高一下冊(cè)數(shù)學(xué)圓的方程知識(shí)點(diǎn)
在日復(fù)一日的學(xué)習(xí)中,大家最熟悉的就是知識(shí)點(diǎn)吧?知識(shí)點(diǎn)有時(shí)候特指教科書(shū)上或考試的知識(shí)。為了幫助大家掌握重要知識(shí)點(diǎn),下面是小編收集整理的高一下冊(cè)數(shù)學(xué)圓的方程知識(shí)點(diǎn),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
圓的標(biāo)準(zhǔn)方程:
在平面直角坐標(biāo)系中,以點(diǎn)O(a,b)為圓心,以r為半徑的圓的標(biāo)準(zhǔn)方程是(x-a)^2+(y-b)^2=r^2。
特別地,以原點(diǎn)為圓心,半徑為r(r0)的圓的標(biāo)準(zhǔn)方程為x^2+y^2=r^2。
圓的一般方程:
方程x^2+y^2+Dx+Ey+F=0可變形為(x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4.故有:
(1)、當(dāng)D^2+E^2-4F0時(shí),方程表示以(-D/2,-E/2)為圓心,以(D^2+E^2-4F)/2為半徑的圓;
(2)、當(dāng)D^2+E^2-4F=0時(shí),方程表示一個(gè)點(diǎn)(-D/2,-E/2);
(3)、當(dāng)D^2+E^2-4F0時(shí),方程不表示任何圖形。
圓的參數(shù)方程:
以點(diǎn)O(a,b)為圓心,以r為半徑的圓的參數(shù)方程是 x=a+r*cos, y=b+r*sin, (其中為參數(shù))
圓的端點(diǎn)式:若已知兩點(diǎn)A(a1,b1),B(a2,b2),則以線段AB為直徑的圓的方程為 (x-a1)(x-a2)+(y-b1)(y-b2)=0
圓的離心率e=0,在圓上任意一點(diǎn)的曲率半徑都是r。
經(jīng)過(guò)圓 x^2+y^2=r^2上一點(diǎn)M(a0,b0)的切線方程為 a0*x+b0*y=r^2
在圓(x^2+y^2=r^2)外一點(diǎn)M(a0,b0)引該圓的兩條切線,且兩切點(diǎn)為A,B,則A,B兩點(diǎn)所在直線的方程也為 a0*x+b0*y=r^2
圓的方程:
1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。
2、圓的方程
。1)標(biāo)準(zhǔn)方程,圓心,半徑為r;
。2)一般方程
當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為
當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形。
。3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。
3、直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設(shè)直線,圓,圓心到l的距離為,則有;;
。2)過(guò)圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程
。3)過(guò)圓上一點(diǎn)的切線方程:圓(x—a)2+(y—b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(x0—a)(x—a)+(y0—b)(y—b)=r2
4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。
設(shè)圓,
兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。
當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;
當(dāng)時(shí)兩圓外切,連心線過(guò)切點(diǎn),有外公切線兩條,內(nèi)公切線一條;
當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過(guò)切點(diǎn),只有一條公切線;
當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓。
注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)
數(shù)學(xué)如何預(yù)習(xí):
上課前對(duì)即將要上的數(shù)學(xué)內(nèi)容進(jìn)行閱讀,做到心中有數(shù),以便于掌握聽(tīng)課的主動(dòng)權(quán)。這樣有利于提高學(xué)習(xí)能力和養(yǎng)成自學(xué)的習(xí)慣,所以它是數(shù)學(xué)學(xué)習(xí)中的重要一環(huán)。
看書(shū)要?jiǎng)庸P。(不動(dòng)筆墨不讀書(shū))
、僖话悴捎眠呴喿x、邊思考、邊書(shū)寫(xiě)的方式,把內(nèi)容的要點(diǎn)、層次、聯(lián)系劃出來(lái)或打上記號(hào),寫(xiě)下自己的看法或在弄不懂的地方與問(wèn)題上做記號(hào);
、陬A(yù)習(xí)時(shí)一旦發(fā)現(xiàn)舊知識(shí)掌握得不好,甚至不理解時(shí),就要及時(shí)翻書(shū)查閱摘抄,采取措施補(bǔ)上,為順利學(xué)習(xí)新內(nèi)容創(chuàng)造條件。
、哿私獗竟(jié)課的基本內(nèi)容,也就是知道要講些什么,要解決什么問(wèn)題,采取什么方法,重點(diǎn)關(guān)鍵在哪里等等。
④要把某一本練習(xí)冊(cè)所對(duì)應(yīng)的章節(jié)拿出來(lái)大致看一遍,看哪些題一下能看會(huì),哪些題根本看不懂,然后帶著疑問(wèn)去聽(tīng)課。
成數(shù)概念:
一數(shù)為另一數(shù)的幾成,泛指比率:應(yīng)在生產(chǎn)組內(nèi)找標(biāo)準(zhǔn)勞動(dòng)力,互相比較,評(píng)成數(shù)。
表示一個(gè)數(shù)是另一個(gè)數(shù)的十分之幾的數(shù),叫做成數(shù)。
通常用在工農(nóng)業(yè)生產(chǎn)中表示生產(chǎn)的增長(zhǎng)狀況。幾成就是十分之幾。
例如,糧食產(chǎn)量增產(chǎn)“二成”。
