積比長方形、正方形、三角形的面積大。

  圓的知識要領(lǐng)不僅?脊,又是也會直接出一些關(guān)于定理的試題。

  初三數(shù)學(xué)知識點(diǎn)7

  一元一次方程:

  ①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是

  1、這樣的方程叫一元一次方程。

 、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。

  解一元一次方程的步驟:

  去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。

  二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。

  二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。

  解二元一次方程組的方法:代入消元法/加減消元法。

  2、不等式與不等式組

  不等式:

  ①用符號”=“號連接的式子叫不等式。

 、诓坏仁降膬蛇叾技由匣驕p去同一個(gè)整式,不等號的方向不變。

 、鄄坏仁降膬蛇叾汲艘曰蛘叱砸粋(gè)正數(shù),不等號方向不變。

 、懿坏仁降膬蛇叾汲艘曰虺酝粋(gè)負(fù)數(shù),不等號方向相反。

  不等式的解集:

  ①能使不等式成立的未知數(shù)的值,叫做不等式的解。

 、谝粋(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

 、矍蟛坏仁浇饧倪^程叫做解不等式。

  一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。

  一元一次不等式組:

 、訇P(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。

 、谝辉淮尾坏仁浇M中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。

 、矍蟛坏仁浇M解集的過程,叫做解不等式組。

  3、函數(shù)

  變量:因變量,自變量。在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。

  一次函數(shù):

  ①若兩個(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。

  ②當(dāng)B=0時(shí),稱Y是X的正比例函數(shù)。

  一次函數(shù)的圖象:

 、侔岩粋(gè)函數(shù)的自變量X與對應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。

  ②正比例函數(shù)Y=KX的圖象是經(jīng)過原點(diǎn)的一條直線。

 、墼谝淮魏瘮(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。

 、墚(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。

  空間與圖形

  圖形的認(rèn)識:

  1、點(diǎn),線,面

  點(diǎn),線,面:

 、賵D形是由點(diǎn),線,面構(gòu)成的。

  ②面與面相交得線,線與線相交得點(diǎn)。

 、埸c(diǎn)動成線,線動成面,面動成體。

  展開與折疊:

 、僭诶庵校魏蜗噜彽膬蓚(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。

 、贜棱柱就是底面圖形有N條邊的棱柱。

  截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。

  視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

  弧,扇形:

 、儆梢粭l弧和經(jīng)過這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。

 、趫A可以分割成若干個(gè)扇形。

  角

  線:

 、倬段有兩個(gè)端點(diǎn)。

  ②將線段向一個(gè)方向無限延長就形成了射線。射線只有一個(gè)端點(diǎn)。

 、蹖⒕段的兩端無限延長就形成了直線。直線沒有端點(diǎn)。

 、芙(jīng)過兩點(diǎn)有且只有一條直線。

  比較長短:

 、賰牲c(diǎn)之間的所有連線中,線段最短。

 、趦牲c(diǎn)之間線段的長度,叫做這兩點(diǎn)之間的距離。

  角的度量與表示:

 、俳怯蓛蓷l具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。

 、谝欢鹊1/60是一分,一分的1/60是一秒。

  角的比較:

 、俳且部梢钥闯墒怯梢粭l射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。

 、谝粭l射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。

 、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。

  平行:

 、偻黄矫鎯(nèi),不相交的兩條直線叫做平行線。

 、诮(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。

 、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。

  垂直:

 、偃绻麅蓷l直線相交成直角,那么這兩條直線互相垂直。

 、诨ハ啻怪钡膬蓷l直線的交點(diǎn)叫做垂足。

 、燮矫鎯(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。

  2、相交線與平行線

  角:

 、偃绻麅蓚(gè)角的和是直角,那么稱和兩個(gè)角互為余角;如果兩個(gè)角的和是平角,那么稱這兩個(gè)角互為補(bǔ)角。

 、谕腔虻冉堑挠嘟/補(bǔ)角相等。

 、蹖斀窍嗟取

 、芡唤窍嗟/內(nèi)錯(cuò)角相等/同旁內(nèi)角互補(bǔ),兩直線平行,反之亦然。

  初三數(shù)學(xué)知識點(diǎn)8

  單項(xiàng)式與多項(xiàng)式

  僅含有一些數(shù)和字母的乘法包括乘方運(yùn)算的式子叫做單項(xiàng)式單獨(dú)的一個(gè)數(shù)或字母也是單項(xiàng)式。

  單項(xiàng)式中的數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式或字母因數(shù)的數(shù)字系數(shù),簡稱系數(shù)。

