初三數(shù)學(xué)知識(shí)點(diǎn)整理
在平日的學(xué)習(xí)中,大家對(duì)知識(shí)點(diǎn)應(yīng)該都不陌生吧?知識(shí)點(diǎn)也不一定都是文字,數(shù)學(xué)的知識(shí)點(diǎn)除了定義,同樣重要的公式也可以理解為知識(shí)點(diǎn)。哪些知識(shí)點(diǎn)能夠真正幫助到我們呢?以下是小編整理的初三數(shù)學(xué)知識(shí)點(diǎn)整理,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
初三數(shù)學(xué)知識(shí)點(diǎn)整理1
重點(diǎn)代數(shù)式的有關(guān)概念及性質(zhì),代數(shù)式的運(yùn)算
☆內(nèi)容提要☆
一、重要概念
分類(lèi):
1.代數(shù)式與有理式
用運(yùn)算符號(hào)把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨(dú)
的一個(gè)數(shù)或字母也是代數(shù)式。
整式和分式統(tǒng)稱為有理式。
2.整式和分式
含有加、減、乘、除、乘方運(yùn)算的代數(shù)式叫做有理式。
沒(méi)有除法運(yùn)算或雖有除法運(yùn)算但除式中不含有字母的有理式叫做整式。
有除法運(yùn)算并且除式中含有字母的有理式叫做分式。
3.單項(xiàng)式與多項(xiàng)式
沒(méi)有加減運(yùn)算的整式叫做單項(xiàng)式。(數(shù)字與字母的積包括單獨(dú)的一個(gè)數(shù)或字母)
幾個(gè)單項(xiàng)式的和,叫做多項(xiàng)式。
說(shuō)明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開(kāi);根據(jù)整式中有否加減運(yùn)算,把單項(xiàng)式、多項(xiàng)式區(qū)分開(kāi)。②進(jìn)行代數(shù)式分類(lèi)時(shí),是以所給的代數(shù)式為對(duì)象,而非以變形后的代數(shù)式為對(duì)象。劃分代數(shù)式類(lèi)別時(shí),是從外形來(lái)看。如,
=x,=│x│等。
4.系數(shù)與指數(shù)
區(qū)別與聯(lián)系:①?gòu)奈恢蒙峡?②從表示的意義上看
5.同類(lèi)項(xiàng)及其合并
條件:①字母相同;②相同字母的指數(shù)相同
合并依據(jù):乘法分配律
6.根式
表示方根的代數(shù)式叫做根式。
含有關(guān)于字母開(kāi)方運(yùn)算的代數(shù)式叫做無(wú)理式。
注意:①?gòu)耐庑紊吓袛?②區(qū)別:、是根式,但不是無(wú)理式(是無(wú)理數(shù))。
7.算術(shù)平方根
、耪龜(shù)a的正的平方根(0與平方根的區(qū)別]);
⑵算術(shù)平方根與絕對(duì)值
、俾(lián)系:都是非負(fù)數(shù),=│a│
、趨^(qū)別:│a│中,a為一切實(shí)數(shù);中,a為非負(fù)數(shù)。
8.同類(lèi)二次根式、最簡(jiǎn)二次根式、分母有理化
化為最簡(jiǎn)二次根式以后,被開(kāi)方數(shù)相同的二次根式叫做同類(lèi)二次根式。
滿足條件:①被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式;②被開(kāi)方數(shù)中不含有開(kāi)得盡方的因數(shù)或因式。
把分母中的根號(hào)劃去叫做分母有理化。
9.指數(shù)
、(冪,乘方運(yùn)算)
①0時(shí),②a0時(shí),0(n是偶數(shù)),0(n是奇數(shù))
、屏阒笖(shù):=1(a0)
負(fù)整指數(shù):=1/0,p是正整數(shù))
二、運(yùn)算定律、性質(zhì)、法則
1.分式的加、減、乘、除、乘方、開(kāi)方法則
2.分式的性質(zhì)
⑴基本性質(zhì):=0)
、品(hào)法則:
、欠狈质剑孩俣x;②化簡(jiǎn)方法(兩種)
3.整式運(yùn)算法則(去括號(hào)、添括號(hào)法則)
4.冪的運(yùn)算性質(zhì):①=②=③=④=⑤
技巧:
5.乘法法則:⑴單⑵單⑶多多。
6.乘法公式:(正、逆用)
(a+b)(a-b)=
(ab)=
7.除法法則:⑴單⑵多單。
8.因式分解:⑴定義;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分組分解法;E.求根公式法。
9.算術(shù)根的性質(zhì):=0,b0,b0)(正用、逆用)
10.根式運(yùn)算法則:⑴加法法則(合并同類(lèi)二次根式);⑵乘、除法法則;⑶分母有理化:A.B.C..
