亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

教學(xué)設(shè)計(jì)

淺談數(shù)學(xué)的教學(xué)設(shè)計(jì)

時(shí)間:2024-09-28 08:57:33 教學(xué)設(shè)計(jì) 我要投稿
  • 相關(guān)推薦

淺談數(shù)學(xué)的教學(xué)設(shè)計(jì)

  一、我國社會(huì)發(fā)展對數(shù)學(xué)課程的要求

淺談數(shù)學(xué)的教學(xué)設(shè)計(jì)

  促進(jìn)數(shù)學(xué)課程發(fā)展的眾多動(dòng)力中,沒有比社會(huì)發(fā)展這一動(dòng)力更大的了,社會(huì)發(fā)展的需要主要包括:社會(huì)生產(chǎn)力發(fā)展的需要,經(jīng)濟(jì)和科學(xué)技術(shù)發(fā)展的需要和政治方面的要求。

  我國社會(huì)發(fā)展對數(shù)學(xué)課程提出了以下要求。

  (一)目的性

  教育必須為社會(huì)主義經(jīng)濟(jì)建服務(wù)。這就要求數(shù)學(xué)課程要有明確的目的性,即要為社會(huì)主義經(jīng)濟(jì)建設(shè)培養(yǎng)各級人才奠定基礎(chǔ),為提高廣大勞動(dòng)者的素質(zhì)做出貢獻(xiàn)。當(dāng)今社會(huì)正由工業(yè)社會(huì)向信息社會(huì)過渡,在信息社會(huì)里多數(shù)人將從事信息管理和生產(chǎn)工作;社會(huì)財(cái)富增加要更多地依靠知識;知識更新、技術(shù)進(jìn)步周期和人的職業(yè)壽命都在日益縮短,要適應(yīng)日新月異的社會(huì),必須把勞動(dòng)者的素質(zhì)、才能提到極重要的位置,而且要使他們具備終身學(xué)習(xí)的能力。

  (二)實(shí)用性

  數(shù)學(xué)課程的內(nèi)容應(yīng)具有應(yīng)用的廣泛性,可以運(yùn)用于解決社會(huì)生產(chǎn)、社會(huì)生活以及其他學(xué)科中的大量實(shí)際問題;運(yùn)用于訓(xùn)練人的思維。應(yīng)該精選現(xiàn)代社會(huì)生和生活中廣泛應(yīng)用的數(shù)學(xué)知識作為數(shù)學(xué)課程的內(nèi)容。另外,還要考慮其他學(xué)科對數(shù)學(xué)的要求。數(shù)學(xué)課程還應(yīng)滿足現(xiàn)代科學(xué)技術(shù)發(fā)展的需要,加進(jìn)其中廣泛應(yīng)用的數(shù)學(xué)知識,如計(jì)算機(jī)初步知識、統(tǒng)計(jì)初步知識離散概率空間、二項(xiàng)分布等概率初步知識。

  數(shù)學(xué)不僅是解決實(shí)際問題的工具,而且也廣泛用來訓(xùn)練人的思維,培養(yǎng)有數(shù)學(xué)素養(yǎng)的社會(huì)成員,要使學(xué)生懂得數(shù)學(xué)的價(jià)值,對自己的數(shù)學(xué)能力有信心,有解決數(shù)學(xué)問題的能力,學(xué)會(huì)數(shù)學(xué)交流,學(xué)會(huì)數(shù)學(xué)思想方法。

  (三)思想性和教育性

  我們培養(yǎng)的人應(yīng)該有理想、有道德、有文化、有紀(jì)律、熱愛社會(huì)主義祖國和社會(huì)主義事業(yè),具有國家興旺發(fā)達(dá)而艱苦奮斗的精神;應(yīng)當(dāng)不斷追求新知、實(shí)事求是、獨(dú)立思考、勇于創(chuàng)新,具有辯證唯物主義觀點(diǎn)。這就要求數(shù)學(xué)課程適當(dāng)介紹中國數(shù)學(xué)史,以激發(fā)學(xué)生的民族自豪感。用辯證唯物主義觀點(diǎn)來闡述課程內(nèi)容,有意識地體現(xiàn)數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辯證唯物主義觀點(diǎn)。體現(xiàn)運(yùn)動(dòng)、變化、相互聯(lián)系的觀點(diǎn)。