  當(dāng)一個(gè)單項(xiàng)式的系數(shù)是1或—1時(shí),“1”通常省略不寫。

  一個(gè)單項(xiàng)式中,所有字母的指數(shù)的和叫做這個(gè)單項(xiàng)式的次數(shù)。

  如果在幾個(gè)單項(xiàng)式中,不管它們的系數(shù)是不是相同,只要他們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么,這幾個(gè)單項(xiàng)式就叫做同類單項(xiàng)式,簡稱同類項(xiàng)所有的常數(shù)都是同類項(xiàng)。

  1、多項(xiàng)式

  有有限個(gè)單項(xiàng)式的代數(shù)和組成的式子,叫做多項(xiàng)式。

  多項(xiàng)式里每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),不含字母的項(xiàng),叫做常數(shù)項(xiàng)。

  單項(xiàng)式可以看作是多項(xiàng)式的特例

  把同類單項(xiàng)式的系數(shù)相加或相減,而單項(xiàng)式中的字母的乘方指數(shù)不變。

  在多項(xiàng)式中,所含的不同未知數(shù)的個(gè)數(shù),稱做這個(gè)多項(xiàng)式的元數(shù)經(jīng)過合并同類項(xiàng)后,多項(xiàng)式所含單項(xiàng)式的個(gè)數(shù),稱為這個(gè)多項(xiàng)式的項(xiàng)數(shù)所含個(gè)單項(xiàng)式中次項(xiàng)的次數(shù),就稱為這個(gè)多項(xiàng)式的次數(shù)。

  2、多項(xiàng)式的值

  任何一個(gè)多項(xiàng)式,就是一個(gè)用加、減、乘、乘方運(yùn)算把已知數(shù)和未知數(shù)連接起來的式子。

  3、多項(xiàng)式的恒等

  對于兩個(gè)一元多項(xiàng)式fx、gx來說,當(dāng)未知數(shù)x同取任一個(gè)數(shù)值a時(shí),如果它們所得的值都是相等的,即fa=ga,那么,這兩個(gè)多項(xiàng)式就稱為是恒等的記為fx==gx,或簡記為fx=gx。

  性質(zhì)1如果fx==gx,那么,對于任一個(gè)數(shù)值a,都有fa=ga。

  性質(zhì)2如果fx==gx,那么,這兩個(gè)多項(xiàng)式的個(gè)同類項(xiàng)系數(shù)就一定對應(yīng)相等。

  4、一元多項(xiàng)式的根

  一般地,能夠使多項(xiàng)式fx的值等于0的未知數(shù)x的值,叫做多項(xiàng)式fx的根。

  多項(xiàng)式的加、減法,乘法

  1、多項(xiàng)式的加、減法

  2、多項(xiàng)式的乘法

  單項(xiàng)式相乘,用它們系數(shù)作為積的系數(shù),對于相同的字母因式,則連同它的指數(shù)作為積的一個(gè)因式。

  3、多項(xiàng)式的乘法

  多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式等每一項(xiàng)乘以另一個(gè)多項(xiàng)式的各項(xiàng),再把所得的積相加。

  常用乘法公式

  公式I平方差公式

  a+ba—b=a^2—b^2

  兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積等于這兩個(gè)數(shù)的平方差。

  初三數(shù)學(xué)知識點(diǎn)9

  1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。

  對稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。特別地,當(dāng)b=0時(shí),拋物線的對稱軸是y軸(即直線x=0)

  2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為:P(-b/2a,(4ac-b^2)/4a)當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)=b^2-4ac=0時(shí),P在x軸上。

  3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

  當(dāng)a0時(shí),拋物線向上開口;當(dāng)a0時(shí),拋物線向下開口。|a|越大,則拋物線的開口越小。

  4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置。

  當(dāng)a與b同號時(shí)(即ab0),對稱軸在y軸左;

  當(dāng)a與b異號時(shí)(即ab0),對稱軸在y軸右。

  5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

  拋物線與y軸交于(0,c)

  6.拋物線與x軸交點(diǎn)個(gè)數(shù)

  =b^2-4ac0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

  =b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

  =b^2-4ac0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-bb^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

  初三數(shù)學(xué)知識點(diǎn)10

  1、概念:

  把一個(gè)圖形繞著某一點(diǎn)O轉(zhuǎn)動一個(gè)角度的圖形變換叫做旋轉(zhuǎn),點(diǎn)O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角.