11.科學(xué)記數(shù)法:a10,n是整數(shù)=
三、應(yīng)用舉例(略)
四、數(shù)式綜合運(yùn)算(略)
初三數(shù)學(xué)知識(shí)點(diǎn)整理2
1.數(shù)軸
(1)數(shù)軸的概念:規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的直線叫做數(shù)軸.
數(shù)軸的三要素:原點(diǎn),單位長(zhǎng)度,正方向。
(2)數(shù)軸上的點(diǎn):所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)表示,但數(shù)軸上的點(diǎn)不都表示有理數(shù).(一般取右方向?yàn)檎较,?shù)軸上的點(diǎn)對(duì)應(yīng)任意實(shí)數(shù),包括無(wú)理數(shù).)
(3)用數(shù)軸比較大。阂话銇(lái)說(shuō),當(dāng)數(shù)軸方向朝右時(shí),右邊的數(shù)總比左邊的數(shù)大。
重點(diǎn)知識(shí):
初中數(shù)學(xué)第一課,認(rèn)識(shí)正數(shù)與負(fù)數(shù)!新初一的來(lái)~
2.相反數(shù)
(1)相反數(shù)的概念:只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù).
(2)相反數(shù)的意義:掌握相反數(shù)是成對(duì)出現(xiàn)的,不能單獨(dú)存在,從數(shù)軸上看,除0外,互為相反數(shù)的兩個(gè)數(shù),它們分別在原點(diǎn)兩旁且到原點(diǎn)距離相等。
(3)多重符號(hào)的化簡(jiǎn):與“+”個(gè)數(shù)無(wú)關(guān),有奇數(shù)個(gè)“﹣”號(hào)結(jié)果為負(fù),有偶數(shù)個(gè)“﹣”號(hào),結(jié)果為正。
(4)規(guī)律方法總結(jié):求一個(gè)數(shù)的相反數(shù)的方法就是在這個(gè)數(shù)的前邊添加“﹣”,如a的相反數(shù)是﹣a,m+n的相反數(shù)是﹣(m+n),這時(shí)m+n是一個(gè)整體,在整體前面添負(fù)號(hào)時(shí),要用小括號(hào)。
3.絕對(duì)值
1.概念:數(shù)軸上某個(gè)數(shù)與原點(diǎn)的距離叫做這個(gè)數(shù)的絕對(duì)值。
①互為相反數(shù)的兩個(gè)數(shù)絕對(duì)值相等;
、诮^對(duì)值等于一個(gè)正數(shù)的數(shù)有兩個(gè),絕對(duì)值等于0的數(shù)有一個(gè),沒(méi)有絕對(duì)值等于負(fù)數(shù)的數(shù).
、塾欣頂(shù)的絕對(duì)值都是非負(fù)數(shù).
2.如果用字母a表示有理數(shù),則數(shù)a 絕對(duì)值要由字母a本身的取值來(lái)確定:
、佼(dāng)a是正有理數(shù)時(shí),a的絕對(duì)值是它本身a;
、诋(dāng)a是負(fù)有理數(shù)時(shí),a的絕對(duì)值是它的相反數(shù)﹣a;
、郛(dāng)a是零時(shí),a的絕對(duì)值是零.
