亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

初二

初二數(shù)學(xué)根式復(fù)習(xí)知識(shí)點(diǎn)總結(jié)

時(shí)間:2022-08-17 13:05:26 初二 我要投稿

初二數(shù)學(xué)根式復(fù)習(xí)知識(shí)點(diǎn)總結(jié)

  在我們上學(xué)期間,說到知識(shí)點(diǎn),大家是不是都習(xí)慣性的重視?知識(shí)點(diǎn)也不一定都是文字,數(shù)學(xué)的知識(shí)點(diǎn)除了定義,同樣重要的公式也可以理解為知識(shí)點(diǎn)。那么,都有哪些知識(shí)點(diǎn)呢?下面是小編收集整理的初二數(shù)學(xué)根式復(fù)習(xí)知識(shí)點(diǎn)總結(jié),供大家參考借鑒,希望可以幫助到有需要的朋友。

初二數(shù)學(xué)根式復(fù)習(xí)知識(shí)點(diǎn)總結(jié)

  初二數(shù)學(xué)根式復(fù)習(xí)知識(shí)點(diǎn)總結(jié)1

  根式

  若x的n次方=a,則x叫做a的n次方根,記作n√a=x,n√a叫做根式。根式的各部分名稱 在根式n√a中,n叫做根指數(shù),a叫做被開方數(shù),“√”叫做根號(hào)。

  根式的性質(zhì)

  根式n√a中,當(dāng)n是奇數(shù)時(shí),任何有理數(shù)都有n次方根,當(dāng)n是偶數(shù)時(shí),負(fù)數(shù)沒有n次方根。0的任何次方根都為0。

  a^(m/n)=n√(a^m),a^(-m/n)=1/(n√(a^m)).(a>0,m,n∈N+,且n>1)。

  根式的性質(zhì)(1)(n√a)^n=a

  根式的性質(zhì)(2)n√(a^n)=|a| (n為偶數(shù))

  =a (n為奇數(shù))

  根式的知識(shí)要領(lǐng)不僅僅是上面的這些,以上為大家整合的都是精華部分。

  初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系

  下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

  平面直角坐標(biāo)系

  在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

  平面直角坐標(biāo)系的要素:

 、僭谕黄矫

 、趦蓷l數(shù)軸

 、刍ハ啻怪

 、茉c(diǎn)重合

  三個(gè)規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

  ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成

  對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

  平面直角坐標(biāo)系的構(gòu)成

  在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

  通過上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

  初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)

  下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

  點(diǎn)的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

  對(duì)于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。

  一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

  希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。

  初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟

  關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。

  因式分解的一般步驟

  如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

  通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。

  相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。

  初中數(shù)學(xué)知識(shí)點(diǎn):因式分解

  下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

  因式分解

  因式分解定義

  把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。

  因式分解要素

 、俳Y(jié)果必須是整式

  ②結(jié)果必須是積的形式

 、劢Y(jié)果是等式

 、芤蚴椒纸馀c整式乘法的關(guān)系:m(a+b+c)

  公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  公因式確定方法

  ①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。

 、谙嗤帜溉∽畹痛蝺

  ③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  提取公因式步驟:

  ①確定公因式。

 、诖_定商式

  ③公因式與商式寫成積的形式。

  分解因式注意;

 、俨粶(zhǔn)丟字母

  ②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

 、垭p重括號(hào)化成單括號(hào)

  ④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

 、菹嗤蚴綄懗蓛绲男问

  ⑥首項(xiàng)負(fù)號(hào)放括號(hào)外

 、呃ㄌ(hào)內(nèi)同類項(xiàng)合并。

  初二數(shù)學(xué)根式復(fù)習(xí)知識(shí)點(diǎn)總結(jié)2

  1.二次根式概念:式子a(a≥0)叫做二次根式。

  2.最簡(jiǎn)二次根式:必須同時(shí)滿足下列條件:

  3.同類二次根式:

  二次根式化成最簡(jiǎn)二次根式后,若被開方數(shù)相同,則這幾個(gè)二次根式就是同類二次根式。

  4.二次根式的性質(zhì):

  a(a0) 22(1)(a)=a (a≥0); (2)a a

  0 (a=0);

  5.二次根式的運(yùn)算:

  a(a0)

  (1)因式的外移和內(nèi)移:如果被開方數(shù)中有的因式能夠開得盡方,那么,就可以用它的算術(shù)根代替而移到根號(hào)外面;如果被開方數(shù)是代數(shù)和的形式,那么先解因式, 變形為積的形式,再移因式到根號(hào)外面,反之也可以將根號(hào)外面的正因式平方后移到根號(hào)里面。

  (2)二次根式的加減法:先把二次根式化成最簡(jiǎn)二次根式再合并同類二次根式。

  (3)二次根式的乘除法:二次根式相乘(除),將被開方數(shù)相乘(除),所得的積(商)仍作積(商)的被開方數(shù)并將運(yùn)算結(jié)果化為最簡(jiǎn)二次根式。

  初二數(shù)學(xué)根式復(fù)習(xí)知識(shí)點(diǎn)總結(jié)3

 、 二次根式的概念:

  一般地,形如 √a (a≥0)的式子叫作二次根式,其中“ √ ” 稱為二次根號(hào),a 稱為被開方數(shù)。

  例如,√2 ,√(x^2+1) ,√(x-1) (x≥1) 等都是二次根式 。

  ② 二次根式的性質(zhì):

  當(dāng) a ≥ 0 時(shí),√a 表示 a 的算術(shù)平方根,所以√a 是非負(fù)數(shù) ( √a ≥ 0),即對(duì)于式子 √a 來說,不但 a ≥ 0,而且 √a ≥ 0,因此可以說 √a 具有雙重非負(fù)性 。

 、 最簡(jiǎn)二次根式:

  1、被開方數(shù)中不含有分母 ;

  2、被開方數(shù)中不含有能開得盡方的因數(shù)和因式 。

 、 積的算術(shù)平方根的性質(zhì):

  積的算術(shù)平方根,等于積中各因式的算術(shù)平方根的積。

 、 商的算術(shù)平方根的性質(zhì):

  商的算術(shù)平方根,等于被除式的算術(shù)平方根除以除式的算術(shù)平方根。

  注:對(duì)于商的算術(shù)平方根,最后結(jié)果一定要進(jìn)行分母有理化。

  ⑥ 分母有理化:

  化去分母中根號(hào)的變形叫作分母有理化,分母有理化的方法是根據(jù)分?jǐn)?shù)的基本性質(zhì),將分子和分母分別乘分母的有理化因式(兩個(gè)含有二次根式的代數(shù)式相乘,如果它們的積不含二次根式,就說這兩個(gè)代數(shù)式互為有理化因式)化去分母中的根號(hào)。

 、 化成最簡(jiǎn)二次根式的一般方法:

  1、將被開方數(shù)中能開得盡方的因數(shù)或因式進(jìn)行開方;

  2、若被開方數(shù)含分母,先根據(jù)商的算術(shù)平方根的性質(zhì)對(duì)二次根式進(jìn)行變形,再根據(jù)分母有理化的方法化簡(jiǎn)二次根式;

  3、若分母中含二次根式,根據(jù)分母有理化的方法化簡(jiǎn)二次根式 。

  判斷一個(gè)二次根式是否為最簡(jiǎn)二次根式,要緊扣最簡(jiǎn)二次根式的特點(diǎn):

  (1)被開方數(shù)中不含分母;

  (2)被開方數(shù)中不含能開得盡方的因數(shù)或因式;

  (3)若被開方數(shù)是和(或差)的形式,則先把被開方數(shù)寫成積的形式,再判斷,若無法寫成積(或一個(gè)數(shù))的形式,則為最簡(jiǎn)二次根式 。