“二成”即是十分之二,也就是糧食產(chǎn)量增加了20%。
在計(jì)算成數(shù)時(shí),設(shè)有甲、乙兩數(shù),求乙數(shù)對(duì)于甲數(shù)的比,并把比值化成純小數(shù),那么所得的純小數(shù)叫做乙數(shù)對(duì)于甲數(shù)的成數(shù)。其中小數(shù)第一位叫做“成”或“分”,第二位叫做“厘”。
例如,計(jì)劃糧食產(chǎn)量為5萬(wàn)斤,實(shí)際多產(chǎn)了1萬(wàn)斤,那么糧食增產(chǎn)的成數(shù)是1÷5=0.2,即糧食增產(chǎn)了二成。
成數(shù)與其他數(shù)的互化:
方法:分?jǐn)?shù)X10=成數(shù)成數(shù)/10=小數(shù)(成數(shù)除以10等于小數(shù))成數(shù)X10=百分?jǐn)?shù)
必修二數(shù)學(xué)直線方程知識(shí)點(diǎn)
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0180
(2)直線的斜率
、俣x:傾斜角不是90的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),不存在。
②過(guò)兩點(diǎn)的直線的斜率公式:
注意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90
(2)k與P1、P2的順序無(wú)關(guān);(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。
(3)直線方程
、冱c(diǎn)斜式:直線斜率k,且過(guò)點(diǎn)
注意:當(dāng)直線的斜率為0時(shí),k=0,直線的方程是y=y1。
當(dāng)直線的斜率為90時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。
、谛苯厥剑,直線斜率為k,直線在y軸上的截距為b
③兩點(diǎn)式:( )直線兩點(diǎn),
、芙鼐厥剑
其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。
⑤一般式:(A,B不全為0)
注意:各式的適用范圍特殊的方程如:
平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));
(5)直線系方程:即具有某一共同性質(zhì)的直線
(一)平行直線系
平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))
(二)垂直直線系
垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))
(三)過(guò)定點(diǎn)的直線系
(ⅰ)斜率為k的直線系:,直線過(guò)定點(diǎn);
(ⅱ)過(guò)兩條直線,的交點(diǎn)的直線系方程為
(為參數(shù)),其中直線不在直線系中。
(6)兩直線平行與垂直
注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。
(7)兩條直線的交點(diǎn)
相交
交點(diǎn)坐標(biāo)即方程組的一組解。
方程組無(wú)解;方程組有無(wú)數(shù)解與重合
(8)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),
則
(9)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離
(10)兩平行直線距離公式
在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。
學(xué)好數(shù)學(xué)的方法
1、做好課前預(yù)習(xí),掌握聽(tīng)課主動(dòng)權(quán)。課前準(zhǔn)備的好壞,直接影響聽(tīng)課的效果。
2、專(zhuān)心聽(tīng)講,做好課堂筆記。
3、及時(shí)復(fù)習(xí),把知識(shí)轉(zhuǎn)化為技能。
4、認(rèn)真完成作業(yè),形成技能技巧,提高分析解決問(wèn)題的能力。
5、及時(shí)進(jìn)行小結(jié),把所學(xué)知識(shí)條理化、系統(tǒng)化。
因此,今后還要保持“先預(yù)習(xí)、后聽(tīng)講;先復(fù)習(xí)、后作業(yè);經(jīng)常進(jìn)行階段小結(jié)”的好習(xí)慣。
數(shù)學(xué)集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個(gè)特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合
3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集:N_或N+
整數(shù)集:Z
有理數(shù)集:Q
實(shí)數(shù)集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合{x?R|x-3>2},{x|x-3>2}
3)語(yǔ)言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類(lèi):
(1)有限集含有有限個(gè)元素的集合
(2)無(wú)限集含有無(wú)限個(gè)元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
【高一下冊(cè)數(shù)學(xué)圓的方程知識(shí)點(diǎn)】相關(guān)文章:
高二數(shù)學(xué)下冊(cè)《圓方程》知識(shí)點(diǎn)01-27
高一數(shù)學(xué)知識(shí)點(diǎn)圓的標(biāo)準(zhǔn)方程07-03
高一必修數(shù)學(xué)圓的標(biāo)準(zhǔn)方程和一般方程知識(shí)點(diǎn)01-27
必修二數(shù)學(xué)圓與方程知識(shí)點(diǎn)總結(jié)02-10
高一數(shù)學(xué)《圓的標(biāo)準(zhǔn)方程和一般方程公式》的知識(shí)點(diǎn)07-15
高一數(shù)學(xué)第四單元圓的方程知識(shí)點(diǎn)梳理解析06-20
高一數(shù)學(xué)圓的知識(shí)點(diǎn)12-07