  旋轉(zhuǎn)三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方面、旋轉(zhuǎn)角

  2、旋轉(zhuǎn)的性質(zhì):

  (1)旋轉(zhuǎn)前后的兩個(gè)圖形是全等形;

  (2)兩個(gè)對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等

  (3)兩個(gè)對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角

  3、中心對稱:

  把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對稱或中心對稱,這個(gè)點(diǎn)叫做對稱中心.

  這兩個(gè)圖形中的對應(yīng)點(diǎn)叫做關(guān)于中心的對稱點(diǎn).

  4、中心對稱的性質(zhì):

  (1)關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)所連線段都經(jīng)過對稱中心,而且被對稱中心所平分.

  (2)關(guān)于中心對稱的兩個(gè)圖形是全等圖形.

  5、中心對稱圖形:

  把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形叫做中心對稱圖形,這個(gè)點(diǎn)就是它的對稱中心.

  6、坐標(biāo)系中的中心對稱

  兩個(gè)點(diǎn)關(guān)于原點(diǎn)對稱時(shí),它們的坐標(biāo)符號相反,

  即點(diǎn)P(x,y)關(guān)于原點(diǎn)O的對稱點(diǎn)P(-x,-y)。

  初三數(shù)學(xué)知識點(diǎn)11

  鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角。

  對頂角:一個(gè)角的兩邊分別是另一個(gè)叫的兩邊的反向延長線,像這樣的兩個(gè)角互為對頂角。

  垂線:兩條直線相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線。

  平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。

  同位角、內(nèi)錯(cuò)角、同旁內(nèi)角:

  同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對角叫做同位角。

  內(nèi)錯(cuò)角:∠2與∠6像這樣的一對角叫做內(nèi)錯(cuò)角。

  同旁內(nèi)角:∠2與∠5像這樣的一對角叫做同旁內(nèi)角。

  命題:判斷一件事情的語句叫命題。

  平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。

  對應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動后得到的,這樣的兩個(gè)點(diǎn)叫做對應(yīng)點(diǎn)。

  初三數(shù)學(xué)知識點(diǎn)12

  1、矩形的概念

  有一個(gè)角是直角的平行四邊形叫做矩形。

  2、矩形的性質(zhì)

  (1)具有平行四邊形的一切性質(zhì)

  (2)矩形的四個(gè)角都是直角

  (3)矩形的對角線相等

  (4)矩形是軸對稱圖形

  3、矩形的判定

  (1)定義:有一個(gè)角是直角的平行四邊形是矩形(2)定理1:有三個(gè)角是直角的四邊形是矩形

  (3)定理2:對角線相等的平行四邊形是矩形

  4、矩形的面積:S矩形=長×寬=ab

  初三數(shù)學(xué)重點(diǎn)知識點(diǎn)(四)

  1、正方形的概念

  有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。

  2、正方形的性質(zhì)

  (1)具有平行四邊形、矩形、菱形的一切性質(zhì);

  (2)正方形的四個(gè)角都是直角,四條邊都相等;

  (3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角;

  (4)正方形是軸對稱圖形,有4條對稱軸;

  (5)正方形的一條對角線把正方形分成兩個(gè)全等的等腰直角三角形,兩條對角線把正方形分成四個(gè)全等的小等腰直角三角形;

  (6)正方形的一條對角線上的一點(diǎn)到另一條對角線的兩端點(diǎn)的距離相等。

  3、正方形的判定

  (1)判定一個(gè)四邊形是正方形的主要依據(jù)是定義,途徑有兩種:

  先證它是矩形,再證有一組鄰邊相等。

  先證它是菱形,再證有一個(gè)角是直角。

  (2)判定一個(gè)四邊形為正方形的一般順序如下:

  先證明它是平行四邊形;

  再證明它是菱形(或矩形);

  最后證明它是矩形(或菱形)。

  初三數(shù)學(xué)知識點(diǎn)13

  1.軸對稱:

  把一個(gè)圖形沿著某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這條直線對稱,兩個(gè)圖形中的對應(yīng)點(diǎn)叫做對稱點(diǎn),對應(yīng)線段叫做對稱線段。

  2.軸對稱圖形:

  如果一個(gè)圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對稱圖形,這條直線就是它的對稱軸。

  注意:對稱軸是直線而不是線段

  3.軸對稱的性質(zhì):

  (1)關(guān)于某條直線對稱的兩個(gè)圖形是全等形;

  (2)如果兩個(gè)圖形關(guān)于某條直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線;

  (3)兩個(gè)圖形關(guān)于某條直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上;

  (4)如果兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對稱。

  4.線段垂直平分線:

  (1)定義:垂直平分一條線段的直線是這條線的垂直平分線。

  (2)性質(zhì):

 、倬段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等;

 、诘揭粭l線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。

  注意:根據(jù)線段垂直平分線的這一特性可以推出:三角形三邊的垂直平分線交于一點(diǎn),并且這一點(diǎn)到三個(gè)頂點(diǎn)的距離相等。

  5.角的平分線:

  (1)定義:把一個(gè)角分成兩個(gè)相等的角的射線叫做角的平分線.

