數(shù)學必考知識點15篇
在日常的學習中,是不是聽到知識點,就立刻清醒了?知識點也可以通俗的理解為重要的內容。掌握知識點是我們提高成績的關鍵!下面是小編幫大家整理的數(shù)學必考知識點,僅供參考,大家一起來看看吧。
數(shù)學必考知識點1
1、基本概念:
(1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;
(4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;
(5)頻數(shù)與頻率:在相同的條件S下重復n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例
fn(A)=為事件A出現(xiàn)的概率:對于給定的隨機事件A,如果隨著試驗次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。
(6)頻率與概率的區(qū)別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機事件的概率,概率從數(shù)量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個事件的概率
3.1.3概率的基本性質
1、基本概念:
(1)事件的包含、并事件、交事件、相等事件
(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;
(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對立事件;
(4)當事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)
2、概率的基本性質:
1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;
2)當事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);
3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);
4)互斥事件與對立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗中不會同時發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時不發(fā)生,而對立事件是指事件A與事件B有且僅有一個發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形。
3.2.1—3.2.2古典概型及隨機數(shù)的產生
1、(1)古典概型的使用條件:試驗結果的有限性和所有結果的等可能性。
(2)古典概型的解題步驟;
①求出總的基本事件數(shù);
、谇蟪鍪录嗀所包含的基本事件數(shù),然后利用公式P(A)
3.3.1—3.3.2幾何概型及均勻隨機數(shù)的產生
1、基本概念:
(1)幾何概率模型:如果每個事件發(fā)生的概率只與構成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;
(2)幾何概型的概率公式:
P(A)=
(3)幾何概型的特點:1)試驗中所有可能出現(xiàn)的結果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等.
數(shù)學必考知識點2
圖形的認識、測量量的計量
一、長度單位是用來測量物體的長度的。常用的長度單位有:千米、米、分米、厘米、毫米。
二、長度單位:
三、面積單位是用來測量物體的表面或平面圖形的大小的。常用面積單位:平方千米、公頃、平方米、平方分米、平方厘米。
四、測量和計算土地面積,通常用公頃作單位。邊長100米的正方形土地,面積是1公頃。
五、測量和計算大面積的土地,通常用平方千米作單位。邊長1000米的正方形土地,面積是1平方千米。
六、面積單位:(100)
七、體積單位是用來測量物體所占空間的大小的。常用的體積單位有:立方米、立方分米(升)、立方厘米(毫升)。
八、體積單位:(1000)
九、常用的質量單位有:噸、千克、克。
十、質量單位:
十一、常用的時間單位有:
世紀、年、季度、月、旬、日、時、分、秒。
十二、時間單位:(60)
十三、高級單位的名數(shù)改寫成低級單位的名數(shù)應該乘以進率;低級單位的名數(shù)改寫成高級單位的名數(shù)應該除以進率。
十四、常用計量單位用字母表示:
數(shù)學必考知識點3
復數(shù)的概念:
形如a+bi(a,b∈R)的數(shù)叫復數(shù),其中i叫做虛數(shù)單位。全體復數(shù)所成的集合叫做復數(shù)集,用字母C表示。
復數(shù)的表示:
復數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數(shù)的代數(shù)形式,其中a叫復數(shù)的實部,b叫復數(shù)的虛部。
復數(shù)的幾何意義:
(1)復平面、實軸、虛軸:
點Z的橫坐標是a,縱坐標是b,復數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復數(shù)的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)
