- 相關(guān)推薦
三角函數(shù)應(yīng)用中考數(shù)學(xué)題匯總
三角函數(shù)應(yīng)用是中考的必考考點(diǎn),下面百分網(wǎng)小編為大家整理了一份三角函數(shù)應(yīng)用的中考數(shù)學(xué)題匯總,歡迎大家閱讀參考,更多內(nèi)容請(qǐng)關(guān)注應(yīng)屆畢業(yè)生網(wǎng)!
解直角三角形(三角函數(shù)應(yīng)用)
1、(綿陽市2013年)如圖,在兩建筑物之間有一旗桿,高15米,從A點(diǎn)經(jīng)過旗桿頂點(diǎn)恰好看到矮建筑物的墻角C點(diǎn),且俯角α為60º,又從A點(diǎn)測(cè)得D點(diǎn)的俯角β為30º,若旗桿底點(diǎn)G為BC的中點(diǎn),則矮建筑物的高CD為( A )
A.20米 B. 米 C. 米 D. 米
[解析]GE//AB//CD,BC=2GC,GE=15米,AB=2GE=30米,AF=BC=AB•cot∠ACB=30×cot60º=103 米,DF=AF•tan30º=103 ×33 =10米,
CD=AB-DF=30-10=20米。
2、(2013杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,則斜邊上的高等于( )
A. B. C. D.
考點(diǎn):解直角三角形.
專題:計(jì)算題.
分析:在直角三角形ABC中,由AB與sinA的值,求出BC的長(zhǎng),根據(jù)勾股定理求出AC的長(zhǎng),根據(jù)面積法求出CD的長(zhǎng),即為斜邊上的高.
解答:解:根據(jù)題意畫出圖形,如圖所示,
在Rt△ABC中,AB=4,sinA=,
∴BC=ABsinA=2.4,
根據(jù)勾股定理得:AC= =3.2,
∵S△ABC=AC•BC=AB•CD,
∴CD= = .
故選B
點(diǎn)評(píng):此題考查了解直角三角形,涉及的知識(shí)有:銳角三角函數(shù)定義,勾股定理,以及三角形的面積求法,熟練掌握定理及法則是解本題的關(guān)鍵.
3、(2013•綏化)如圖,在△ABC中,AD⊥BC于點(diǎn)D,AB=8,∠ABD=30°,∠CAD=45°,求BC的長(zhǎng).
考點(diǎn): 解直角三角形.
分析: 首先解Rt△ABD,求出AD、BD的長(zhǎng)度,再解Rt△ADC,求出DC的長(zhǎng)度,然后由BC=BD+DC即可求解.
解答: 解:∵AD⊥BC于點(diǎn)D,
∴∠ADB=∠ADC=90°.
在Rt△ABD中,∵AB=8,∠ABD=30°,
∴AD= AB=4,BD= AD=4 .
在Rt△ADC中,∵∠CAD=45°,∠ADC=90°,
∴DC=AD=4,
∴BC=BD+DC=4 +4.
點(diǎn)評(píng): 本題考查了解直角三角形的知識(shí),屬于基礎(chǔ)題,解答本題的關(guān)鍵是在直角三角形中利用解直角三角形的知識(shí)求出BD、DC的長(zhǎng)度.
4、(2013•鄂州)著名畫家達(dá)芬奇不僅畫藝超群,同時(shí)還是一個(gè)數(shù)學(xué)家、發(fā)明家.他曾經(jīng)設(shè)計(jì)過一種圓規(guī)如圖所示,有兩個(gè)互相垂直的滑槽(滑槽寬度忽略不計(jì)),一根沒有彈性的木棒的兩端A、B能在滑槽內(nèi)自由滑動(dòng),將筆插入位于木棒中點(diǎn)P處的小孔中,隨著木棒的滑動(dòng)就可以畫出一個(gè)圓來.若AB=20cm,則畫出的圓的半徑為 10 cm.
考點(diǎn): 直角三角形斜邊上的中線.