  (2)性質(zhì):

  ①在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等.

 、诘揭粋(gè)角的兩邊距離相等的點(diǎn),在這個(gè)角的平分線上.

  注意:根據(jù)角平分線的性質(zhì),三角形的三個(gè)內(nèi)角的平分線交于一點(diǎn),并且這一點(diǎn)到三條邊的距離相等.

  6.等腰三角形的性質(zhì)與判定:

  性質(zhì):

  (1)對稱性:等腰三角形是軸對稱圖形,等腰三角形底邊上的中線所在的直線是它的對稱軸,或底邊上的高所在的直線是它的對稱軸,或頂角的平分線所在的直線是它的對稱軸;

  (2)三線合一:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合;

  (3)等邊對等角:等腰三角形的兩個(gè)底角相等。

  說明:等腰三角形的性質(zhì)除三線合一外,三角形中的主要線段之間也存在著特殊的性質(zhì),如:

 、俚妊切蝺傻捉堑钠椒志相等;

 、诘妊切蝺裳系闹芯相等;

 、鄣妊切蝺裳系母呦嗟;

 、艿妊切蔚走吷系闹悬c(diǎn)到兩腰的距離相等。

  判定定理:如果一個(gè)三角形的兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(簡稱:等角對等邊)。

  7.等邊三角形的性質(zhì)與判定:

  性質(zhì):

  (1)等邊三角形的三個(gè)角都相等,并且每個(gè)角都等于60

  (2)等邊三角形具有等腰三角形的所有性質(zhì),并且在每條邊上都有三線合一。因此等邊三角形是軸對稱圖形,它有三條對稱軸,而等腰三角形(非等邊三角形)只有一條對稱軸。

  判定定理:有一個(gè)角是60的等腰三角形是等邊三角形。

  說明:等邊三角形是一種特殊的三角形,容易知道等邊三角形的三條高(或三條中線、三條角平分線)都相等。

  初三數(shù)學(xué)知識點(diǎn)14

  一、重要概念

  1.數(shù)的分類及概念數(shù)系表:

  說明:分類的原則:

  1)相稱(不重、不漏)

  2)有標(biāo)準(zhǔn)

  2.非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x0)

  性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)數(shù)均為0。

  3.倒數(shù):

  ①定義及表示法

 、谛再|(zhì):

  A.a1/a(a1);

  B.1/a中,aa1時(shí),1/a

  4.相反數(shù):

  ①定義及表示法

  ②性質(zhì):

  A.a0時(shí),a

  B.a與-a在數(shù)軸上的位置;

  C.和為0,商為-1。

  5.數(shù)軸:

 、俣x(三要素)

  ②作用:

  A.直觀地比較實(shí)數(shù)的大;

  B.明確體現(xiàn)絕對值意義;

  C.建立點(diǎn)與實(shí)數(shù)的一一對應(yīng)關(guān)系。

  6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)-自然數(shù))

  定義及表示:

  奇數(shù):2n-1

  偶數(shù):2n(n為自然數(shù))

  7.絕對值:

  ①定義(兩種):

  代數(shù)定義:

  幾何定義:數(shù)a的絕對值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對應(yīng)的點(diǎn)到原點(diǎn)的距離。

 、讴│0,符號││是非負(fù)數(shù)的標(biāo)志;

 、蹟(shù)a的絕對值只有一個(gè);

 、芴幚砣魏晤愋偷念}目,只要其中有││出現(xiàn),其關(guān)鍵一步是去掉││符號。

  二、實(shí)數(shù)的運(yùn)算

  1.運(yùn)算法則(加、減、乘、除、乘方、開方)

  2.運(yùn)算定律(五個(gè)-加法[乘法]交換律、結(jié)合律;[乘法對加法的]

  分配律)

  3.運(yùn)算順序:

  A.高級運(yùn)算到低級運(yùn)算;