  ⑧ 二次根式的加減:

  (1)先把每個(gè)二次根式都化成最簡(jiǎn)二次根式;

  (2)把被開方數(shù)相同的二次根式合并,注意合并時(shí)只把“系數(shù)”相加減,根號(hào)部分不動(dòng),不是同類二次根式的不能合并

  初二數(shù)學(xué)根式復(fù)習(xí)知識(shí)點(diǎn)總結(jié)4

  第1章 二次根式

  學(xué)生已經(jīng)學(xué)過整式與分式,知道用式子可以表示實(shí)際問題中的數(shù)量關(guān)系。解決與數(shù)量關(guān)系有關(guān)的問題還會(huì)遇到二次根式。二次根式 一章就來認(rèn)識(shí)這種式子,探索它的性質(zhì),掌握它的運(yùn)算。

  在這一章,首先讓學(xué)生了解二次根式的概念,并掌握以下重要結(jié)論:

  注:關(guān)于二次根式的運(yùn)算,由于二次根式的乘除相對(duì)于二次根式的加減來說更易于掌握,教科書先安排二次根式的乘除,再安排二次根式的加減。二次根式的乘除一節(jié)的內(nèi)容有兩條發(fā)展的線索。一條是用具體計(jì)算的例子體會(huì)二次根式乘除法則的合理性,并運(yùn)用二次根式的乘除法則進(jìn)行運(yùn)算;一條是由二次根式的乘除法則得到

  并運(yùn)用它們進(jìn)行二次根式的化簡(jiǎn)。

  二次根式的加減一節(jié)先安排二次根式加減的內(nèi)容,再安排二次根式加減乘除混合運(yùn)算的內(nèi)容。在本節(jié)中,注意類比整式運(yùn)算的有關(guān)內(nèi)容。例如,讓學(xué)生比較二次根式的加減與整式的加減,又如,通過例題說明在二次根式的運(yùn)算中,多項(xiàng)式乘法法則和乘法公式仍然適用。這些處理有助于學(xué)生掌握本節(jié)內(nèi)容。

  第2章 一元二次方程

  學(xué)生已經(jīng)掌握了用一元一次方程解決實(shí)際問題的方法。在解決某些實(shí)際問題時(shí)還會(huì)遇到一種新方程 一元二次方程。一元二次方程一章就來認(rèn)識(shí)這種方程,討論這種方程的解法,并運(yùn)用這種方程解決一些實(shí)際問題。

  本章首先通過雕像設(shè)計(jì)、制作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學(xué)生通過數(shù)值代入的方法找出某些簡(jiǎn)單的一元二次方程的解,對(duì)一元二次方程的解加以體會(huì),并給出一元二次方程的根的概念,

  22.2降次解一元二次方程一節(jié)介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。

  (1)在介紹配方法時(shí),首先通過實(shí)際問題引出形如 的方程。這樣的方程可以化為更為簡(jiǎn)單的形如 的方程,由平方根的概念,可以得到這個(gè)方程的解。進(jìn)而舉例說明如何解形如 的方程。然后舉例說明一元二次方程可以化為形如 的方程,引出配方法。最后安排運(yùn)用配方法解一元二次方程的例題。在例題中,涉及二次項(xiàng)系數(shù)不是1的一元二次方程,也涉及沒有實(shí)數(shù)根的一元二次方程。對(duì)于沒有實(shí)數(shù)根的一元二次方程,學(xué)了公式法以后,學(xué)生對(duì)這個(gè)內(nèi)容會(huì)有進(jìn)一步的理解。

  (2)在介紹公式法時(shí),首先借助配方法討論方程 的解法,得到一元二次方程的求根公式。然后安排運(yùn)用公式法解一元二次方程的例題。在例題中,涉及有兩個(gè)相等實(shí)數(shù)根的一元二次方程,也涉及沒有實(shí)數(shù)根的.一元二次方程。由此引出一元二次方程的解的三種情況。