分析: 連接OP,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得OP的長(zhǎng),畫出的圓的半徑就是OP長(zhǎng).
解答: 解:連接OP,
∵△AOB是直角三角形,P為斜邊AB的中點(diǎn),
∴OP= AB,
∵AB=20cm,
∴OP=10cm,
故答案為:10.
點(diǎn)評(píng): 此題主要考查了直角三角形的性質(zhì),關(guān)鍵是掌握直角三角形斜邊上的中線等于斜邊的一半.
5、(2013安順)在Rt△ABC中,∠C=90°, ,BC=8,則△ABC的面積為 .
考點(diǎn):解直角三角形.
專題:計(jì)算題.
分析:根據(jù)tanA的值及BC的長(zhǎng)度可求出AC的長(zhǎng)度,然后利用三角形的面積公式進(jìn)行計(jì)算即可.
解答:解:∵tanA= =,
∴AC=6,
∴△ABC的面積為×6×8=24.
故答案為:24.
點(diǎn)評(píng):本題考查解直角三角形的知識(shí),比較簡(jiǎn)單,關(guān)鍵是掌握在直角三角形中正切的表示形式,從而得出三角形的兩條直角邊,進(jìn)而得出三角形的面積.
6、(11-4解直角三角形的實(shí)際應(yīng)用•2013東營(yíng)中考)某校研究性學(xué)習(xí)小組測(cè)量學(xué)校旗桿AB的高度,如圖在教學(xué)樓一樓C處測(cè)得旗桿頂部的`仰角為60,在教學(xué)樓三樓D處測(cè)得旗桿頂部的仰角為30,旗桿底部與教學(xué)樓一樓在同一水平線上,已知每層樓的高度為3米,則旗桿AB的高度為 米.
15. 9.解析:過B作BE⊥CD于點(diǎn)E,設(shè)旗桿AB的高度為x,在 中, ,所以 ,在 中, , , ,所以 ,因?yàn)镃E=AB=x,所以 ,所以x=9,故旗桿的高度為9米.
7、(2013•常德)如圖,在△ABC中,AD是BC邊上的高,AE是BC邊上的中線,∠C=45°,sinB= ,AD=1.
(1)求BC的長(zhǎng);
(2)求tan∠DAE的值.
考點(diǎn): 解直角三角形.
分析: (1)先由三角形的高的定義得出∠ADB=∠ADC=90°,再解Rt△ADC,得出DC=1;解Rt△ADB,得出AB=3,根據(jù)勾股定理求出BD=2 ,然后根據(jù)BC=BD+DC即可求解;
(2)先由三角形的中線的定義求出CE的值,則DE=CE﹣CD,然后在Rt△ADE中根據(jù)正切函數(shù)的定義即可求解.
解答: 解:(1)在△ABC中,∵AD是BC邊上的高,
∴∠ADB=∠ADC=90°.
在△ADC中,∵∠ADC=90°,∠C=45°,AD=1,
∴DC=AD=1.
在△ADB中,∵∠ADB=90°,sinB= ,AD=1,
∴AB= =3,
∴BD= =2 ,
∴BC=BD+DC=2 +1;
(2)∵AE是BC邊上的中線,
∴CE= BC= + ,
∴DE=CE﹣CD= ﹣ ,
∴tan∠DAE= = ﹣ .
點(diǎn)評(píng): 本題考查了三角形的高、中線的定義,勾股定理,解直角三角形,難度中等,分別解Rt△ADC與Rt△ADB,得出DC=1,AB=3是解題的關(guān)鍵.
