亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

考研資訊 百文網手機站

考研數(shù)學概率論首輪復習有哪些常見疑問

時間:2021-06-08 18:04:33 考研資訊 我要投稿

考研數(shù)學概率論首輪復習有哪些常見疑問

  我們在進行考研數(shù)學的概率論首輪復習時,有很多常見的疑問需要我們去了解清楚。小編為大家精心準備了考研數(shù)學概率論首輪復習的指導,歡迎大家前來閱讀。

考研數(shù)學概率論首輪復習有哪些常見疑問

  考研數(shù)學概率論首輪復習常見的疑問

  1.概率的數(shù)理統(tǒng)計要怎么復習?什么叫幾何型概率?

  答:幾何型概率原則上只有理工科考,是數(shù)學一考察的對象,最近兩年經濟類的大綱也加進來了,但還沒有考過,數(shù)學三、數(shù)學四的話雖然明確寫在大綱里,還沒有考。明年是否可能考呢?幾何概率是一個考點,但不是一個考察的重點。我個人認為一是它考的可能性很小,如果考也是考一個小題,或者是選擇題或者是填空題或者在大題里運用一下概率的模式,就是一個事件發(fā)生的概率是等于這個事件的度量或者整個樣本空間度量的比。

  這個度量的話指的是面積,一維空間指的是長度,二維空間指的是面積,三維空間指的是體積。所以幾何概率指的是長度的比、面積的比和體積的比。重點是面積的比,是二維的情況。

  何概率其實很簡單,是一個程序化的過程,按這四個步驟你肯定能做出來。第一步把樣本空間和讓你求概率的事件用幾何表示出來。第二步既然是幾何概率那就是圖形,第二步把幾何圖形畫出來。第三步你就把樣本空間和讓你求概率的事件所在的幾何圖形的度量,就是剛才所說的面積或者體積求出來。第三步代公式。以前考過的幾何概率的題度量的計算都是用初等的方法做,我推測下次考的話,可能會難一點的。比如說用意項,面積可能用到定積分或者重積分計算,把概率和高等數(shù)學聯(lián)系起來。

  關于第二個問題,概率統(tǒng)計怎么復習,今年的考試分配很不正常,明年不會是這樣的情況。我想明年數(shù)學一(統(tǒng)計)應該考一個八、九分的題是比較適中的。從今年考試中心的樣題統(tǒng)計這一塊是九分。數(shù)學三(統(tǒng)計)應該八分左右,統(tǒng)計這一塊大家不要放棄,明年可能會考,分數(shù)應該是八、九分的題。

  至于復習,它的內容占了四分之一的樣子。但是這一部分的題相對于概率題比較固定,做題的方法也比較固定,對考生來說比較好掌握,但這部分考生考得差,可能很多學校沒有開這門課,或者開的話講得比較簡單,所以一些同學沒有達到考試的水平。其實這部分稍微花一點時間就可以掌握了。主要就是這幾塊內容一是樣本與抽樣分布,就是三大分布搞清楚,把他們的結構搞清楚,把統(tǒng)計上的分布搞清楚。

  然后是參數(shù)估計、矩估計、最大似然估計、區(qū)間估計、三種估計方法,三個評價標準,無偏性、有效性、一致性,重點是無偏性的考查,因為它是期望的計算,其次是有效性。一致性一般不會考,考的可能性很小。這三種估計方法重點也是前面兩種,矩估計、最大似然估計,區(qū)間做了限制,考了很少,歷年考試的情況也就是代代公式。

  最后一部分是假設檢驗這部分,這一部分我個人推測明年有可能考一個概念性的小題。一是了解U檢驗統(tǒng)計量、T檢驗統(tǒng)計量、卡方檢驗統(tǒng)計量,把這三個檢驗統(tǒng)計量的分布搞清楚。另外假設檢驗的思想和四個步驟了解一下就可以了。我想這部分考生少花一點時間,統(tǒng)計這個題是沒有問題的,重點就是參數(shù)估計,就是三種估計方法,三個評價標準,重點在那個地方。

  2.概率的公式、概念比較多,怎么記?