  (3)在介紹因式分解法時(shí),首先通過實(shí)際問題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運(yùn)用因式分解法解一元二次方程的例題。最后對(duì)配方法、公式法、因式分解法三種解一元二次方程的方法進(jìn)行小結(jié)。

  22.3實(shí)際問題與一元二次方程一節(jié)安排了四個(gè)探究欄目,分別探究傳播、成本下降率、面積、勻變速運(yùn)動(dòng)等問題,使學(xué)生進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的一個(gè)有效的數(shù)學(xué)模型。

  初二數(shù)學(xué)根式復(fù)習(xí)知識(shí)點(diǎn)總結(jié)5

  二次根式的概念

  形如√a(a≥0)的式子叫做二次根式。

  注:在二次根式中,被開放數(shù)可以是數(shù),也可以是單項(xiàng)式、多項(xiàng)式、分式等代數(shù)式,但必須注意:因?yàn)樨?fù)數(shù)沒有平方根,所以a≥0是√a為二次根式的前提條件,如√5,√(x2+1), √(x—1)(x≥1)等是二次根式,而√(—2),√(—x2—7)等都不是二次根式。

  二次根式取值范圍

  1、二次根式有意義的條件:由二次根式的意義可知,當(dāng)a≥0時(shí)√a有意義,是二次根式,所以要使二次根式有意義,只要使被開方數(shù)大于或等于零即可。

  2、二次根式無意義的條件:因負(fù)數(shù)沒有算術(shù)平方根,所以當(dāng)a﹤0時(shí),√a沒有意義。

  知識(shí)點(diǎn)三:二次根式√a(a≥0)的非負(fù)性

  √a(a≥0)表示a的算術(shù)平方根,也就是說,√a(a≥0)是一個(gè)非負(fù)數(shù),即√a≥0(a≥0)。

  注:因?yàn)槎胃健蘟表示a的算術(shù)平方根,而正數(shù)的算術(shù)平方根是正數(shù),0的算術(shù)平方根是0,所以非負(fù)數(shù)(a≥0)的算術(shù)平方根是非負(fù)數(shù),即√a≥0(a≥0),這個(gè)性質(zhì)也就是非負(fù)數(shù)的算術(shù)平方根的性質(zhì),和絕對(duì)值、偶次方類似。這個(gè)性質(zhì)在解答題目時(shí)應(yīng)用較多,如若√a+√b=0,則a=0,b=0;若√a+|b|=0,則a=0,b=0;若√a+b2=0,則a=0,b=0。

  二次根式的性質(zhì)

  √a2=|a|

  文字語(yǔ)言敘述為:一個(gè)數(shù)的平方的算術(shù)平方根等于這個(gè)數(shù)的絕對(duì)值。

  注:

  1、化簡(jiǎn)√a2時(shí),一定要弄明白被開方數(shù)的底數(shù)a是正數(shù)還是負(fù)數(shù),若是正數(shù)或0,則等于a本身,即√a2=|a|=a(a≥0);若a是負(fù)數(shù),則等于a的相反數(shù)—a,即√a2=|a|=—a(a﹤0);

  2、√a2中的a的取值范圍可以是任意實(shí)數(shù),即不論a取何值,√a2一定有意義;

  3、化簡(jiǎn)√a2時(shí),先將它化成|a|,再根據(jù)絕對(duì)值的意義來進(jìn)行化簡(jiǎn)。

  二次根式(√a)的性質(zhì)

  (√a)2=a(a≥0)

  文字語(yǔ)言敘述為:一個(gè)非負(fù)數(shù)的算術(shù)平方根的平方等于這個(gè)非負(fù)數(shù)。

  注:二次根式的性質(zhì)公式(√a)2=a(a≥0)是逆用平方根的定義得出的結(jié)論。上面的公式也可以反過來應(yīng)用:若a≥0,則a=(√a)2,如:2=(√2)2,1/2=(√1/2)2。