8、(13年山東青島、20)如圖,馬路的兩邊CF、DE互相平行,線段CD為人行橫道,馬路兩側(cè)的A、B兩點(diǎn)分別表示車站和超市。CD與AB所在直線互相平行,且都與馬路兩邊垂直,馬路寬20米,A,B相距62米,∠A=67°,∠B=37°
(1)求CD與AB之間的距離;
(2)某人從車站A出發(fā),沿折線A→D→C→B去超市B,求他沿折線A→D→C→B到達(dá)超市比直接橫穿馬路多走多少米
(參考數(shù)據(jù): , , ,
9、(2013•益陽)如圖,益陽市梓山湖中有一孤立小島,湖邊有一條筆直的觀光小道AB,現(xiàn)決定從小島架一座與觀光小道垂直的小橋PD,小張?jiān)谛〉郎蠝y(cè)得如下數(shù)據(jù):AB=80.0米,∠PAB=38.5°,∠PBA=26.5.請(qǐng)幫助小張求出小橋PD的長(zhǎng)并確定小橋在小道上的位置.(以A,B為參照點(diǎn),結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin38.5°=0.62,cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45,cos26.5°=0.89,tan26.5°=0.50)
考點(diǎn): 解直角三角形的應(yīng)用.
專題: 應(yīng)用題.
分析: 設(shè)PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的長(zhǎng)度,繼而也可確定小橋在小道上的位置.
解答: 解:設(shè)PD=x米,
∵PD⊥AB,
∴∠ADP=∠BDP=90°,
在Rt△PAD中,tan∠PAD= ,
∴AD= ≈ =x,
在Rt△PBD中,tan∠PBD= ,
∴DB= ≈ =2x,
又∵AB=80.0米,
∴x+2x=80.0,
解得:x≈24.6,即PD≈24.6米,
∴DB=2x=49.2.
答:小橋PD的長(zhǎng)度約為24.6米,位于AB之間距B點(diǎn)約49.2米.
點(diǎn)評(píng): 本題考查了解直角三角形的應(yīng)用,解答本題的關(guān)鍵是構(gòu)造直角三角形,利用三角函數(shù)表示出相關(guān)線段的長(zhǎng)度,難度一般.
10、(2013•婁底)2013年3月,某煤礦發(fā)生瓦斯爆炸,該地救援隊(duì)立即趕赴現(xiàn)場(chǎng)進(jìn)行救援,救援隊(duì)利用生命探測(cè)儀在地面A、B兩個(gè)探測(cè)點(diǎn)探測(cè)到C處有生命跡象.已知A、B兩點(diǎn)相距4米,探測(cè)線與地面的夾角分別是30°和45°,試確定生命所在點(diǎn)C的深度.(精確到0.1米,參考數(shù)據(jù): )
考點(diǎn): 解直角三角形的應(yīng)用.
分析: 過點(diǎn)C作CD⊥AB于點(diǎn)D,設(shè)CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=4米,即可得出關(guān)于x的方程,解出即可.
解答: 解:過點(diǎn)C作CD⊥AB于點(diǎn)D,
設(shè)CD=x,
在Rt△ACD中,∠CAD=30°,
則AD= CD= x,
在Rt△BCD中,∠CBD=45°,
則BD=CD=x,
由題意得, x﹣x=4,
解得:x= =2( +1)≈5.5.
答:生命所在點(diǎn)C的深度為5.5米.
點(diǎn)評(píng): 本題考查了解直角三角形的應(yīng)用,解答本題的關(guān)鍵是構(gòu)造直角三角形,利用三角函數(shù)知識(shí)表示出相關(guān)線段的長(zhǎng)度,注意方程思想的運(yùn)用.
11、(2013•包頭)如圖,一根長(zhǎng)6 米的木棒(AB),斜靠在與地面(OM)垂直的墻(ON)上,與地面的傾斜角(∠ABO)為60°.當(dāng)木棒A端沿墻下滑至點(diǎn)A′時(shí),B端沿地面向右滑行至點(diǎn)B′.
(1)求OB的長(zhǎng);
(2)當(dāng)AA′=1米時(shí),求BB′的長(zhǎng).
考點(diǎn): 勾股定理的應(yīng)用;解直角三角形的應(yīng)用.
