亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

數(shù)學(xué) 百文網(wǎng)手機(jī)站

數(shù)學(xué)八年級(jí)上冊(cè)知識(shí)點(diǎn)

時(shí)間:2021-12-01 13:11:19 數(shù)學(xué) 我要投稿

北師大版數(shù)學(xué)八年級(jí)上冊(cè)知識(shí)點(diǎn)

  很多八年級(jí)的學(xué)生之所以總是考不好數(shù)學(xué),是因?yàn)槠綍r(shí)缺乏思考,所以學(xué)過(guò)的知識(shí)要及時(shí)復(fù)習(xí),不懂的知識(shí)要多思考。下面是百分網(wǎng)小編為大家整理的數(shù)學(xué)八年級(jí)必備知識(shí),希望對(duì)大家有用!

北師大版數(shù)學(xué)八年級(jí)上冊(cè)知識(shí)點(diǎn)

  八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)

  二次函數(shù)與一元二次方程

  特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,

  當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax^2+bx+c=0

  此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

  1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸如下表:

  當(dāng)h>0時(shí),y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,

  當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.

  當(dāng)h>0,k>0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2 +k的圖象;

  當(dāng)h>0,k<0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  因此,研究拋物線 y=ax^2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

  2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

  3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x ≤ -b/2a時(shí),y隨x的增大而減小;當(dāng)x ≥ -b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x ≤ -b/2a時(shí),y隨x的增大而增大;當(dāng)x ≥ -b/2a時(shí),y隨x的增大而減小.

  4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

  (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

  (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a≠0)的兩根.這兩點(diǎn)間的距離AB=|x₂-x₁|

  當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);

  當(dāng)△<0.圖象與x軸沒有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0.

  5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x= -b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.

  頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.

  八年級(jí)數(shù)學(xué)重要知識(shí)

  一、平移

  它是等距同構(gòu),是仿射空間中仿射變換的一種。它可以視為將同一個(gè)向量加到每點(diǎn)上,或?qū)⒆鴺?biāo)系統(tǒng)的中心移動(dòng)所得的結(jié)果。即是說(shuō),若是一個(gè)已知的向量,是空間中一點(diǎn),平移。

  將同一點(diǎn)平移兩次,結(jié)果可用一次平移表示,即,因此所有平移的集是一個(gè)群,稱為平移群。這個(gè)群和空間同構(gòu),又是歐幾里德群E(n)的`正規(guī)子群。

  二、基本性質(zhì):經(jīng)過(guò)平移,對(duì)應(yīng)線段平行(或共線)且相等,對(duì)應(yīng)角相等,對(duì)應(yīng)點(diǎn)所連接的線段平行且相等;

  平移變換不改變圖形的形狀、大小和方向(平移前后的兩個(gè)圖形是全等形)。

  (1)圖形平移前后的形狀和大小沒有變化,只是位置發(fā)生變化;

  (2)圖形平移后,對(duì)應(yīng)點(diǎn)連成的線段平行且相等(或在同一直線上)

  (3)多次平移相當(dāng)于一次平移。

  (4)多次對(duì)稱后的圖形等于平移后的圖形。

  (5)平移是由方向,距離決定的。

  (6)經(jīng)過(guò)平移,對(duì)應(yīng)線段平行(或共線)且相等,對(duì)應(yīng)角相等,對(duì)應(yīng)點(diǎn)所連接的線段平行且相等。

  這種將圖形上的所有點(diǎn)都按照某個(gè)方向作相同距離的位置移動(dòng),叫做圖形的平移運(yùn)動(dòng),簡(jiǎn)稱為平移

  平移的條件:確定一個(gè)平移運(yùn)動(dòng)的條件是平移的方向和距離

  三 三個(gè)要點(diǎn):

  1 原來(lái)的物體

  2 平移的方向。

  3 平移的距離。

  四.平移的作用:

  1.通過(guò)簡(jiǎn)單的平移可以構(gòu)造精美的圖形。

  2.平移長(zhǎng)于平行線有關(guān),平移可以將一個(gè)角,一條線段,一個(gè)圖形平移到另一個(gè)位置,是分散的條件集中到一個(gè)圖形上,使問(wèn)題得到解決。

  八年級(jí)數(shù)學(xué)?贾R(shí)點(diǎn)

  1、向量的加法

  向量的加法滿足平行四邊形法則和三角形法則。

  AB+BC=AC。

  a+b=(x+x',y+y')。

  a+0=0+a=a。

  向量加法的運(yùn)算律:

  交換律:a+b=b+a;

  結(jié)合律:(a+b)+c=a+(b+c)。

  2、向量的減法

  如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0

  AB-AC=CB. 即“共同起點(diǎn),指向被減”

  a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').

  3、數(shù)乘向量

  實(shí)數(shù)λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣•∣a∣。

  當(dāng)λ>0時(shí),λa與a同方向;

  當(dāng)λ<0時(shí),λa與a反方向;

  當(dāng)λ=0時(shí),λa=0,方向任意。

  當(dāng)a=0時(shí),對(duì)于任意實(shí)數(shù)λ,都有λa=0。

  注:按定義知,如果λa=0,那么λ=0或a=0。

  實(shí)數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長(zhǎng)或壓縮。

  當(dāng)∣λ∣>1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長(zhǎng)為原來(lái)的∣λ∣倍;

  當(dāng)∣λ∣<1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來(lái)的∣λ∣倍。

  數(shù)與向量的乘法滿足下面的運(yùn)算律

  結(jié)合律:(λa)•b=λ(a•b)=(a•λb)。

  向量對(duì)于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.

  數(shù)對(duì)于向量的分配律(第二分配律):λ(a+b)=λa+λb.

  數(shù)乘向量的消去律:① 如果實(shí)數(shù)λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

  4、向量的的數(shù)量積

  定義:已知兩個(gè)非零向量a,b。作OA=a,OB=b,則角AOB稱作向量a和向量b的夾角,記作〈a,b〉并規(guī)定0≤〈a,b〉≤π

  定義:兩個(gè)向量的數(shù)量積(內(nèi)積、點(diǎn)積)是一個(gè)數(shù)量,記作a•b。若a、b不共線,則a•b=|a|•|b|•cos〈a,b〉;若a、b共線,則a•b=+-∣a∣∣b∣。

  向量的數(shù)量積的坐標(biāo)表示:a•b=x•x'+y•y'。

  向量的數(shù)量積的運(yùn)算律

  a•b=b•a(交換律);

  (λa)•b=λ(a•b)(關(guān)于數(shù)乘法的結(jié)合律);

  (a+b)•c=a•c+b•c(分配律);

  向量的數(shù)量積的性質(zhì)

  a•a=|a|的平方。

  a⊥b 〈=〉a•b=0。

【數(shù)學(xué)八年級(jí)上冊(cè)知識(shí)點(diǎn)】相關(guān)文章:

數(shù)學(xué)八年級(jí)上冊(cè)知識(shí)點(diǎn)12-07

數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)08-02

八年級(jí)上冊(cè)重要的數(shù)學(xué)知識(shí)點(diǎn)11-02

八年級(jí)上冊(cè)數(shù)學(xué)實(shí)數(shù)知識(shí)點(diǎn)07-04

數(shù)學(xué)八年級(jí)上冊(cè)“近似數(shù)”知識(shí)點(diǎn)07-26

八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)08-10

數(shù)學(xué)人教版八年級(jí)上冊(cè)知識(shí)點(diǎn)07-31

數(shù)學(xué)八年級(jí)上冊(cè)十三章知識(shí)點(diǎn)11-17

八年級(jí)上冊(cè)人教版數(shù)學(xué)知識(shí)點(diǎn)03-19

數(shù)學(xué)八年級(jí)上冊(cè)知識(shí)點(diǎn)15篇01-23