  答:我們看這樣一個模型,這是概率里經常見到的,從實際產品里面我們每次取一個產品,而且取后不放回去,就是日常生活中抽簽抓鬮的模型。現(xiàn)在我說四句話,大家看看有什么不同,第一句話“求一下第三次取到十件產品有七件正品三件次品,我們每次取一件,取后不放回”,下面我們來求四個類型,第一問我們求第三次取得次品的概率。

  第二問我們求第三次才取得次品的概率。第三問已知前兩次沒有取得次品第三次取到次品。第四問不超過三次取到次品。大家看到這四問的話我想是容易糊涂的,這是四個完全不同的概率,但是你看完以后可能有很多考生認為有的就是一個類型,但實際上是不一樣的。

  先看第一個“第三次取得次品”,這個概率與前面取得什么和后面取得什么都沒有關系,所以這個我們叫絕對概率。第一個概率我想很多考生都知道,這個概率應該是等于十分之三,用古代概率公式或者全概率公式求出來都是十分之三。這個概率改成第四次、第五次取到都是十分之三,就是說這個概率與次數(shù)是沒有關系的。所以在這里我們可以看出,日常生活中抽簽、抓鬮從數(shù)學上來說是公平的。

  拿這個模型來說,第一次取到和第十次取到次品的概率都是十分之三。下面我們再看看第二個概率,第三次才取到次品的概率,這個事件描述的是績事件,這是概率里重要的概念,改變表示同時發(fā)生的概率。但是這個與第三次的概率是容易混淆的,如果表示的可以這樣表述,如果用A1表示第一次取到次品,A2表示第二次取到次品,A3是第三次取到次品。

  如果A表示第一次不取到次品,B表示第二次不取到次品,C表示第三次不取到次品,求ABC績事件發(fā)生的概率。第三問表示條件概率,已知前兩次沒有取到次品,第三次取到次品P(C|AB),第三問求的就是一個條件概率。我們看第四問,不超過三次取得次品,這是一個和事件的概率,就是P(A+B+C)。從這個例子大家可以看出,概率論確實對題意的理解非常重要,要把握準確,否則就得不到準確的答案。

  3.我概率這塊掌握的不夠扎實,復習很困難,我應該怎樣才能更好的復習概率這部分內容?

  答:概率這門學科與別的學科是不太一樣的,首先我建議這位同學你可以看一下教育部考試中心一本雜志,專門出了一個針對研究生考試的書,這個里面請我寫了一篇文章,里面我舉很多例子,你看了之后有一個詳細復習方法。概率這門學科與概率統(tǒng)計、微積分是不一樣的,它要求對基本概念、基本性質的理解比較強,有個同學跟我說高等數(shù)學不存在把題看不懂的問題,但是概率統(tǒng)計的題尤其文字敘述的時候看不懂題,從這個意義上來說同學平常復習時候,只要針對每一個基本概念,要把它準確的理解,概念要理解準確,通過例子理解概念,通過實際物體理解概念。

  例如:比如我們一個盒子一共有十件產品,其中三件次品,七件正品,我們做一個實驗,每次只取一件產品,取之后不再放回去,現(xiàn)在我提兩個問題:一個是第三次取的次品是什么事件,這個事件就是積事件,第一次沒有取到次品,第二次沒有取到次品,第三次是取到次品,求這么一個事件的概率,但是換一個問題,我說你求前面兩次沒有取到次品情況下,第三次取到次品的概率,這個就不是積事件了,我第二個問題是知道了前面兩次沒有取到次品,這個信息已經知道了,然后問你第三次取到次品概率是多少,這是條件概率,這個信息已經知道了,另外一個事件發(fā)生的概率,這叫條件概率,這是容易混淆的。還有絕對概率,拿我們剛才舉的例子來講,如果我讓你求第三次取到次品是什么概率,那是絕對事件的概率,這和前面兩個又不一樣。

  舉這個例子提醒考生復習時候把這些基本概念搞清楚了,把公式把握了,這個就比較容易了。跟微積分比較起來這里沒有什么公式,公式很少。所以我們把基本概念弄清楚以后,計算的技巧比微積分少得多,所以有同學跟我說,他說概率統(tǒng)計這門課程要么就考高分,要么考低分,考中間分數(shù)的人很少,這就說明了這種課程的特點。

  4.概率的公式非常難背,有什么好方法嗎?