即|a|={a(a>0)0(a=0)﹣a(a<0)
中考數(shù)學(xué)知識(shí)點(diǎn)
1、反比例函數(shù)的概念
一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫(xiě)成的形式。自變量x的取值范圍是x0的一切實(shí)數(shù),函數(shù)的取值范圍也是一切非零實(shí)數(shù)。
2、反比例函數(shù)的圖像
反比例函數(shù)的圖像是雙曲線,它有兩個(gè)分支,這兩個(gè)分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點(diǎn)對(duì)稱。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒(méi)有交點(diǎn),即雙曲線的兩個(gè)分支無(wú)限接近坐標(biāo)軸,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。
3、反比例函數(shù)的性質(zhì)
反比例函數(shù)k的符號(hào)k>0k<0圖像yO xyO x性質(zhì)①x的取值范圍是x0,
y的取值范圍是y0;
、诋(dāng)k>0時(shí),函數(shù)圖像的兩個(gè)分支分別
在第一、三象限。在每個(gè)象限內(nèi),y
隨x 的增大而減小。
①x的取值范圍是x0,
y的取值范圍是y0;
、诋(dāng)k<0時(shí),函數(shù)圖像的兩個(gè)分支分別
在第二、四象限。在每個(gè)象限內(nèi),y
隨x 的增大而增大。
4、反比例函數(shù)解析式的確定
確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個(gè)待定系數(shù),因此只需要一對(duì)對(duì)應(yīng)值或圖像上的一個(gè)點(diǎn)的坐標(biāo),即可求出k的值,從而確定其解析式。
5、反比例函數(shù)的幾何意義
設(shè)是反比例函數(shù)圖象上任一點(diǎn),過(guò)點(diǎn)P作軸、軸的垂線,垂足為A,則
(1)△OPA的面積.
(2)矩形OAPB的面積。這就是系數(shù)的幾何意義.并且無(wú)論P(yáng)怎樣移動(dòng),△OPA的面積和矩形OAPB的面積都保持不變。
矩形PCEF面積=,平行四邊形PDEA面積=
二次函數(shù)中考數(shù)學(xué)知識(shí)點(diǎn)
二次函數(shù)的解析式有三種形式:
(1)一般式:
(2)頂點(diǎn)式:
(3)當(dāng)拋物線與x軸有交點(diǎn)時(shí),即對(duì)應(yīng)二次好方程有實(shí)根和存在時(shí),根據(jù)二次三項(xiàng)式的分解因式,二次函數(shù)可轉(zhuǎn)化為兩根式。如果沒(méi)有交點(diǎn),則不能這樣表示。
注意:拋物線位置由決定.
(1)決定拋物線的開(kāi)口方向
、匍_(kāi)口向上.
、陂_(kāi)口向下.
(2)決定拋物線與y軸交點(diǎn)的位置.
、賵D象與y軸交點(diǎn)在x軸上方.
②圖象過(guò)原點(diǎn).
、蹐D象與y軸交點(diǎn)在x軸下方.
(3)決定拋物線對(duì)稱軸的位置(對(duì)稱軸:)
、偻(hào)對(duì)稱軸在y軸左側(cè).
②對(duì)稱軸是y軸.
、郛愄(hào)對(duì)稱軸在y軸右側(cè).
(4)頂點(diǎn)坐標(biāo).
(5)決定拋物線與x軸的交點(diǎn)情況.、
①△>0拋物線與x軸有兩個(gè)不同交點(diǎn).
、凇=0拋物線與x軸有的公共點(diǎn)(相切).
③△<0拋物線與x軸無(wú)公共點(diǎn).
(6)二次函數(shù)是否具有、最小值由a判斷.
①當(dāng)a>0時(shí),拋物線有最低點(diǎn),函數(shù)有最小值.
、诋(dāng)a<0時(shí),拋物線有點(diǎn),函數(shù)有值.
(7)的符號(hào)的判定:
表達(dá)式,請(qǐng)代值,對(duì)應(yīng)y值定正負(fù);
對(duì)稱軸,用處多,三種式子相約;
軸兩側(cè)判,左同右異中為0;
1的兩側(cè)判,左同右異中為0;
-1兩側(cè)判,左異右同中為0.