(2)復數(shù)的幾何意義:復數(shù)集C和復平面內所有的點所成的集合是一一對應關系,即
這是因為,每一個復數(shù)有復平面內惟一的一個點和它對應;反過來,復平面內的每一個點,有惟一的一個復數(shù)和它對應。
這就是復數(shù)的一種幾何意義,也就是復數(shù)的另一種表示方法,即幾何表示方法。
復數(shù)的模:
復數(shù)z=a+bi(a、b∈R)在復平面上對應的點Z(a,b)到原點的距離叫復數(shù)的模,記為|Z|,即|Z|=
虛數(shù)單位i:
(1)它的平方等于-1,即i2=-1;
(2)實數(shù)可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立
(3)i與-1的關系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復數(shù)模的性質:
復數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關系:
對于復數(shù)a+bi(a、b∈R),當且僅當b=0時,復數(shù)a+bi(a、b∈R)是實數(shù)a;當b≠0時,復數(shù)z=a+bi叫做虛數(shù);當a=0且b≠0時,z=bi叫做純虛數(shù);當且僅當a=b=0時,z就是實數(shù)0。
數(shù)學必考知識點4
解排列組合問題的依據(jù)是:分類相加,分步相乘,有序排列,無序組合。
解排列組合問題的規(guī)律是:相鄰問題捆綁法;不鄰問題插空法;多排問題單排法;定位問題優(yōu)先法;定序問題倍縮法;多元問題分類法;有序分配問題法;選取問題先排后排法;至多至少問題間接法。
二項式系數(shù)與展開式某一項的系數(shù)易混,第r+1項的二項式系數(shù)為。二項式系數(shù)最大項與展開式中系數(shù)最大項易混。二項式系數(shù)最大項為中間一項或兩項;展開式中系數(shù)最大項的求法要用解不等式組來確定r
你掌握了三種常見的概率公式嗎?(①等可能事件的概率公式;②互斥事件有一個發(fā)生的概率公式;③相互獨立事件同時發(fā)生的概率公式。)
二項式展開式的通項公式、n次獨立重復試驗中事件A發(fā)生k次的概率易記混。
通項公式:它是第r+1項而不是第r項;
事件A發(fā)生k次的概率:。其中k=0,1,2,3,…,n,且0
求分布列的解答題你能把步驟寫全嗎?
如何對總體分布進行估計?(用樣本估計總體,是研究統(tǒng)計問題的一個基本思想方法,一般地,樣本容量越大,這種估計就越精確,要求能畫出頻率分布表和頻率分布直方圖;理解頻率分布直方圖矩形面積的幾何意義。)
你還記得一般正態(tài)總體如何化為標準正態(tài)總體嗎?(對任一正態(tài)總體來說,取值小于x的概率,其中表示標準正態(tài)總體取值小于的概率)
數(shù)學必考知識點5
一.例題講解:
【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},則M,N,P滿足關系
A) M=N P B) M N=P C) M N P D) N P M
分析一:從判斷元素的共性與區(qū)別入手。
解答一:對于集合M:{x|x= ,m∈Z};對于集合N:{x|x= ,n∈Z}
對于集合P:{x|x= ,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以M N=P,故選B。
分析二:簡單列舉集合中的元素。
解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},這時不要急于判斷三個集合間的關系,應分析各集合中不同的元素。
= ∈N, ∈N,∴M N,又 = M,∴M N,
= P,∴N P 又 ∈N,∴P N,故P=N,所以選B。
點評:由于思路二只是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。
變式:設集合, ,則( B )
A.M=N B.M N C.N M D.
解:
當時,2k+1是奇數(shù),k+2是整數(shù),選B
【例2】定義集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},則A*B的子集個數(shù)為
A)1 B)2 C)3 D)4
分析:確定集合A*B子集的個數(shù),首先要確定元素的個數(shù),然后再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。
解答:∵A*B={x|x∈A且x B}, ∴A*B={1,7},有兩個元素,故A*B的子集共有22個。選D。
變式1:已知非空集合M {1,2,3,4,5},且若a∈M,則6?a∈M,那么集合M的個數(shù)為
A)5個 B)6個 C)7個 D)8個
變式2:已知{a,b} A {a,b,c,d,e},求集合A.
解:由已知,集合中必須含有元素a,b.
集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.
評析本題集合A的個數(shù)實為集合{c,d,e}的真子集的個數(shù),所以共有個 .
【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實數(shù)p,q,r的值。
解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3.
∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A
∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的.兩根為-2和1,
∴ ∴
變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實數(shù)b,c,m的值.
解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=-5
∴B={x|x2-5x+6=0}={2,3} ∵A∪B=B ∴
又 ∵A∩B={2} ∴A={2} ∴b=-(2+2)=4,c=2×2=4
∴b=-4,c=4,m=-5
【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B滿足:A∪B={x|x>-2},且A∩B={x|1
分析:先化簡集合A,然后由A∪B和A∩B分別確定數(shù)軸上哪些元素屬于B,哪些元素不屬于B。
解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1] B,而(-∞,-2)∩B=ф。
綜合以上各式有B={x|-1≤x≤5}
變式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=,求a,b。(答案:a=-2,b=0)
點評:在解有關不等式解集一類集合問題,應注意用數(shù)形結合的方法,作出數(shù)軸來解之。
變式2:設M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有滿足條件的a的集合。
解答:M={-1,3} , ∵M∩N=N, ∴N M
、佼敃r,ax-1=0無解,∴a=0 ②
綜①②得:所求集合為{-1,0, }
【例5】已知集合 ,函數(shù)y=log2(ax2-2x+2)的定義域為Q,若P∩Q≠,求實數(shù)a的取值范圍。
分析:先將原問題轉化為不等式ax2-2x+2>0在 有解,再利用參數(shù)分離求解。
解答:(1)若 , 在 內有有解
令當 時,
所以a>-4,所以a的取值范圍是
變式:若關于x的方程 有實根,求實數(shù)a的取值范圍。
解答:
點評:解決含參數(shù)問題的題目,一般要進行分類討論,但并不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關鍵。一.知識歸納:
1.集合的有關概念。
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數(shù)集:N,Z,Q,R,N*
2.子集、交集、并集、補集、空集、全集等概念。
1)子集:若對x∈A都有x∈B,則A B(或A B);
2)真子集:A B且存在x0∈B但x0 A;記為A B(或,且 )
3)交集:A∩B={x| x∈A且x∈B}
4)并集:A∪B={x| x∈A或x∈B}
5)補集:CUA={x| x A但x∈U}
注意:①? A,若A≠?,則? A ;
、谌簦 ,則 ;
、廴羟 ,則A=B(等集)
3.弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:(1) 與、?的區(qū)別;(2) 與 的區(qū)別;(3) 與 的區(qū)別。
4.有關子集的幾個等價關系
①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
、蹵∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
5.交、并集運算的性質
、貯∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;
、跜u (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;
6.有限子集的個數(shù):設集合A的元素個數(shù)是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
數(shù)學必考知識點6
一、知識梳理
1.三種抽樣方法的聯(lián)系與區(qū)別:
類別共同點不同點相互聯(lián)系適用范圍
簡單隨機抽樣都是等概率抽樣從總體中逐個抽取總體中個體比較少
系統(tǒng)抽樣將總體均勻分成若干部分;按事先確定的規(guī)則在各部分抽取在起始部分采用簡單隨機抽樣總體中個體比較多
分層抽樣將總體分成若干層,按個體個數(shù)的比例抽取在各層抽樣時采用簡單隨機抽樣或系統(tǒng)抽樣總體中個體有明顯差異
(1)從含有N個個體的總體中抽取n個個體的樣本,每個個體被抽到的概率為
(2)系統(tǒng)抽樣的步驟:①將總體中的個體隨機編號;②將編號分段;③在第1段中用簡單隨機抽樣確定起始的個體編號;④按照事先研究的規(guī)則抽取樣本.
(3)分層抽樣的步驟:①分層;②按比例確定每層抽取個體的個數(shù);③各層抽樣;④匯合成樣本.