  答:背下來是基本的要求,概率的公式并不多,但是概率的公式和高等數(shù)學的公式相比,僅僅記住它是不夠的,比如給一個函數(shù)求導數(shù),你會做,因為你知道是求導數(shù),概率問題,比如全概率公式,考試的時候從來沒有哪一年是請你用全概率公式求求某概率,所以從分析問題的層面來說概率的要求高一點,但是從計算技巧來說概率的技巧低一些,所以我建議大家結合實際的例子和模型記它。比如二向概率公式,你可以這么記它,記一個模型,把一枚硬幣重復拋N次,正面沖上的概率是多少呢?這個公式哪一個符號在實際問題里面是什么東西,這樣才是在理解的基礎上記憶,當然就不容易忘記了。

  5.關于數(shù)理統(tǒng)計先階段復習應該抓哪些?

  答:考試要注意,只有數(shù)學1和數(shù)學3的同學要考數(shù)理統(tǒng)計,按照以前考試數(shù)學1一般來說考三分之一分數(shù)的題,數(shù)學3是四分之一,但是僅僅是一個很例外的情況,2003年數(shù)學1考了16分的數(shù)理統(tǒng)計,但是今年沒有考這部分,今年考試這個地方的命題是有一點有失偏頗,我個人的看法為了避免這樣的情況,所以這個地方一定要看,一般要考8分左右的題是比較合適的,到底考什么,我可以把這個范圍縮的比較小,考這么幾種題型,第一個是求統(tǒng)計量的數(shù)字特征或者是統(tǒng)計量的分布,統(tǒng)計量大家知道就是樣本的函數(shù),樣本就是X1X2-Xn,就是期望、方差、系方差,相關系數(shù)等等,求統(tǒng)計量的數(shù)字特征。

  第二個題型,統(tǒng)計量既然是隨機變量,當然可以求統(tǒng)計量的分布,2001年數(shù)學3是考了,2002年數(shù)學3考了,所以這個地方也是重要的題型。其次第三種題型是參數(shù)估計,你要會求。要考你背兩到三個區(qū)間估計的公式就可以了,所以為什么這個地方考的次數(shù)最多,每一種方法你都要會做。第四種題型就是對估計量的好壞進行評價,估計是無偏是有效的還是抑制的。2003年就考了一個大題。

  另外第五種題型就是假設間接這個地方,這么年以來只考過兩次,而且從99年以來練習五年這一章是沒有考,但是也正音連續(xù)五年沒有考,我個人估測2004年在這個上面考一個小題的可能是非常大的,我想同學們這部分花一點點時間看一看它,可能考一個小題,考一個什么題,就是把統(tǒng)計量寫出來,你會不會把分布寫出來,以填空的'方式。另外一種考法,它的只對什么進行檢驗,對什么參數(shù)進行檢驗,你把統(tǒng)計參數(shù)寫出來。第三種方法,設計一個問題,把架設檢驗的十個步驟做出來,第一個步驟是提出架設,第二步寫出檢驗統(tǒng)計量。這個部分也不會出一個大題,應該是以小題的形式出現(xiàn)。

  6.數(shù)學一概率和統(tǒng)計一般是怎樣的分值比例?重點分別是什么?

  答:我們1997年實行新大綱以后,除了1997年沒有考,數(shù)學一從1998年到今年每一年都考到數(shù)理統(tǒng)計這塊內容,也可以更多的情況下通過大題形式考,這里頭大家復習時候應該稍微注意一下,數(shù)理統(tǒng)計它的公式特別多,但是本質上全部概括起來,三個動態(tài)總體的抽樣分布,當總體方向是未知的時候,我們這幾年考題表面上考數(shù)理統(tǒng)計的問題,有相當一部分考數(shù)理統(tǒng)計它在具體計算過程里頭的期望和方差的計算問題。所以經常把數(shù)理統(tǒng)計和我們數(shù)字特征結合起來考,這種情況我認為沒有必要過于區(qū)分數(shù)理統(tǒng)計占怎樣的分值比例,本身都是緊密相連的。

  7.數(shù)理統(tǒng)計中考試重點是什么?參數(shù)估計占多大比重?

  答:參數(shù)估計這部分它占數(shù)理統(tǒng)計的一多半內容,參數(shù)估計這塊應該是最重要的。統(tǒng)計里面第一章就是關于樣本還有統(tǒng)計量分布這部分,這部分就是求統(tǒng)計量的數(shù)字特征,統(tǒng)計量是隨機變量。統(tǒng)計里面有什么題型?一個參數(shù)估計,一個求統(tǒng)計量數(shù)字特征或者求統(tǒng)計量的分布,統(tǒng)計量是隨機變量,任何隨機變量都有分布。自然會有這樣的題型。求統(tǒng)計量的數(shù)字特征,求統(tǒng)計量的分布,然后參數(shù)估計,然后估計的標準。統(tǒng)計這個內容對大家來說應該是比較好掌握的,題型比較少,你比較好把這個題做好。

  8.數(shù)一中假設檢驗怎么考?參數(shù)估計中區(qū)間估計的公式是否都要記住?也就是統(tǒng)計量及其分布這些公式很復雜如何更好記憶,歷年考試出現(xiàn)的好象不是特別多,今年是否會有變化?