  初二數(shù)學(xué)根式復(fù)習(xí)知識(shí)點(diǎn)總結(jié)6

  1:同類二次根式

  (Ⅰ)幾個(gè)二次根式化成最簡(jiǎn)二次根式以后,如果被開方數(shù)相同,這幾個(gè)二次根式叫做同類二次根式,如 這樣的二次根式都是同類二次根式。

  (Ⅱ)判斷同類二次根式的方法:

  (1)首先將不是最簡(jiǎn)形式的二次根式化為最簡(jiǎn)二次根式以后,再看被開方數(shù)是否相同。(2)幾個(gè)二次根式是否是同類二次根式,只與被開方數(shù)及根指數(shù)有關(guān),而與根號(hào)外的因式無關(guān)。

  2:合并同類二次根式的方法

  合并同類二次根式的理論依據(jù)是逆用乘法對(duì)加法的分配律,合并同類二次根式,只把它們的系數(shù)相加,根指數(shù)和被開方數(shù)都不變,不是同類二次根式的不能合并。

  3:二次根式的加減法則

  二次根式相加減先把各個(gè)二次根式化成最簡(jiǎn)二次根式,再把同類二次根式合并,合并的方法為系數(shù)相加,根式不變。

  4:二次根式的混合運(yùn)算方法和順序

  運(yùn)算方法是利用加、減、乘、除法則以及與多項(xiàng)式乘法類似法則進(jìn)行混合運(yùn)算。運(yùn)算的順序是先乘方,后乘除,最后加減,有括號(hào)的先算括號(hào)內(nèi)的。

  5:二次根式的加減法則與乘除法則的區(qū)別

  乘除法中,系數(shù)相乘,被開方數(shù)相乘,與兩根式是否是同類根式無關(guān),加減法中,系數(shù)相加,被開方數(shù)不變而且兩根式須是同類最簡(jiǎn)根式。

  初二數(shù)學(xué)根式復(fù)習(xí)知識(shí)點(diǎn)總結(jié)7

  1.乘法規(guī)定:(a≥0,b≥0)

  二次根式相乘,把被開方數(shù)相乘,根指數(shù)不變。

  推廣:

  (1)(a≥0,b≥0,c≥0)

  (2)(b≥0,d≥0)

  2.乘法逆用:(a≥0,b≥0)

  積的算術(shù)平方根等于積中各因式的算術(shù)平方根的積。

  注意:公式中的a、b可以是數(shù),也可以是代數(shù)式,但必須滿足a≥0,b≥0;

  3.除法規(guī)定:(a≥0,b>0)

  二次根式相處,把被開方數(shù)相除,根指數(shù)不變。

  推廣:,其中a≥0,b>0,。

  方法歸納:兩個(gè)二次根式相除,可采用根號(hào)前的系數(shù)與系數(shù)對(duì)應(yīng)相除,根號(hào)內(nèi)的被開方數(shù)與被開方數(shù)對(duì)應(yīng)相除,再把除得得結(jié)果相乘。

  4.除法逆用:(a≥0,b>0)

  商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根。

【初二數(shù)學(xué)根式復(fù)習(xí)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

優(yōu)秀的初二數(shù)學(xué)特殊的根式知識(shí)點(diǎn)總結(jié)06-30

初二數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)歸納04-02

初二數(shù)學(xué)下冊(cè)期末復(fù)習(xí)知識(shí)點(diǎn)07-16

初二數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)歸納07-16

初二數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)攻略07-16

初二數(shù)學(xué)整式的乘法知識(shí)點(diǎn)復(fù)習(xí)10-18

二次根式數(shù)學(xué)知識(shí)點(diǎn)01-24

初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)總結(jié)11-26

初二數(shù)學(xué)第一單元復(fù)習(xí)知識(shí)點(diǎn)07-18