亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

數(shù)學 百文網手機站

高一數(shù)學必修一知識點難點

時間:2022-07-20 12:05:08 數(shù)學 我要投稿

高一數(shù)學必修一知識點難點

  上學期間,說起知識點,應該沒有人不熟悉吧?知識點也可以通俗的理解為重要的內容。掌握知識點是我們提高成績的關鍵!以下是小編收集整理的高一數(shù)學必修一知識點難點,僅供參考,希望能夠幫助到大家。

高一數(shù)學必修一知識點難點

  高一數(shù)學必修一知識點難點 篇1

  二次函數(shù)

  I.定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c

  (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

  則稱y為x的二次函數(shù)。

  二次函數(shù)表達式的右邊通常為二次三項式。

  II.二次函數(shù)的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

  頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

  交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]

  注:在3種形式的互相轉化中,有如下關系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III.二次函數(shù)的圖像

  在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

  IV.拋物線的性質

  1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線的交點為拋物線的頂點P。

  特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2.拋物線有一個頂點P,坐標為

  P(-b/2a,(4ac-b^2)/4a)

  當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

  3.二次項系數(shù)a決定拋物線的開口方向和大小。

  當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  一次函數(shù)

  一、定義與定義式:

  自變量x和因變量y有如下關系:

  y=kx+b

  則此時稱y是x的一次函數(shù)。

  特別地,當b=0時,y是x的正比例函數(shù)。

  即:y=kx(k為常數(shù),k≠0)

  二、一次函數(shù)的性質:

  1.y的變化值與對應的x的變化值成正比例,比值為k即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))

  2.當x=0時,b為函數(shù)在y軸上的截距。

  三、一次函數(shù)的圖像及性質:

  1.作法與圖形:通過如下3個步驟

  (1)列表;

  (2)描點;

  (3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)

  2.性質:(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。

  3.k,b與函數(shù)圖像所在象限:

  當k>0時,直線必通過一、三象限,y隨x的增大而增大;

  當k<0時,直線必通過二、四象限,y隨x的增大而減小。

  當b>0時,直線必通過一、二象限;

  當b=0時,直線通過原點

  當b<0時,直線必通過三、四象限。

  特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

  這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

  高一數(shù)學必修一知識點難點 篇2

  棱錐

  棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

  棱錐的性質:

  (1)側棱交于一點。側面都是三角形

  (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

  正棱錐

  正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。

  正棱錐的性質:

  (1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

  (3)多個特殊的直角三角形

  esp:

  a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

  b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

  高一數(shù)學必修一知識點難點 篇3

  【第三章函數(shù)的應用】

  1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

  2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:

  方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.

  3、函數(shù)零點的求法:

  求函數(shù)的零點:

  1(代數(shù)法)求方程的實數(shù)根;

  2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質找出零點.

  4、二次函數(shù)的零點:

  二次函數(shù).

  1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.

  2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

  3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.

  高一數(shù)學必修一知識點難點 篇4

  集合(jihe)與函數(shù)概念

  一、集合(jihe)有關概念

  1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

  2、集合的中元素的三個特性:

  1.元素的確定性; 2.元素的互異性; 3.元素的無序性

  說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

  (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

  (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

  (4)集合元素的三個特性使集合本身具有了確定性和整體性。

  3、集合的表示:{ … }如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  2.集合的表示方法:列舉法與描述法。

  注意啊:常用數(shù)集及其記法:

  非負整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集N或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

  關于“屬于”的概念

  A?集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a

  列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

  描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

 、僬Z言描述法:例:{不是直角三角形的三角形}

 、跀(shù)學式子描述法:例:不等式x-3>R| x-3?2的解集是{x>2}或{x| x-3>2}

  4、集合的分類:

  1.有限集含有有限個元素的集合

  2.無限集含有無限個元素的集合

  3.空集不含任何元素的集合例:{x|x2=-5}

  高一數(shù)學必修一知識點難點 篇5

  定義:

  形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

  定義域和值域:

  當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進入函數(shù)的值域

  性質:

  對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

  排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

  排除了為0這種可能,即對于x<0和x>0的所有實數(shù),q不能是偶數(shù);

  排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。

  總結起來,就可以得到當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:

  高一數(shù)學必修一知識點難點 篇6

  空間幾何體表面積體積公式:

  1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

  2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

  3、a—邊長,S=6a2,V=a3

  4、長方體a—長,b—寬,c—高S=2(ab+ac+bc)V=abc

  5、棱柱S—h—高V=Sh

  6、棱錐S—h—高V=Sh/3

  7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3

  8、S1—上底面積,S2—下底面積,S0—中h—高,V=h(S1+S2+4S0)/6

  9、圓柱r—底半徑,h—高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圓柱R—外圓半徑,r—內圓半徑h—高V=πh(R^2—r^2)