分析: (1)由已知數(shù)據(jù)解直角三角形AOB即可;
(2)首先求出OA的長(zhǎng)和OA′的長(zhǎng),再根據(jù)勾股定理求出OB′的長(zhǎng)即可.
解答: 解:(1)根據(jù)題意可知:AB=6 ,∠ABO=60°,∠AOB=90°,
在Rt△AOB中,∵cos∠ABO= ,
∴OB=ABcos∠ABO=6 cos60°=3 米,
∴OB的長(zhǎng)為3 米;
(2)根據(jù)題意可知A′B′=AB=6 米,
在Rt△AOB中,∵sin∠ABO= ,
∴OA=ABsin∠ABO=6 sin60°=9米,
∵OA′=OA﹣AA′,AA′=1米,
∴OA′=8米,
在Rt△A′OB′中,OB′=2 米,
∴BB′=OB′﹣OB=(2 ﹣3 )米.
點(diǎn)評(píng): 本題考查了勾股定理的應(yīng)用和特殊角的銳角三角函數(shù),是中考常見題型.
12、(2013•呼和浩特)如圖,A、B兩地之間有一座山,汽車原來從A地到B地經(jīng)過C地沿折線A→C→B行駛,現(xiàn)開通隧道后,汽車直接沿直線AB行駛.已知AC=10千米,∠A=30°,∠B=45°.則隧道開通后,汽車從A地到B地比原來少走多少千米?(結(jié)果保留根號(hào))
考點(diǎn): 解直角三角形的應(yīng)用.
分析: 過C作CD⊥AB于D,在Rt△ACD中,根據(jù)AC=10,∠A=30°,解直角三角形求出AD、CD的長(zhǎng)度,然后在Rt△BCD中,求出BD、BC的長(zhǎng)度,用AC+BC﹣(AD+BD)即可求解.
解答: 解:過C作CD⊥AB于D,
在Rt△ACD中,
∵AC=10,∠A=30°,
∴DC=ACsin30°=5,
AD=ACcos30°=5 ,
在Rt△BCD中,
∵∠B=45°,
∴BD=CD=5,BC=5 ,
則用AC+BC﹣(AD+BD)=10+5 ﹣(5 +5)=5+5 ﹣5 (千米).
答:汽車從A地到B地比原來少走(5+5 ﹣5 )千米.
點(diǎn)評(píng): 本題考查了解直角三角形的應(yīng)用,難度適中,解答本題的關(guān)鍵是作三角形的高建立直角三角形幷解直角三角形.
13、(2013•巴中)2013年4月20日,四川雅安發(fā)生里氏7.0級(jí)地震,救援隊(duì)救援時(shí),利用生命探測(cè)儀在某建筑物廢墟下方探測(cè)到點(diǎn)C處有生命跡象,已知廢墟一側(cè)地面上兩探測(cè)點(diǎn)A、B相距4米,探測(cè)線與地面的夾角分別為30°和60°,如圖所示,試確定生命所在點(diǎn)C的深度(結(jié)果精確到0.1米,參考數(shù)據(jù) ≈1.41, ≈1.73)
考點(diǎn): 解直角三角形的應(yīng)用.
分析: 過點(diǎn)C作CD⊥AB交AB于點(diǎn)D,則∠CAD=30°,∠CBD=60°,在Rt△BDC中,CD= BD,在Rt△ADC中,AD= CD,然后根據(jù)AB=AD﹣BD=4,即可得到CD的方程,解方程即可.
解答: 解:如圖,過點(diǎn)C作CD⊥AB交AB于點(diǎn)D.
∵探測(cè)線與地面的夾角為30°和60°,
∴∠CAD=30°,∠CBD=60°,
在Rt△BDC中,tan60°= ,
∴BD= = ,
在Rt△ADC中,tan30°= ,
∴AD= = ,
∵AB=AD﹣BD=4,
∴ ﹣ =4,
∴CD=2 ≈3.5(米).
答:生命所在點(diǎn)C的深度大約為3.5米.