  《實(shí)驗(yàn)教材》用“精簡實(shí)用”的選材標(biāo)準(zhǔn)來滿足這些要求。

  二、數(shù)學(xué)的發(fā)展對數(shù)學(xué)課程的要求

 。ㄒ唬┲袑W(xué)數(shù)學(xué)課程應(yīng)當(dāng)是代數(shù)、幾何、分析和概率這四科的基礎(chǔ)部分恰當(dāng)配合的整體

  數(shù)學(xué)研究對象是現(xiàn)實(shí)世界的數(shù)量關(guān)系和空間形式。基礎(chǔ)數(shù)學(xué)的對象是數(shù)、空間、函數(shù),相應(yīng)的是代數(shù)、幾何、分析等學(xué)科,它們是各成體系但又密切聯(lián)系的。現(xiàn)代數(shù)學(xué)中出現(xiàn)了許多綜合性數(shù)學(xué)分支,都是在它們的基礎(chǔ)上產(chǎn)生并發(fā)展起來的,研究的思想方法也是它們的思想方法的綜合運(yùn)用。代數(shù)、幾何、分析在相鄰學(xué)科和解決各種實(shí)際問題中都有廣泛應(yīng)用,所以中學(xué)數(shù)學(xué)課程應(yīng)當(dāng)是它們恰當(dāng)配合的整體。曾經(jīng)出現(xiàn)過的把中學(xué)課程代數(shù)結(jié)構(gòu)化(如“新數(shù)”)的設(shè)計(jì)方案!耙院瘮(shù)為綱”使中學(xué)數(shù)學(xué)課程分析化的設(shè)計(jì)方案都不成功,正是沒有滿足這一要求。

 。ǘ┻m當(dāng)增加應(yīng)用數(shù)學(xué)的內(nèi)容

  應(yīng)用數(shù)學(xué)近年來蓬勃發(fā)展,出現(xiàn)了許多新的分支和領(lǐng)域,應(yīng)用范圍也在日益擴(kuò)大,這種形勢也要求在中學(xué)數(shù)學(xué)課程中有所反映。從“新數(shù)運(yùn)動(dòng)”開始,各國數(shù)學(xué)課程內(nèi)容中陸續(xù)增加了概率統(tǒng)計(jì)和計(jì)算機(jī)的初步知識。這一方面說明概率統(tǒng)計(jì)和計(jì)算機(jī)知識在社會(huì)生產(chǎn)和社會(huì)生活中的廣泛應(yīng)用,另一方面也說明數(shù)學(xué)的發(fā)展擴(kuò)大了它的基礎(chǔ),對中學(xué)數(shù)學(xué)課程提出了新的要求。

  由于計(jì)算機(jī)科學(xué)研究的需要,“離散數(shù)學(xué)”越來越顯得重要。因此,中學(xué)數(shù)學(xué)課程中應(yīng)當(dāng)增加離散數(shù)學(xué)的比重。

 。ㄈ┫到y(tǒng)性

  基礎(chǔ)數(shù)學(xué),包括代數(shù)、幾何、分析到19世紀(jì)末都相繼奠定了嚴(yán)格的邏輯基礎(chǔ)。到本世紀(jì)30年代法國布爾巴基學(xué)派用公理化方法,使整個(gè)數(shù)學(xué)結(jié)構(gòu)化。任何一個(gè)數(shù)學(xué)系統(tǒng)都可以歸結(jié)為代數(shù)結(jié)構(gòu)、序結(jié)構(gòu)和拓?fù)浣Y(jié)構(gòu)這三種母結(jié)構(gòu)的復(fù)合。經(jīng)過用公理化方法的整理,使數(shù)學(xué)成為一個(gè)邏輯嚴(yán)密、系統(tǒng)的整體結(jié)構(gòu)。因此,作為符合數(shù)學(xué)知識結(jié)構(gòu)要求的中學(xué)數(shù)學(xué)課程就必須具有一定的系統(tǒng)性和邏輯嚴(yán)密性。