(4)要懂得從圖表中提取有用信息
如:在頻率分布直方圖中①小矩形的面積=組距=頻率②眾數(shù)是矩形的中點的橫坐標③中位數(shù)的左邊與右邊的直方圖的面積相等,可以由此估計中位數(shù)的值
2.方差和標準差都是刻畫數(shù)據(jù)波動大小的數(shù)字特征,一般地,設一組樣本數(shù)據(jù),,…,,其平均數(shù)為則方差,標準差
3.古典概型的概率公式:如果一次試驗中可能出現(xiàn)的結果有個,而且所有結果都是等可能的,如果事件包含個結果,那么事件的概率P=
特別提醒:古典概型的兩個共同特點:
○1,即試中有可能出現(xiàn)的基本事件只有有限個,即樣本空間Ω中的元素個數(shù)是有限的;
○2,即每個基本事件出現(xiàn)的可能性相等。
4.幾何概型的概率公式:P(A)=
特別提醒:幾何概型的特點:試驗的結果是無限不可數(shù)的;○2每個結果出現(xiàn)的可能性相等。
任一x?A,x?B,記做AB
AB,BAA=B
AB={x|x?A,且x?B}
AB={x|x?A,或x?B}
Card(AB)=card(A)+card(B)-card(AB)
(1)命題
原命題若p則q
逆命題若q則p
否命題若p則q
逆否命題若q,則p
(2)AB,A是B成立的充分條件
BA,A是B成立的必要條件
AB,A是B成立的充要條件
1.集合元素具有①確定性;②互異性;③無序性
2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法
(3)集合的運算
①A∩(B∪C)=(A∩B)∪(A∩C)
、贑u(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
(4)集合的性質
n元集合的字集數(shù):2n
真子集數(shù):2n-1;
非空真子集數(shù):2n-2
數(shù)學必考知識點7
不等式的解集:
、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。
、谝粋含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
、矍蟛坏仁浇饧倪^程叫做解不等式。
不等式的判定:
、俪R姷牟坏忍栍小>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
、谠诓坏仁健癮>b”或“a
、鄄坏忍柕拈_口所對的數(shù)較大,不等號的尖頭所對的數(shù)較小;
④在列不等式時,一定要注意不等式關系的關鍵字,如:正數(shù)、非負數(shù)、不大于、小于等等。
數(shù)學必考知識點8
高考數(shù)學必考知識點歸納必修一:
1、集合與函數(shù)的概念(這部分知識抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù))3、函數(shù)的性質及應用(比較抽象,較難理解)
高考數(shù)學必考知識點歸納必修二:
1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角。
這部分知識是高一學生的難點,比如:一個角實際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學生的立體意識較強。這部分知識高考占22---27分
2、直線方程:高考時不單獨命題,易和圓錐曲線結合命題
3、圓方程
高考數(shù)學必考知識點歸納必修三:
1、算法初步:高考必考內容,5分(選擇或填空)2、統(tǒng)計:3、概率:高考必考內容,09年理科占到15分,文科數(shù)學占到5分。
高考數(shù)學必考知識點歸納必修四:
1、三角函數(shù):(圖像、性質、高中重難點,)必考大題:15---20分,并且經(jīng)常和其他函數(shù)混合起來考查。
2、平面向量:高考不單獨命題,易和三角函數(shù)、圓錐曲線結合命題。09年理科占到5分,文科占到13分。
高考數(shù)學必考知識點歸納必修五:
1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學占到13分左右2、數(shù)列:高考必考,17---22分3、不等式:(線性規(guī)劃,聽課時易理解,但做題較復雜,應掌握技巧。高考必考5分)不等式不單獨命題,一般和函數(shù)結合求最值、解集。
高考數(shù)學必考知識點歸納文科選修:
選修1--1:重點:高考占30分
1、邏輯用語:一般不考,若考也是和集合放一塊考2、圓錐曲線:3、導數(shù)、導數(shù)的應用(高考必考)
選修1--2:
1、統(tǒng)計:2、推理證明:一般不考,若考會是填空題3、復數(shù):(新課標比老課本難的多,高考必考內容)。
高考數(shù)學必考知識點歸納理科選修:
選修2--1:1、邏輯用語2、圓錐曲線3、空間向量:(利用空間向量可以把立體幾何做題簡便化)選修2--2:1、導數(shù)與微積分2、推理證明:一般不考3、復數(shù)
選修2--3:1、計數(shù)原理:(排列組合、二項式定理)掌握這部分知識點需要大量做題找規(guī)律,無技巧。高考必考,10分2、隨機變量及其分布:不單獨命題3、統(tǒng)計:
數(shù)學必考知識點9
數(shù)的整除
1.整除:整數(shù)a除以整數(shù)b(b≠0),除得的商正好是整數(shù)而且沒有余數(shù),我們就說a能被b整除,或者說b能整除a。
2.約數(shù)、倍數(shù):如果數(shù)a能被數(shù)b整除,a就叫做b的倍數(shù),b就叫做a的約數(shù)。
3.一個數(shù)倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
一個數(shù)約數(shù)的個數(shù)是有限的,最小的約數(shù)是1,最大的約數(shù)是它本身。
4.按能否被2整除,非0的自然數(shù)分成偶數(shù)和奇數(shù)兩類,能被2整除的數(shù)叫做偶數(shù),不能被2整除的數(shù)叫做奇數(shù)。
5.按一個數(shù)約數(shù)的個數(shù),非0自然數(shù)可分為1、質數(shù)、合數(shù)三類。
質數(shù):一個數(shù),如果只有1和它本身兩個約數(shù),這樣的數(shù)叫做質數(shù)。質數(shù)都有2個約數(shù)。
合數(shù):一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù)。合數(shù)至少有3個約數(shù)。
最小的質數(shù)是2,最小的合數(shù)是4
1~20以內的質數(shù)有:2、3、5、7、11、13、17、19
1~20以內的合數(shù)有“4、6、8、9、10、12、14、15、16、18
6.能被2整除的數(shù)的特征:個位上是0、2、4、6、8的數(shù),都能被2整除。
能被5整除的數(shù)的特征:個位上是0或者5的數(shù),都能被5整除。
能被3整除的數(shù)的特征:一個數(shù)的各位上 數(shù)的和能被3整除,這個數(shù)就能被3整除。
7.質因數(shù):如果一個自然數(shù)的因數(shù)是質數(shù),這個因數(shù)就叫做這個自然數(shù)的質因數(shù)。
8.分解質因數(shù):把一個合數(shù)用質因數(shù)相乘的形式表示出來,叫做分解質因數(shù)。
9.公約數(shù)、公倍數(shù):幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù);其中最大的一個,叫做這幾個數(shù)的最大公約數(shù)。
幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù);其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù)。
10.一般關系的兩個數(shù)的最大公約數(shù)、最小公倍數(shù)用短除法來求;互質關系的兩個數(shù)最大公約數(shù)是1,最小公倍數(shù)是兩數(shù)之積;倍數(shù)關系的兩個數(shù)的最大公約數(shù)是小數(shù),最小公倍數(shù)是大數(shù)。
11.互質數(shù):公約數(shù)只有1的兩個數(shù)叫做互質數(shù)。
12.兩數(shù)之積等于最小公倍數(shù)和最大公約數(shù)的積。
數(shù)學必考知識點10
何謂“數(shù)、行、形、算”,也就是數(shù)論,行程,圖形、計算四個問題。數(shù)論難在它的抽象,這是區(qū)分尖子生和普通生的關鍵;行程問題復雜就在其應用,孩子在做這類題目的時候,要求的不僅是其思維,還有其表述;圖形問題(幾何問題)雜而難,重點要求的是面積的計算,這是中學教育的開始;計算是基礎,是孩子取得高分的必要保障。
由于這四個問題,學生容易入門,但不易熟練,時常犯錯誤,因此成為近年來重點中學考試的熱點,據(jù)了解,蘇州重點中學近年來的這幾大問題的考題占據(jù)全部了80%左右,對這些問題的考察也十分偏重,而數(shù)論和行程問題的考察更是重中之重,往往占到一張試卷的50%。那么如何復習這四方面的內容呢?