點(diǎn)評(píng): 本題考查了解直角三角形的應(yīng)用,難度適中,解答本題的關(guān)鍵是構(gòu)造直角三角形,解直角三角形,也考查了把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力.
14、(2013•舟山)某學(xué)校的校門是伸縮門(如圖1),伸縮門中的每一行菱形有20個(gè),每個(gè)菱形邊長(zhǎng)為30厘米.校門關(guān)閉時(shí),每個(gè)菱形的銳角度數(shù)為60°(如圖2);校門打開時(shí),每個(gè)菱形的銳角度數(shù)從60°縮小為10°(如圖3).問:校門打開了多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin5°≈0.0872,cos5°≈0.9962,sin10°≈0.1736,cos10°≈0.9848).
考點(diǎn): 解直角三角形的應(yīng)用;菱形的性質(zhì).
分析: 先求出校門關(guān)閉時(shí),20個(gè)菱形的寬即大門的寬;再求出校門打開時(shí),20個(gè)菱形的寬即伸縮門的寬;然后將它們相減即可.
解答: 解:如圖,校門關(guān)閉時(shí),取其中一個(gè)菱形ABCD.
根據(jù)題意,得∠BAD=60°,AB=0.3米.
∵在菱形ABCD中,AB=AD,
∴△BAD是等邊三角形,
∴BD=AB=0.3米,
∴大門的寬是:0.3×20≈6(米);
校門打開時(shí),取其中一個(gè)菱形A1B1C1D1.
根據(jù)題意,得∠B1A1D1=10°,A1B1=0.3米.
∵在菱形A1B1C1D1中,A1C1⊥B1D1,∠B1A1O1=5°,
∴在Rt△A1B1O1中,
B1O1=sin∠B1A1O1•A1B1=sin5°×0.3=0.02616(米),
∴B1D1=2B1O1=0.05232米,
∴伸縮門的寬是:0.05232×20=1.0464米;
∴校門打開的寬度為:6﹣1.0464=4.9536≈5(米).
故校門打開了5米.
點(diǎn)評(píng): 本題考查了菱形的性質(zhì),解直角三角形的應(yīng)用,難度適中.解題的關(guān)鍵是把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,只要把實(shí)際問題抽象到解直角三角形中,一切將迎刃而解.
15、(2013•紹興)如圖,傘不論張開還是收緊,傘柄AP始終平分同一平面內(nèi)兩條傘架所成的角∠BAC,當(dāng)傘收緊時(shí),結(jié)點(diǎn)D與點(diǎn)M重合,且點(diǎn)A、E、D在同一條直線上,已知部分傘架的長(zhǎng)度如下:?jiǎn)挝唬篶m
傘架 DE DF AE AF AB AC
長(zhǎng)度 36 36 36 36 86 86
(1)求AM的長(zhǎng).
(2)當(dāng)∠BAC=104°時(shí),求AD的長(zhǎng)(精確到1cm).
備用數(shù)據(jù):sin52°=0.788,cos52°=0.6157,tan52°=1.2799.
考點(diǎn): 解直角三角形的應(yīng)用.
分析: (1)根據(jù)AM=AE+DE求解即可;
(2)先根據(jù)角平分線的定義得出∠EAD= ∠BAC=52°,再過點(diǎn)E作EG⊥AD于G,由等腰三角形的性質(zhì)得出AD=2AG,然后在△AEG中,利用余弦函數(shù)的定義求出AG的長(zhǎng),進(jìn)而得到AD的長(zhǎng)度.
解答: 解:(1)由題意,得AM=AE+DE=36+36=72(cm).
故AM的長(zhǎng)為72cm;
(2)∵AP平分∠BAC,∠BAC=104°,
∴∠EAD= ∠BAC=52°.
過點(diǎn)E作EG⊥AD于G,
∵AE=DE=36,
∴AG=DG,AD=2AG.
在△AEG中,∵∠AGE=90°,
∴AG=AE•cos∠EAG=36•cos52°=36×0.6157=22.1652,
∴AD=2AG=2×22.1652≈44(cm).