  答:區(qū)間估計不是考試重點,屬于最低層次的,你只要知道兩到三個區(qū)間公式就可以了,以前只考過前面兩個,你多記一個留有一些余地,這個地方要求比較低,復雜的公式你不一定非得記住。

  考研數(shù)學沖刺的解題定思路

  第一部分 《高數(shù)解題的四種思維定勢》

  1.在題設條件中給出一個函數(shù)f(x)二階和二階以上可導,"不管三七二十一",把f(x)在指定點展成泰勒公式再說。

  2.在題設條件或欲證結論中有定積分表達式時,則"不管三七二十一"先用積分中值定理對該積分式處理一下再說。

  3.在題設條件中函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內可導,且f(a)=0或f(b)=0或f(a)=f(b)=0,則"不管三七二十一"先用拉格朗日中值定理處理一下再說。

  4.對定限或變限積分,若被積函數(shù)或其主要部分為復合函數(shù),則"不管三七二十一"先做變量替換使之成為簡單形式f(u)再說。

  第二部分 《線性代數(shù)解題的八種思維定勢》

  1.題設條件與代數(shù)余子式Aij或A*有關,則立即聯(lián)想到用行列式按行(列)展開定理以及AA*=A*A=|A|E。

  2.若涉及到A、B是否可交換,即AB=BA,則立即聯(lián)想到用逆矩陣的定義去分析。

  3.若題設n階方陣A滿足f(A)=0,要證aA+bE可逆,則先分解出因子aA+bE再說。

  4.若要證明一組向量a1,a2,...,as線性無關,先考慮用定義再說。

  5.若已知AB=0,則將B的每列作為Ax=0的解來處理再說。

  6.若由題設條件要求確定參數(shù)的取值,聯(lián)想到是否有某行列式為零再說。

  7.若已知A的特征向量ζ0,則先用定義Aζ0=λ0ζ0處理一下再說。

  8.若要證明抽象n階實對稱矩陣A為正定矩陣,則用定義處理一下再說。

  第三部分《概率與數(shù)理統(tǒng)計解題的九種思維定勢》

  1.如果要求的是若干事件中"至少"有一個發(fā)生的概率,則馬上聯(lián)想到概率加法公式;當事件組相互獨立時,用對立事件的概率公式。

  2.若給出的試驗可分解成(0-1)的n重獨立重復試驗,則馬上聯(lián)想到Bernoulli試驗,及其概率計算公式。

  3.若某事件是伴隨著一個完備事件組的發(fā)生而發(fā)生,則馬上聯(lián)想到該事件的發(fā)生概率是用全概率公式計算。關鍵:尋找完備事件組。

  4.若題設中給出隨機變量X ~ N 則馬上聯(lián)想到標準化X ~ N(0,1)來處理有關問題。

  5.求二維隨機變量(X,Y)的邊緣分布密度的問題,應該馬上聯(lián)想到先畫出使聯(lián)合分布密度的區(qū)域,然后定出X的變化區(qū)間,再在該區(qū)間內畫一條//y軸的直線,先與區(qū)域邊界相交的為y的下限,后者為上限,而Y的求法類似。

  6.欲求二維隨機變量(X,Y)滿足條件Y≥g(X)或(Y≤g(X))的概率,應該馬上聯(lián)想到二重積分的計算,其積分域D是由聯(lián)合密度的平面區(qū)域及滿足Y≥g(X)或(Y≤g(X))的區(qū)域的公共部分。

  7.涉及n次試驗某事件發(fā)生的次數(shù)X的數(shù)字特征的問題,馬上要聯(lián)想到對X作(0-1)分解。

  8.凡求解各概率分布已知的若干個獨立隨機變量組成的系統(tǒng)滿足某種關系的概率(或已知概率求隨機變量個數(shù))的問題,馬上聯(lián)想到用中心極限定理處理。