對于圖形問題,我們要說的就是培養(yǎng)孩子的形象思維,重點加強的是面積的計算。計算的技巧和方法也是在做題的總結和加強的,這里重點介紹一下數(shù)論和行程問題的復習方法。
數(shù)論在數(shù)論學習中學生往往容易犯如下幾個錯誤:
1、讀題障礙。數(shù)論的題目敘述往往只有幾句話,甚至只有一行,可就這短短的幾句話,卻表達了很多意思,學生如果讀不出題中的意思,題目通常會解錯。
2、知識僵化。由于數(shù)論問題非常抽象,大多數(shù)學生往往采用死記硬背的方法來“消化”所學的內容,導致各個知識點都似曾相識,但遇到實際題目卻一籌莫展。例如,說起奇偶性都知道怎么回事,馬上就開始背:“奇數(shù)+奇數(shù)=偶數(shù)……”可是在做題的時候就想不到用。
3、只見樹木,不見森林。對于數(shù)論定理的靈活運用很欠缺。提起定理都能一字不差的背下來,但是對各個概念和性質缺乏整體上的認識和把握,更不用說理解各知識點之間的內部聯(lián)系了。
知識體系:
整除問題:
(1)數(shù)的整除的特征和性質 (分班?純热)
(2)位值原理的應用(用字母和數(shù)字混合表示多位數(shù))
質數(shù)合數(shù):
(1)質數(shù)、合數(shù)的概念和判斷(2)分解質因數(shù)(重點)
約數(shù)倍數(shù):
(1)最大公約最小公倍數(shù)(2)約數(shù)個數(shù)決定法則 (?純热)
余數(shù)問題:
(1)帶余除式的理解和運用;(2)同余的性質和運用;(3)中國剩余定理奇偶問題:(1)奇偶與四則運算;(2)奇偶性質在實際解題過程中的應用完全平方數(shù):(1)完全平方數(shù)的判斷和性質(2)完全平方數(shù)的運用整數(shù)及分數(shù)的分解與分拆(重點、難點)
這四個問題我們需要掌握到什么樣的程度?
近幾年來,雖然一些重點中學對以上的幾個問題考察較多,但是難度通常不大,中等難度題目出現(xiàn)的頻率很高,通常在60%以上,因此我們的同學只要夯實基礎,對于這樣的一張分班試卷的完成應該是能取得很好的成績的。對此,編輯給出建議:如果我們的孩子不是要搞競賽,只是為了進入重點中學,中等題的掌握絕對是我們的重點,不能盲目追求難度,否則容易適得其反。
數(shù)學必考知識點11
1、解不等式問題的分類
(1)解一元一次不等式、
(2)解一元二次不等式、
(3)可以化為一元一次或一元二次不等式的不等式、
、俳庖辉叽尾坏仁;
②解分式不等式;
、劢鉄o理不等式;
、芙庵笖(shù)不等式;
、萁鈱(shù)不等式;
、藿鈳Ы^對值的不等式;
、呓獠坏仁浇M、
2、解不等式時應特別注意下列幾點:
(1)正確應用不等式的基本性質、
(2)正確應用冪函數(shù)、指數(shù)函數(shù)和對數(shù)函數(shù)的增、減性、
(3)注意代數(shù)式中未知數(shù)的取值范圍、
3、不等式的同解性
(5)|f(x)| (6)|f(x)|>g(x)①與f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②與g(x)<0同解、 (9)當a>1時,af(x)>ag(x)與f(x)>g(x)同解,當0ag(x)與f(x) (1)直線的傾斜角 定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180° (2)直線的斜率 、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度. 當時,;當時,;當時,不存在. 、谶^兩點的直線的斜率公式: 注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°; (2)k與P1、P2的順序無關;(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得; (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到. (3)直線方程 、冱c斜式:直線斜率k,且過點 注意:當直線的斜率為0°時,k=0,直線的方程是y=y1. 當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1. 、谛苯厥剑,直線斜率為k,直線在y軸上的截距為b 、蹆牲c式:()直線兩點, ④截矩式: 其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為. ⑤一般式:(A,B不全為0) 注意:各式的適用范圍特殊的方程如: 平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù)); (5)直線系方程:即具有某一共同性質的直線 (一)平行直線系 平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù)) (二)垂直直線系 垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù)) (三)過定點的直線系 (ⅰ)斜率為k的直線系:,直線過定點; (ⅱ)過兩條直線,的交點的直線系方程為 (為參數(shù)),其中直線不在直線系中. (6)兩直線平行與垂直 注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否. 1、柱、錐、臺、球的結構特征 (1)棱柱:定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相 平行,由這些面所圍成的幾何體。 