 。ㄋ模┩怀鰯(shù)學(xué)思想和數(shù)學(xué)方法

  現(xiàn)代數(shù)學(xué)進(jìn)行著不同領(lǐng)域的思想、方法的相互滲透。許多曾經(jīng)認(rèn)為沒有任何共同之處的數(shù)學(xué)分支,現(xiàn)在已建立在共同的統(tǒng)一的思想基礎(chǔ)上了。

  數(shù)學(xué)思想和方法把數(shù)學(xué)科學(xué)聯(lián)結(jié)成一個(gè)統(tǒng)一的有結(jié)構(gòu)的整體。所以,我們應(yīng)該體現(xiàn)突出數(shù)學(xué)思想和數(shù)學(xué)方法。

  《實(shí)驗(yàn)教材》以“反璞歸真”的指導(dǎo)思想來滿足數(shù)學(xué)學(xué)科發(fā)展的要求。

  三、教育、心理學(xué)發(fā)展對數(shù)學(xué)課程的要求

  教育、心理學(xué)的發(fā)展,對教學(xué)規(guī)律和學(xué)生的心理規(guī)律有了更深入的認(rèn)識。數(shù)學(xué)課程的設(shè)計(jì)要符合學(xué)生認(rèn)知發(fā)展的規(guī)律。認(rèn)知發(fā)展,要經(jīng)歷多種水平,多種階段。認(rèn)知的發(fā)展呈現(xiàn)一定的規(guī)律;谶@些規(guī)律,要求數(shù)學(xué)課程具有:

  (一)可接受性

  教學(xué)內(nèi)容、方法都要適合學(xué)生的認(rèn)知發(fā)展水平。獲得新的數(shù)學(xué)知識的過程,主要依賴于數(shù)學(xué)認(rèn)知結(jié)構(gòu)中原有的適當(dāng)概念,通過新舊知識的相互作用,使新舊意義同化,從而形成更為高度同化的數(shù)學(xué)認(rèn)知結(jié)構(gòu)的過程,它包括輸入、同化、操作三個(gè)階段。因此,作為數(shù)學(xué)課程內(nèi)容要同學(xué)生已有的數(shù)學(xué)基礎(chǔ)有密切聯(lián)系。其抽象性與概括性不能過低或過高,要處于同級發(fā)展水平。這樣才能使數(shù)學(xué)課程內(nèi)容被學(xué)生理解,被他們接受,才能產(chǎn)生新舊知識有意義的同化作用,改造和分化出新的數(shù)學(xué)認(rèn)知結(jié)構(gòu)。

  (二)直觀性

  皮亞杰的認(rèn)知發(fā)展階段的理論認(rèn)為,中學(xué)生的認(rèn)知發(fā)展水平已由具體運(yùn)算進(jìn)入了抽象運(yùn)算階段,但是即使他們在整體上認(rèn)知水平已經(jīng)達(dá)到了抽象運(yùn)算的水平,在每個(gè)新數(shù)學(xué)概念的學(xué)習(xí)過程中仍然要經(jīng)歷從具體到抽象的轉(zhuǎn)化,他們在學(xué)習(xí)新的數(shù)學(xué)概念時(shí)仍采用具體或直觀的方式去探索新概念。因此,數(shù)學(xué)課程應(yīng)向?qū)W生提供豐富的直觀背景材料。不拘泥于抽象的形式,著重于向?qū)W生提示抽象概念的來龍去脈和其本質(zhì)。也就是要“反璞歸真”。

  (三)啟發(fā)性

  蘇聯(lián)心理學(xué)家維果斯基認(rèn)為兒童心理機(jī)能“最近發(fā)展區(qū)”的水平。表現(xiàn)為發(fā)展程序尚未成熟,正處于形成狀態(tài)。兒童還不能獨(dú)立地解決一定的靠智力解決的任務(wù),但只要有一定的幫助和自己的努力,就有可能完成任務(wù)。數(shù)學(xué)課程的啟發(fā)性就在于激發(fā)、誘導(dǎo)那些正待成熟的心理機(jī)能的發(fā)展,不斷地使“最近發(fā)展區(qū)”的矛盾得到轉(zhuǎn)化,而進(jìn)入更高一級的數(shù)學(xué)認(rèn)知水平。