  B.(同級運(yùn)算)從左到右

  C.(有括號時(shí))由小到中到大。

  初三數(shù)學(xué)知識點(diǎn)15

  在直角三角形中

  sin@代表對邊比斜邊

  cos@代表鄰邊比斜邊

  tan@代表對邊比鄰邊

  cot@代表鄰邊比對邊

  同角三角函數(shù)的基本關(guān)系式

  倒數(shù)關(guān)系: 商的關(guān)系: 平方關(guān)系:

  tan cot=1

  sin csc=1

  cos sec=1 sin/cos=tan=sec/csc

  cos/sin=cot=csc/sec sin2+cos2=1

  1+tan2=sec2

  1+cot2=csc2

  誘導(dǎo)公式

  sin(-)=-sin

  cos(-)=cos tan(-)=-tan

  cot(-)=-cot

  sin(/2-)=cos

  cos(/2-)=sin

  tan(/2-)=cot

  cot(/2-)=tan

  sin(/2+)=cos

  cos(/2+)=-sin

  tan(/2+)=-cot

  cot(/2+)=-tan

  sin()=sin

  cos()=-cos

  tan()=-tan

  cot()=-cot

  sin()=-sin

  cos()=-cos

  tan()=tan

  cot()=cot

  sin(3/2-)=-cos

  cos(3/2-)=-sin

  tan(3/2-)=cot

  cot(3/2-)=tan

  sin(3/2+)=-cos

  cos(3/2+)=sin

  tan(3/2+)=-cot

  cot(3/2+)=-tan

  sin(2)=-sin

  cos(2)=cos

  tan(2)=-tan

  cot(2)=-cot

  sin(2k)=sin

  cos(2k)=cos

  tan(2k)=tan

  cot(2k)=cot

  (其中kZ)

  初三數(shù)學(xué)知識點(diǎn)16

  一、求復(fù)雜事件的概率:

  1.有些隨機(jī)事件不可能用樹狀圖和列表法求其發(fā)生的概率,只能用試驗(yàn)、統(tǒng)計(jì)的方法估計(jì)其發(fā)生的概率。

  2.對于作何一個(gè)隨機(jī)事件都有一個(gè)固定的概率客觀存在。

  3.對隨機(jī)事件做大量試驗(yàn)時(shí),根據(jù)重復(fù)試驗(yàn)的特征,我們確定概率時(shí)應(yīng)當(dāng)注意幾點(diǎn):

  (1)盡量經(jīng)歷反復(fù)實(shí)驗(yàn)的過程,不能想當(dāng)然的作出判斷;

  (2)做實(shí)驗(yàn)時(shí)應(yīng)當(dāng)在相同條件下進(jìn)行;

  (3)實(shí)驗(yàn)的次數(shù)要足夠多,不能太少;

  (4)把每一次實(shí)驗(yàn)的結(jié)果準(zhǔn)確,實(shí)時(shí)的做好記錄;

  (5)分階段分別從第一次起計(jì)算,事件發(fā)生的頻率,并把這些頻率用折線統(tǒng)計(jì)圖直觀的表示出來;

  (6)觀察分析統(tǒng)計(jì)圖,找出頻率變化的逐漸穩(wěn)定值,并用這個(gè)穩(wěn)定值 估計(jì)事件發(fā)生的概率,這種估計(jì)概率的方法的優(yōu)點(diǎn)是直觀,缺點(diǎn)是估計(jì)值必須在實(shí)驗(yàn)后才能得到,無法事件預(yù)測。

  二、判斷游戲公平:

  游戲?qū)﹄p方公平是指雙方獲勝的可能性相同。

  三、概率綜合運(yùn)用:

  概率可以和很多知識綜合命題,主要涉及平面圖形、統(tǒng)計(jì)圖、平均數(shù)、中位數(shù)、眾數(shù)、函數(shù)等。

【初三數(shù)學(xué)知識點(diǎn)】相關(guān)文章:

初三數(shù)學(xué)的知識點(diǎn)歸納02-22

初三數(shù)學(xué)知識點(diǎn)12-23

初三數(shù)學(xué)的知識點(diǎn)歸納09-25

初三數(shù)學(xué)的知識點(diǎn)歸納04-20

初三數(shù)學(xué)必考的知識點(diǎn)總結(jié)04-23

初三數(shù)學(xué)知識點(diǎn)總結(jié)06-08

初三數(shù)學(xué)上冊知識點(diǎn)07-25

初三數(shù)學(xué)重要的知識點(diǎn)歸納04-02

初三數(shù)學(xué)知識點(diǎn)歸納12-15

初三數(shù)學(xué)中考知識點(diǎn)整理02-17