分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。 表示:用各頂點字母,如五棱柱ABCDE?A'B'C'D'E'或用對角線的端點字母,如五棱柱AD' 幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平 行于底面的截面是與底面全等的多邊形。 (2)棱錐 定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等 表示:用各頂點字母,如五棱錐P?A'B'C'D'E' 幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離 與高的比的平方。 (3)棱臺:定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分 分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等 表示:用各頂點字母,如五棱臺P?A'B'C'D'E' 幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點 (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。 第一,函數(shù)與導數(shù)。主要考查集合運算、函數(shù)的有關概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導數(shù)。 第二,平面向量與三角函數(shù)、三角變換及其應用。這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。 第三,數(shù)列及其應用。這部分是高考的重點而且是難點,主要出一些綜合題。 第四,不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。 第五,概率和統(tǒng)計。這部分和我們的生活聯(lián)系比較大,屬應用題。 第六,空間位置關系的定性與定量分析。主要是證明平行或垂直,求角和距離。 第七,解析幾何。是高考的難點,運算量大,一般含參數(shù)。 高考對數(shù)學基礎知識的考查,既全面又突出重點,扎實的數(shù)學基礎是成功解題的關鍵。針對數(shù)學高考強調對基礎知識與基本技能的考查我們一定要全面、系統(tǒng)地復習高中數(shù)學的基礎知識,正確理解基本概念,正確掌握定理、原理、法則、公式、并形成記憶,形成技能。以不變應萬變。 1.長度單位有:千米、米、分米、厘米、毫米,寫出它們之間的進率 面積單位有:平方千米、公頃、平方米、平方分米、平方厘米,寫出它們之間的進率。 體積(容積)單位有:立方米、立方分米(升)、立方厘米(毫升),寫出它們之間的進率。 質量單位有:噸、千克、克,寫出它們之間的進率。 時間單位有:世紀、年、月、日、時、分、秒,寫出它們之間的進率。 2.一年中的大月有:1、3、5、7、8、10、12月,共7個,每月31天。 小月有:4、6、9、11月,共4個,每月30天。 二月平年是28天,閏年是29天。 3.一年有4個季度,每個季度3個月。 4.平年閏年:公歷年份是4的倍數(shù)的一般是閏年,公歷年份是整百數(shù)的,必須是400的倍數(shù)才是閏年。 5.名數(shù):把計量得到的數(shù)和單位名稱合起來叫做名數(shù)。 單名數(shù):只帶有一個單位名稱的叫做單名數(shù)。 復名數(shù):帶有兩個或兩個以上單位名稱的叫做復名數(shù)。 6.名數(shù)的改寫:高級單位的名數(shù)化成低級單位的名數(shù)乘進率,低級單位的名數(shù)化成高級單位的名數(shù)除以進率。 【數(shù)學必考知識點15篇】相關文章: 數(shù)學必考知識點09-13 數(shù)學高考必考知識點02-19 高考數(shù)學必考知識點11-21 高考數(shù)學必考知識點總結11-26 高二數(shù)學必考知識點10-26 高考數(shù)學必考知識點13篇11-22 初三數(shù)學必考知識點匯總10-20 考研數(shù)學各科必考知識點總結12-06數(shù)學必考知識點12
數(shù)學必考知識點13
數(shù)學必考知識點14
數(shù)學必考知識點15