故AD的長(zhǎng)約為44cm.
點(diǎn)評(píng): 本題考查了解直角三角形在實(shí)際生活中的應(yīng)用,其中涉及到角平分線的定義,等腰三角形的性質(zhì),三角函數(shù)的定義,難度適中.
16、(2013年南京)已知不等臂蹺蹺板AB長(zhǎng)4m。如圖,當(dāng)AB的一端碰到地面時(shí),AB與地面的夾
角為;如圖,當(dāng)AB的另一端B碰到地面時(shí),AB與地面的夾角為。求蹺蹺板AB的支撐點(diǎn)O到地面的高度OH。(用含、的式子表示)
解析:解:在Rt△AHO中,sin= OH OA ,∴OA= OH sin 。 在Rt△BHO中,sin= OH OB ,∴OB= OH sin 。
∵AB=4,∴OAOB=4,即 OH sin OH sin =4。∴OH= 4sinsin sinsin (m)。 (8分)
(2013年江西省)如圖1,一輛汽車的背面,有一種特殊形狀的刮雨器,忽略刮雨器的寬度可抽象為一條折線OAB,如圖2所示,量得連桿OA長(zhǎng)為10cm,雨刮桿AB長(zhǎng)為48cm,∠OAB=120°.若啟動(dòng)一次刮雨器,雨刮桿AB正好掃到水平線CD的位置,如圖3所示.
(1)求雨刮桿AB旋轉(zhuǎn)的最大角度及O、B兩點(diǎn)之間的距離;(結(jié)果精確到0.01)
(2)求雨刮桿AB掃過的最大面積.(結(jié)果保留π的整數(shù)倍)
(參考數(shù)據(jù):sin60°= ,cos60°= ,tan60°= , ≈26.851,可使用科學(xué)計(jì)算器)
【答案】解:(1)雨刮桿AB旋轉(zhuǎn)的最大角度為180° .
連接OB,過O點(diǎn)作AB的垂線交BA的延長(zhǎng)線于EH,
∵∠OAB=120°,
∴∠OAE=60°
在Rt△OAE中,
∵∠OAE=60°,OA=10,
∴sin∠OAE= = ,
∴OE=5 ,
∴AE=5.
∴EB=AE+AB=53,
在Rt△OEB中,
∵OE=5 ,EB=53,
∴OB= = =2 ≈53.70;
(2)∵雨刮桿AB旋轉(zhuǎn)180°得到CD,即△OCD與△OAB關(guān)于點(diǎn)O中心對(duì)稱,
∴△BAO≌△OCD,∴S△BAO=S△OCD,
∴雨刮桿AB掃過的最大面積S= π(OB2-OA2)
=1392π.
【考點(diǎn)解剖】 本題考查的是解直角三角形的應(yīng)用,以及扇形面積的求法,難點(diǎn)是考生缺乏生活經(jīng)驗(yàn),弄不懂題意(提供的實(shí)物圖也不夠清晰,人為造成一定的理解困難).
【解題思路】 將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,(1)AB旋轉(zhuǎn)的最大角度為180°;在△OAB中,已知兩邊及其夾角,可求出另外兩角和一邊,只不過它不是直角三角形,需要轉(zhuǎn)化為直角三角形來求解,由∠OAB=120°想到作AB邊上的高,得到一個(gè)含60°角的Rt△OAE和一個(gè)非特殊角的Rt△OEB.在Rt△OAE中,已知∠OAE=60°,斜邊OA=10,可求出OE、AE的長(zhǎng),進(jìn)而求得Rt△OEB中EB的長(zhǎng),再由勾股定理求出斜邊OB的長(zhǎng);(2)雨刮桿AB掃過的最大面積就是一個(gè)半圓環(huán)的面積(以O(shè)B、OA為半徑的半圓面積之差).
【方法規(guī)律】 將斜三角形轉(zhuǎn)化為直角三角形求解.在直角三角形中,已知兩邊或一邊一角都可求出其余的量.