(8)函數(shù)圖象的平移:左右平移變x,左+右-;上下平移變常數(shù)項(xiàng),上+下-;平移結(jié)果先知道,反向平移是訣竅;平移方式不知道,通過(guò)頂點(diǎn)來(lái)尋找。
(9)對(duì)稱:關(guān)于x軸對(duì)稱的解析式為,關(guān)于y軸對(duì)稱的解析式為,關(guān)于原點(diǎn)軸對(duì)稱的解析式為,在頂點(diǎn)處翻折后的解析式為(a相反,定點(diǎn)坐標(biāo)不變)。
(10)結(jié)論:①二次函數(shù)(與x軸只有一個(gè)交點(diǎn)二次函數(shù)的頂點(diǎn)在x軸上Δ=0;
、诙魏瘮(shù)(的頂點(diǎn)在y軸上二次函數(shù)的圖象關(guān)于y軸對(duì)稱;
、鄱魏瘮(shù)(經(jīng)過(guò)原點(diǎn),則。
(11)二次函數(shù)的解析式:
、僖话闶剑(,用于已知三點(diǎn)。
、陧旤c(diǎn)式:,用于已知頂點(diǎn)坐標(biāo)或最值或?qū)ΨQ軸。
(3)交點(diǎn)式:,其中、是二次函數(shù)與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)。若已知對(duì)稱軸和在x軸上的截距,也可用此式。
初三數(shù)學(xué)知識(shí)點(diǎn)整理3
知識(shí)點(diǎn)1。概念
把形狀相同的圖形叫做相似圖形。(即對(duì)應(yīng)角相等、對(duì)應(yīng)邊的比也相等的圖形)
解讀:(1)兩個(gè)圖形相似,其中一個(gè)圖形可以看做由另一個(gè)圖形放大或縮小得到。
。2)全等形可以看成是一種特殊的相似,即不僅形狀相同,大小也相同。
。3)判斷兩個(gè)圖形是否相似,就是看這兩個(gè)圖形是不是形狀相同,與其他因素?zé)o關(guān)。
知識(shí)點(diǎn)2。比例線段
對(duì)于四條線段a,b,c,d,如果其中兩條線段的長(zhǎng)度的比與另兩條線段的長(zhǎng)度的比相等,即(或a:b=c:d)那么這四條線段叫做成比例線段,簡(jiǎn)稱比例線段。
知識(shí)點(diǎn)3。相似多邊形的性質(zhì)
相似多邊形的性質(zhì):相似多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等。
解讀:(1)正確理解相似多邊形的定義,明確“對(duì)應(yīng)”關(guān)系。
。2)明確相似多邊形的“對(duì)應(yīng)”來(lái)自于書(shū)寫(xiě),且要明確相似比具有順序性。
知識(shí)點(diǎn)4。相似三角形的概念
對(duì)應(yīng)角相等,對(duì)應(yīng)邊之比相等的三角形叫做相似三角形。
解讀:(1)相似三角形是相似多邊形中的一種;
(2)應(yīng)結(jié)合相似多邊形的性質(zhì)來(lái)理解相似三角形;
。3)相似三角形應(yīng)滿足形狀一樣,但大小可以不同;
(4)相似用“∽”表示,讀作“相似于”;
。5)相似三角形的對(duì)應(yīng)邊之比叫做相似比。
知識(shí)點(diǎn)5。相似三角的判定方法
。1)定義:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形相似;
。2)平行于三角形一邊的直線截其他兩邊(或其他兩邊的延長(zhǎng)線)所構(gòu)成的三角形與原三角形相似。
。3)如果一個(gè)三角形的兩個(gè)角分別與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似。
。4)如果一個(gè)三角的兩條邊與另一個(gè)三角形的兩條邊對(duì)應(yīng)成比例,并且?jiàn)A角相等,那么這兩個(gè)三角形相似。
(5)如果一個(gè)三角形的三條邊分別與另一個(gè)三角形的三條邊對(duì)應(yīng)成比例,那么這兩個(gè)三角形相似。
(6)直角三角形被斜邊上的高分成的兩個(gè)直角三角形與原三角形都相似。
知識(shí)點(diǎn)6。相似三角形的性質(zhì)
。1)對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等;
。2)對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比,對(duì)應(yīng)角平分線的比都等于相似比;
。3)相似三角形周長(zhǎng)之比等于相似比;面積之比等于相似比的平方。
(4)射影定理
初三數(shù)學(xué)知識(shí)點(diǎn)整理4
三角形
分類(lèi):⑴按邊分;
、瓢唇欠
1.定義(包括內(nèi)、外角)
2.三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中,
3.三角形的主要線段
討論:①定義②線的交點(diǎn)三角形的心③性質(zhì)
、 高線②中線③角平分線④中垂線⑤中位線
⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形
4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)
5.全等三角形
、乓话闳切稳鹊呐卸(SAS、ASA、AAS、SSS)
⑵特殊三角形全等的判定:①一般方法②專用方法
6.三角形的面積
、乓话阌(jì)算公式⑵性質(zhì):等底等高的三角形面積相等。