  要使數(shù)學(xué)課程真正具有啟發(fā)性,需要克服兩種偏向:第一,內(nèi)容過于簡單,缺乏思考余地。沒有挑戰(zhàn)性,不能激發(fā)學(xué)生思維,甚至不能滿足學(xué)生學(xué)習(xí)愿望。第二,內(nèi)容過于復(fù)雜、抽象。超過了學(xué)生數(shù)學(xué)認(rèn)知結(jié)構(gòu)中“最近發(fā)展區(qū)”的水平,學(xué)生將會(huì)由于不能理解它,產(chǎn)生畏懼心理,最后厭惡學(xué)習(xí)數(shù)學(xué)。

  布魯納曾指出,向成長中的兒童提出難題,激勵(lì)他們向下一階段發(fā)展,這樣的努力是值得的。在這種思想的指導(dǎo)下,他的數(shù)學(xué)課程采用螺旋式上升的原則,這是課程內(nèi)容啟發(fā)性的體現(xiàn)。

  《實(shí)驗(yàn)教材》用“順理成章、深入淺出”的指導(dǎo)思想來體現(xiàn)以上諸要求。

  四、三方面需求的和諧統(tǒng)一

  上面分別考查了三個(gè)方面對數(shù)學(xué)課程提出的要求,這些要求有時(shí)互為前題,互相補(bǔ)充,而有時(shí)卻是彼此矛盾的。這導(dǎo)致了數(shù)學(xué)課程設(shè)計(jì)的復(fù)雜性和艱巨性。如何才能使這三方面的要求和諧統(tǒng)一呢?從《實(shí)驗(yàn)教材》11年的實(shí)驗(yàn)中形成了16字指導(dǎo)數(shù)學(xué)課程設(shè)計(jì)的思想,比較恰當(dāng)?shù)慕y(tǒng)一了以上三方面的需求。這16字的指導(dǎo)思想是“精簡實(shí)用、反璞歸真、順理成章、深入淺出”。

  “精簡實(shí)用”是個(gè)基本的指導(dǎo)思想,它恰當(dāng)?shù)乇憩F(xiàn)了理論和實(shí)際的正確關(guān)系。由實(shí)際到理論,就是由繁精簡,把實(shí)際中多樣的事物、現(xiàn)象,經(jīng)過分析、綜合,歸納出簡單而又具有普遍性的道理,這就是理論。而只有精而簡的理論才能用來“以簡馭繁”。所以“精簡實(shí)用”在科學(xué)上的意義就是要尋求真正具有普遍性、簡明扼要的理論。要做到精簡,必須抓住重點(diǎn)。教材中普遍實(shí)用的最基礎(chǔ)部分,那些具有普遍意義的通性、通法就是重點(diǎn)。中學(xué)數(shù)學(xué)課程內(nèi)容應(yīng)是代數(shù)、幾何、分析和概率這四科的基礎(chǔ)部分恰當(dāng)配合的整體,這樣做既可滿足社會(huì)的需要、數(shù)學(xué)知識結(jié)構(gòu)的要求,又可滿足可接受性的要求。其中普遍實(shí)用的最基礎(chǔ)部分是代數(shù)中的數(shù)系,最普遍有用的是數(shù)系的運(yùn)算律(“數(shù)系通性”);解代數(shù)方程;多項(xiàng)式運(yùn)算;待定系數(shù)法。幾何中的重要內(nèi)容是教導(dǎo)學(xué)生研習(xí)演繹法,要點(diǎn)在于讓學(xué)生逐步體會(huì)空間基本性質(zhì)的本質(zhì)與用法。平行四邊形定理、相似三角形定理、勾股定理可以說是歐氏平面幾何的三大支柱,它們也就是把空間結(jié)構(gòu)全面代數(shù)化的理論基礎(chǔ)。用向量把幾何學(xué)全面代數(shù)化,講向量身體、解析幾何及其原理,這些就是幾何課的重點(diǎn)。分析的重要內(nèi)容除函數(shù)、極限、連續(xù)等分析學(xué)的基本概念之外,變化率是要緊的概念。分析中最基本的方法是逼近法。