【關(guān)鍵詞】 刮雨器 三角函數(shù) 解直角三角形 中心對(duì)稱 扇形的面積
17、(2013陜西)一天晚上,李明和張龍利用燈光下的影子來測(cè)量一路燈D的高度,如圖,當(dāng)李明走到點(diǎn)A處時(shí),張龍測(cè)得李明直立身高AM與其影子長(zhǎng)AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點(diǎn)B處時(shí),李明直立時(shí)身高BN的影子恰好是線段AB,并測(cè)得AB=1.25m。已知李明直立時(shí)的身高為1.75m,求路燈的高CD的長(zhǎng).(結(jié)果精確到0.1m)
考點(diǎn):此題考查穩(wěn)定,就是考查解直角三角形,或者考查的是相似三角形的應(yīng)用測(cè)量高度,寬度等線段的長(zhǎng)度的具體計(jì)算,將問題轉(zhuǎn)換成方程(組)來求解,經(jīng)常設(shè)置的具體的實(shí)際情景得到與測(cè)量相關(guān)的計(jì)算;
解析:本題考查的是典型的測(cè)量問題之中心投影下的測(cè)量,而此問題設(shè)置基本上就是應(yīng)用相似的性質(zhì)來將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題來解決,
解:如圖,設(shè)CD長(zhǎng)為 m ∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA
∴MA∥CD,BN∥CD,∴EC=CD= ,∴△ABN∽△ACD ∴
即 解得
所以路燈高CD約為6.1米
18、(2013年濰坊市)如圖1所示,將一個(gè)邊長(zhǎng)為2的正方形 和一個(gè)長(zhǎng)為2、寬為1的長(zhǎng)方形 拼在一起,構(gòu)成一個(gè)大的長(zhǎng)方形 .現(xiàn)將小長(zhǎng)方形 繞點(diǎn) 順時(shí)針旋轉(zhuǎn)至 ,旋轉(zhuǎn)角為 .
(1)當(dāng)點(diǎn) 恰好落在 邊上時(shí),求旋轉(zhuǎn)角 的值;
(2)如圖2, 為 的中點(diǎn),且0°< <90°,求證: ;
(3)小長(zhǎng)方形 繞點(diǎn) 順時(shí)針旋轉(zhuǎn)一周的過程中, 與 能否全等?若能,直接寫出旋轉(zhuǎn)角 的值;若不能,說明理由.
答案:(1) ∵DC//EF,∴∠DCD′=∠CD′E=∠CD′E=α. ∴sinα= ,∴α=30°
(2) ∵G為BC中點(diǎn),∴GC=CE′=CE=1,
∵∠D′CG=∠DCG+∠DCD′=90°+α, ∠DCE′=∠D′CE′+∠DCD′=90°+α,
∴∠D′CG=∠DCE′又∵CD′=CD, ∴△GCD′≌△E′CD, ∴GD′=E′D
(3) 能. α=135°或α=315°
考點(diǎn):圖形的旋轉(zhuǎn)、三角函數(shù)、解直角三角形、全等三角形的判定
點(diǎn)評(píng):本題依據(jù)學(xué)生的認(rèn)知規(guī)律,從簡(jiǎn)單特殊的問題入手,將問題向一般進(jìn)行拓展、變式,通過操作、觀察、計(jì)算、猜想等獲得結(jié)論.此類問題綜合性較強(qiáng),要完成本題學(xué)生需要有較強(qiáng)的類比、遷移、分析、變形應(yīng)用、綜合、推理和探究能力.
【三角函數(shù)應(yīng)用中考數(shù)學(xué)題】相關(guān)文章:
一元一次方程與應(yīng)用中考數(shù)學(xué)題匯總07-11
圖形的變換貴州中考數(shù)學(xué)題匯總及答案05-25
無理數(shù)和實(shí)數(shù)全國中考數(shù)學(xué)題匯總09-17
高考數(shù)學(xué)題09-02