  9.若為總體X的一組簡單隨機樣本,則凡是涉及到統(tǒng)計量的分布問題,一般聯(lián)想到用分布,t分布和F分布的定義進行討論。

  考研數(shù)學沖刺線性代數(shù)?嫉膬热

  ▶一、行列式部分,強化概念性質,熟練行列式的求法

  在這里我們需要明確下面幾條:行列式對應的是一個數(shù)值,是一個實數(shù),明確這一點可以幫助我們檢查一些疏漏的低級錯誤;行列式的計算方法中常用的是定義法,比較重要的是加邊法,數(shù)學歸納法,降階法,利用行列式的性質對行列式進行恒等變形,化簡之后再按行或列展開。另外范德蒙行列式也是需要掌握的;行列式的考查方式分為低階的數(shù)字型矩陣和高階抽象行列式的計算、含參數(shù)的行列式的計算等。

  ▶二、矩陣部分,重視矩陣運算,掌握矩陣秩的應用

  通過歷年真題分類統(tǒng)計與考點分布,矩陣部分的重點考點集中在逆矩陣、伴隨矩陣及矩陣方程,其內容包括伴隨矩陣的定義、性質、行列式、逆矩陣、秩,在課堂輔導的時候會重點強調.此外,伴隨矩陣的矩陣方程以及矩陣與行列式的結合也是需要同學們熟練掌握的細節(jié)。涉及秩的應用,包含矩陣的秩與向量組的秩之間的關系,矩陣等價與向量組等價,對矩陣的秩與方程組的解之間關系的分析,備考需要在理解概念的基礎上,系統(tǒng)地進行歸納總結,并做習題加以鞏固。

  ▶三、向量部分,理解相關無關概念,靈活進行判定

  向量組的線性相關問題是向量部分的重中之重,也是考研線性代數(shù)每年必出的考點。如何掌握這部分內容呢?首先在于對定義概念的理解,然后就是分析判定的重點,即:看是否存在一組全為零的或者有非零解的實數(shù)對。基礎線性相關問題也會涉及類似的題型:判定向量組的線性相關性、向量組線性相關性的證明、判定一個向量能否由一向量組線性表出、向量組的秩和極大無關組的求法、有關秩的證明、有關矩陣與向量組等價的命題、與向量空間有關的命題。

  ▶四、線性方程組部分,判斷解的個數(shù),明確通解的求解思路

  線性方程組解的情況,主要涵蓋了齊次線性方程組有非零解、非齊次線性方程組解的判定及解的結構、齊次線性方程組基礎解系的求解與證明以及帶參數(shù)的線性方程組的解的情況。通解的求法有兩種,若為齊次線性方程組,首先求解方程組的矩陣對應的行列式的值,在特征值為零和不為零的情況下分別進行討論,為零說明有解,帶入增廣矩陣化簡整理;不為零則有唯一解直接求出即可。若為非齊次方程組,則按照對增廣矩陣的討論進行求解。

  ▶五、矩陣的特征值與特征向量部分,理解概念方法,掌握矩陣對角化的求解

  矩陣的特征值、特征向量部分可劃分為三給我板塊:特征值和特征向量的概念及計算、方陣的相似對角化、實對稱矩陣的正交相似對角化。相關題型有:數(shù)值矩陣的特征值和特征向量的求法、抽象矩陣特征值和特征向量的求法、判定矩陣的相似對角化、有關實對稱矩陣的問題。

  ▶六、二次型部分,熟悉正定矩陣的判別,了解規(guī)范性和慣性定理

  二次型矩陣是二次型問題的一個基礎,且大部分都可以轉化為它的實對稱矩陣的問題來處理。另外二次型及其矩陣表示,二次型的秩和標準形等概念、二次型的規(guī)范形和慣性定理也是填空選擇題中的不可或缺的部分,二次型的標準化與矩陣對角化緊密相連,要會用配方法、正交變換化二次型為標準形;掌握二次型正定性的判別方法等等。


【考研數(shù)學概率論首輪復習有哪些常見疑問】相關文章:

考研數(shù)學概率論首輪復習常見疑問12-22

考研數(shù)學概率論首輪復習的常見疑問11-24

考研數(shù)學概率論首輪復習的疑問12-18

考研數(shù)學首輪復習有哪些原則10-30

考研數(shù)學復習常見的問題有哪些11-10

考研數(shù)學首輪復習有什么方法11-10

考研數(shù)學首輪復習的原則12-05

考研數(shù)學復習有哪些常見問題11-25

考研數(shù)學備考首輪復習的策略12-12