7.重要輔助線
、胖悬c(diǎn)配中點(diǎn)構(gòu)成中位線;⑵加倍中線;⑶添加輔助平行線
8.證明方法
⑴直接證法:綜合法、分析法
、崎g接證法反證法:①反設(shè)②歸謬③結(jié)論
⑶證線段相等、角相等常通過(guò)證三角形全等
、茸C線段倍分關(guān)系:加倍法、折半法
⑸證線段和差關(guān)系:延結(jié)法、截余法
、首C面積關(guān)系:將面積表示出來(lái)
初三數(shù)學(xué)知識(shí)點(diǎn)整理5
二元一次方程組
1、定義:含有兩個(gè)未知數(shù),并且未知項(xiàng)的次數(shù)是1的整式方程叫做二元一次方程。
2、二元一次方程組的解法
。1)代入法
由一個(gè)二次方程和一個(gè)一次方程所組成的`方程組通常用代入法來(lái)解,這是基本的消元降次方法。
。2)因式分解法
在二元二次方程組中,至少有一個(gè)方程可以分解時(shí),可采用因式分解法通過(guò)消元降次來(lái)解。
(3)配方法
將一個(gè)式子,或一個(gè)式子的某一部分通過(guò)恒等變形化為完全平方式或幾個(gè)完全平方式的和。
(4)韋達(dá)定理法
通過(guò)韋達(dá)定理的逆定理,可以利用兩數(shù)的和積關(guān)系構(gòu)造一元二次方程。
。5)消常數(shù)項(xiàng)法
當(dāng)方程組的兩個(gè)方程都缺一次項(xiàng)時(shí),可用消去常數(shù)項(xiàng)的方法解。
解一元二次方程
解一元二次方程的基本思想方法是通過(guò)“降次”將它化為兩個(gè)一元一次方程。
1、直接開(kāi)平方法:
用直接開(kāi)平方法解形如(x—m)2=n(n≥0)的方程,其解為x=±m(xù)。
直接開(kāi)平方法就是平方的逆運(yùn)算。通常用根號(hào)表示其運(yùn)算結(jié)果。
2、配方法
通過(guò)配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱為配方法,配方的依據(jù)是完全平方公式。
。1)轉(zhuǎn)化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)
。2)系數(shù)化1:將二次項(xiàng)系數(shù)化為1
(3)移項(xiàng):將常數(shù)項(xiàng)移到等號(hào)右側(cè)
。4)配方:等號(hào)左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方
(5)變形:將等號(hào)左邊的代數(shù)式寫(xiě)成完全平方形式
。6)開(kāi)方:左右同時(shí)開(kāi)平方
。7)求解:整理即可得到原方程的根
3、公式法
公式法:把一元二次方程化成一般形式,然后計(jì)算判別式△=b2—4ac的值,當(dāng)b2—4ac≥0時(shí),把各項(xiàng)系數(shù)a,b,c的值代入求根公式x=(b2—4ac≥0)就可得到方程的根。
代數(shù)式
1、代數(shù)式與有理式
用運(yùn)算符號(hào)把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或字母也是代數(shù)式。
整式和分式統(tǒng)稱為有理式。
2、整式和分式
含有加、減、乘、除、乘方運(yùn)算的代數(shù)式叫做有理式。
沒(méi)有除法運(yùn)算或雖有除法運(yùn)算但除式中不含有字母的有理式叫做整式。
有除法運(yùn)算并且除式中含有字母的有理式叫做分式。
3、單項(xiàng)式與多項(xiàng)式
沒(méi)有加減運(yùn)算的整式叫做單項(xiàng)式。(數(shù)字與字母的積—包括單獨(dú)的一個(gè)數(shù)或字母)
幾個(gè)單項(xiàng)式的和,叫做多項(xiàng)式。
說(shuō)明:
①根據(jù)除式中有否字母,將整式和分式區(qū)別開(kāi);根據(jù)整式中有否加減運(yùn)算,把單項(xiàng)式、多項(xiàng)式區(qū)分開(kāi)。
②進(jìn)行代數(shù)式分類(lèi)時(shí),是以所給的代數(shù)式為對(duì)象,而非以變形后的代數(shù)式為對(duì)象。
4、同類(lèi)項(xiàng)及其合并
條件:①字母相同;②相同字母的指數(shù)相同
合并依據(jù):乘法分配律。
初三數(shù)學(xué)知識(shí)點(diǎn)整理6
一元一次方程:
①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是
1、這樣的方程叫一元一次方程。
、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:
去分母,移項(xiàng),合并同類(lèi)項(xiàng),未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
2、不等式與不等式組
不等式:
①用符號(hào)”=“號(hào)連接的式子叫不等式。
②不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)的方向不變。
③不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。
、懿坏仁降膬蛇叾汲艘曰虺酝粋(gè)負(fù)數(shù),不等號(hào)方向相反。
不等式的解集:
、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。
、谝粋(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
、矍蟛坏仁浇饧倪^(guò)程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。
一元一次不等式組:
①關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
、谝辉淮尾坏仁浇M中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
、矍蟛坏仁浇M解集的過(guò)程,叫做解不等式組。
3、函數(shù)
變量:因變量,自變量。在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。
一次函數(shù):
、偃魞蓚(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。
、诋(dāng)B=0時(shí),稱Y是X的正比例函數(shù)。
一次函數(shù)的圖象:
①把一個(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。
②正比例函數(shù)Y=KX的圖象是經(jīng)過(guò)原點(diǎn)的一條直線。
③在一次函數(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。
、墚(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。
空間與圖形
圖形的認(rèn)識(shí):
1、點(diǎn),線,面
點(diǎn),線,面:
①圖形是由點(diǎn),線,面構(gòu)成的。
、诿媾c面相交得線,線與線相交得點(diǎn)。
、埸c(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。
展開(kāi)與折疊:
、僭诶庵,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。
②N棱柱就是底面圖形有N條邊的棱柱。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧,扇形:
①由一條弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。
、趫A可以分割成若干個(gè)扇形。
角
線:
、倬段有兩個(gè)端點(diǎn)。
、趯⒕段向一個(gè)方向無(wú)限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。
、蹖⒕段的兩端無(wú)限延長(zhǎng)就形成了直線。直線沒(méi)有端點(diǎn)。
、芙(jīng)過(guò)兩點(diǎn)有且只有一條直線。
比較長(zhǎng)短:
、賰牲c(diǎn)之間的所有連線中,線段最短。
、趦牲c(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:
①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。
②一度的1/60是一分,一分的1/60是一秒。
角的比較:
、俳且部梢钥闯墒怯梢粭l射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。
、谝粭l射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。
、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。
平行:
①同一平面內(nèi),不相交的兩條直線叫做平行線。
、诮(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。
、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:
①如果兩條直線相交成直角,那么這兩條直線互相垂直。
、诨ハ啻怪钡膬蓷l直線的交點(diǎn)叫做垂足。
、燮矫鎯(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。
2、相交線與平行線
角:
、偃绻麅蓚(gè)角的和是直角,那么稱和兩個(gè)角互為余角;如果兩個(gè)角的和是平角,那么稱這兩個(gè)角互為補(bǔ)角。
②同角或等角的余角/補(bǔ)角相等。
③對(duì)頂角相等。
、芡唤窍嗟/內(nèi)錯(cuò)角相等/同旁內(nèi)角互補(bǔ),兩直線平行,反之亦然。
【初三數(shù)學(xué)知識(shí)點(diǎn)整理】相關(guān)文章:
初三數(shù)學(xué)中考知識(shí)點(diǎn)整理02-17
初三數(shù)學(xué)知識(shí)點(diǎn)歸納整理02-24
初三物理知識(shí)點(diǎn)整理10-12
小學(xué)數(shù)學(xué)知識(shí)點(diǎn)整理02-22
高考數(shù)學(xué)重要知識(shí)點(diǎn)整理12-27
高考數(shù)學(xué)知識(shí)點(diǎn)整理02-20
中考數(shù)學(xué)難題知識(shí)點(diǎn)整理02-17
數(shù)學(xué)中考知識(shí)點(diǎn)歸納整理02-17