  “反璞歸真”就是著重于教學(xué)生以基礎(chǔ)數(shù)學(xué)的本質(zhì),而不拘泥于抽象的形式。初等代數(shù)最基本的思想、最重要的本質(zhì)就是那些非常簡單的數(shù)的運(yùn)算律,它們是整個(gè)代數(shù)學(xué)的根本所在。把它形式化,也就是多項(xiàng)式的運(yùn)算和理論。傳統(tǒng)的代數(shù)教學(xué)從多項(xiàng)式的形式理論開始,學(xué)生不解其義,感到枯燥!秾(shí)驗(yàn)教材》反璞歸真,先講代數(shù)的基本原理就是靈活運(yùn)用運(yùn)算律,首先用以解決一次方程的實(shí)際問題,學(xué)生自然地覺得應(yīng)該有一個(gè)多項(xiàng)式理論,然后再講多項(xiàng)式,這樣學(xué)生易于理解多項(xiàng)式的來源與本質(zhì)!斑@就是反璞歸真”的一個(gè)實(shí)例。

  基本的數(shù)學(xué)思想與數(shù)學(xué)方法是基礎(chǔ)數(shù)學(xué)的本質(zhì),突出其教學(xué)是把知識教學(xué)與能力訓(xùn)練統(tǒng)一起來的重要一環(huán)。把知識看作一個(gè)過程,弄清它的來龍去脈,掌握思想脈絡(luò),學(xué)生的數(shù)學(xué)才能才發(fā)展起來,要學(xué)生“會(huì)學(xué)”數(shù)學(xué),就必須讓學(xué)生掌握基本的數(shù)學(xué)思想和方法,會(huì)“數(shù)學(xué)地”提出問題,思考問題、解決問題。

  《實(shí)驗(yàn)教材》一開始就突出了用符號(字母)表示數(shù)的基本思想和方法。

  集合的思考方法,在幾何和代數(shù)中都十分重視。經(jīng)常訓(xùn)練學(xué)生從考慮具體的數(shù)學(xué)對象到考慮對象的集合,進(jìn)而考慮分類等問題。

  函數(shù)的思考方法,考慮對應(yīng),考慮運(yùn)動(dòng)的變化、相依關(guān)系,由研究狀態(tài)過渡到研究過程。分解和組合的方法。對數(shù)學(xué)問題的分析與綜合、轉(zhuǎn)化、推廣與限定(一般化與特殊化)、類比、遞推、歸納等基本的數(shù)學(xué)思想與方法都分別得到強(qiáng)調(diào)。

  “順理成間”就是要從歷史發(fā)展程序和認(rèn)識規(guī)律出發(fā),“順理成間”地設(shè)計(jì)數(shù)學(xué)課程。數(shù)學(xué)是一種演繹體系,有時(shí)甚至本末倒置。這正是數(shù)學(xué)本身的要求和學(xué)生心理發(fā)展的要求相矛盾的所在。正確處理這個(gè)矛盾,使這兩方面的要求和諧統(tǒng)一,課程設(shè)計(jì)就既不能違背邏輯次序。更要符合認(rèn)識程序。因此,要參照數(shù)學(xué)發(fā)展歷史,用數(shù)學(xué)概念的逐步進(jìn)化演變過程作為明鏡,用基礎(chǔ)數(shù)學(xué)的層次與脈絡(luò)作為依據(jù)來設(shè)計(jì)數(shù)學(xué)課程。

【淺談數(shù)學(xué)的教學(xué)設(shè)計(jì)】相關(guān)文章:

淺談對教學(xué)設(shè)計(jì)的認(rèn)識06-24

數(shù)學(xué)教學(xué)設(shè)計(jì)10-24

數(shù)學(xué)教學(xué)設(shè)計(jì)09-16

小學(xué)數(shù)學(xué)教學(xué)設(shè)計(jì)09-15

《用數(shù)學(xué)》教學(xué)設(shè)計(jì)09-04

初中數(shù)學(xué)教學(xué)設(shè)計(jì)09-03

小學(xué)數(shù)學(xué)教學(xué)設(shè)計(jì)07-02

數(shù)學(xué)《比的應(yīng)用》教學(xué)設(shè)計(jì)01-09

小學(xué)數(shù)學(xué)教學(xué)設(shè)計(jì)07-14

小學(xué)數(shù)學(xué)的教學(xué)設(shè)計(jì)09-16