  11、r—底半徑h—高V=πr^2h/3

  12、r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/313、球r—半徑d—直徑V=4/3πr^3=πd^3/6

  14、球缺h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3

  15、球臺r1和r2—球臺上、下底半徑h—高V=πh[3(r12+r22)+h2]/6

  16、圓環(huán)體R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑V=2π2Rr2=π2Dd2/4

  17、桶狀體D—桶腹直徑d—桶底直徑h—桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

  練習題:

  1、正四棱錐P—ABCD的側棱長和底面邊長都等于,有兩個正四面體的棱長也都等于。當這兩個正四面體各有一個面與正四棱錐的側面PAD,側面PBC完全重合時,得到一個新的多面體,該多面體是()

 。ˋ)五面體

 。˙)七面體

 。–)九面體

 。―)十一面體

  2、正四面體的四個頂點都在一個球面上,且正四面體的高為4,則球的表面積為()

  (A)9

 。˙)18

 。–)36

 。―)64

  3、下列說法正確的是()

  A、棱柱的側面可以是三角形

  B、正方體和長方體都是特殊的四棱柱

  C、所有的幾何體的表面都能展成平面圖形

  D、棱柱的各條棱都相等

  高一數(shù)學必修一知識點難點 篇7

  高一數(shù)學函數(shù)知識點歸納

  1、函數(shù):設A、B為非空集合,如果按照某個特定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù),寫作y=f(x),x∈A,其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域,與x相對應的y的值叫做函數(shù)值,函數(shù)值的集合B={f(x)∣x∈A }叫做函數(shù)的值域。

  2、函數(shù)定義域的解題思路:

 、湃魓處于分母位置,則分母x不能為0。

  ⑵偶次方根的被開方數(shù)不小于0。

 、菍(shù)式的真數(shù)必須大于0。

 、戎笖(shù)對數(shù)式的底,不得為1,且必須大于0。

 、芍笖(shù)為0時,底數(shù)不得為0。

  ⑹如果函數(shù)是由一些基本函數(shù)通過四則運算結合而成的,那么,它的定義域是各個部分都有意義的x值組成的集合。

 、藢嶋H問題中的函數(shù)的定義域還要保證實際問題有意義。

  3、相同函數(shù)

 、疟磉_式相同:與表示自變量和函數(shù)值的字母無關。

  ⑵定義域一致,對應法則一致。

  4、函數(shù)值域的求法

 、庞^察法:適用于初等函數(shù)及一些簡單的由初等函數(shù)通過四則運算得到的函數(shù)。

 、茍D像法:適用于易于畫出函數(shù)圖像的函數(shù)已經分段函數(shù)。

 、桥浞椒ǎ褐饕糜诙魏瘮(shù),配方成y=(x-a)2+b的形式。

 、却鷵Q法:主要用于由已知值域的函數(shù)推測未知函數(shù)的值域。

  5、函數(shù)圖像的變換

 、牌揭谱儞Q:在x軸上的變換在x上就行加減,在y軸上的變換在y上進行加減。

 、粕炜s變換:在x前加上系數(shù)。

 、菍ΨQ變換:高中階段不作要求。

  6、映射:設A、B是兩個非空集合,如果按某一個確定的對應法則f,使對于A中的任意儀的元素x,在集合B中都有唯一的確定的`y與之對應,那么就稱對應f:A→B為從集合A到集合B的映射。

 、偶螦中的每一個元素,在集合B中都有象,并且象是唯一的。

 、萍螦中的不同元素,在集合B中對應的象可以是同一個。

 、遣灰蠹螧中的每一個元素在集合A中都有原象。

  7、分段函數(shù)

 、旁诙x域的不同部分上有不同的解析式表達式。

  ⑵各部分自變量和函數(shù)值的取值范圍不同。

 、欠侄魏瘮(shù)的定義域是各段定義域的交集,值域是各段值域的并集。

  8、復合函數(shù):如果(u∈M),u=g(x) (x∈A),則,y=f[g(x)]=F(x) (x∈A),稱為f、g的復合函數(shù)。

  高一數(shù)學必修五知識點總結

  空間兩條直線只有三種位置關系:平行、相交、異面

  1、按是否共面可分為兩類:

  (1)共面:平行、相交

  (2)異面:

  異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。

  異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。

  兩異面直線所成的角:范圍為(0°,90°)

  esp.空間向量法

  兩異面直線間距離:公垂線段(有且只有一條)

  esp.空間向量法

  2、若從有無公共點的角度看可分為兩類:

  (1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面

  高一數(shù)學直線和平面的位置關系

  直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行

 、僦本在平面內——有無數(shù)個公共點

 、谥本和平面相交——有且只有一個公共點

  直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。

  空間向量法(找平面的法向量)

  規(guī)定:

  a、直線與平面垂直時,所成的角為直角,

  b、直線與平面平行或在平面內,所成的角為0°角

  由此得直線和平面所成角的取值范圍為[0°,90°]

  最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角

  三垂線定理及逆定理:如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直

  直線和平面垂直

  直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

  直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于這個平面。

  直線與平面垂直的性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點

  直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

  直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。

  直線和平面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線和交線平行。

  高一數(shù)學必修一知識點難點 篇8

  冪函數(shù)的性質:

  對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設a=—k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

  排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

  排除了為0這種可能,即對于x<0x="">0的所有實數(shù),q不能是偶數(shù);

  排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。

  總結起來,就可以得到當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);

  如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。

  在x大于0時,函數(shù)的值域總是大于0的實數(shù)。

  在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。

  而只有a為正數(shù),0才進入函數(shù)的值域。

  由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況。

  可以看到:

 。1)所有的圖形都通過(1,1)這點。

  (2)當a大于0時,冪函數(shù)為單調遞增的,而a小于0時,冪函數(shù)為單調遞減函數(shù)。

 。3)當a大于1時,冪函數(shù)圖形下凹;當a小于1大于0時,冪函數(shù)圖形上凸。

 。4)當a小于0時,a越小,圖形傾斜程度越大。

 。5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。

  (6)顯然冪函數(shù)無界。

  解題方法:換元法

  解數(shù)學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這種方法叫換元法。換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理。

  換元法又稱輔助元素法、變量代換法。通過引進新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結論聯(lián)系起來;蛘咦?yōu)槭煜さ男问,把復雜的計算和推證簡化。

  它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應用。

  高一數(shù)學必修一知識點難點 篇9

  一、定義與定義式:

  自變量x和因變量有如下關系:

  =x+b

  則此時稱是x的一次函數(shù)。

  特別地,當b=0時,是x的正比例函數(shù)。

  即:=x(為常數(shù),≠0)

  二、一次函數(shù)的性質:

  1.的變化值與對應的x的變化值成正比例,比值為

  即:=x+b(為任意不為零的實數(shù)b取任何實數(shù))

  2.當x=0時,b為函數(shù)在軸上的截距。

  三、一次函數(shù)的圖像及性質:

  1.作法與圖形:通過如下3個步驟

  (1)列表;

 。2)描點;

  (3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和軸的交點)

  2.性質:(1)在一次函數(shù)上的任意一點P(x,x),都滿足等式:=x+b.(2)一次函數(shù)與軸交點的坐標總是(0,b),與x軸總是交于(-b/,0)正比例函數(shù)的圖像總是過原點。

  3.b與函數(shù)圖像所在象限:

  當>0時,直線必通過一、三象限,隨x的增大而增大;

  當<0時,直線必通過二、四象限,隨x的增大而減小。

  當b>0時,直線必通過一、二象限;

  當b=0時,直線通過原點

  當b<0時,直線必通過三、四象限。

  特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

  這時,當>0時,直線只通過一、三象限;當<0時,直線只通過二、四象限。

  四、確定一次函數(shù)的表達式:

  已知點A(x1,1);B(x2,2),請確定過點A、B的一次函數(shù)的表達式。

 。1)設一次函數(shù)的表達式(也叫解析式)為=x+b.

 。2)因為在一次函數(shù)上的任意一點P(x,),都滿足等式=x+b.所以可以列出2個方程:1=x1+b……①和2=x2+b……②

 。3)解這個二元一次方程,得到,b的值。

 。4)最后得到一次函數(shù)的表達式。

  五、一次函數(shù)在生活中的應用:

  1.當時間t一定,距離s是速度v的一次函數(shù)。s=vt.

  2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設水池中原有水量S.g=S-ft.

  六、常用公式:(不全,希望有人補充)

  1.求函數(shù)圖像的值:(1-2)/(x1-x2)

  2.求與x軸平行線段的中點:|x1-x2|/2

  3.求與軸平行線段的中點:|1-2|/2

  4.求任意線段的長:√(x1-x2)^2+(1-2)^2(注:根號下(x1-x2)與(1-2)的平方和)

【高一數(shù)學必修一知識點難點】相關文章:

最新數(shù)學高一必修知識點02-23

高一數(shù)學必修二知識點04-02

人教版高一數(shù)學必修一知識點01-27

高一數(shù)學必修一知識點總結11-26

高一數(shù)學必修一知識點的總結01-25

高一數(shù)學必修一知識點總結10-22

高一數(shù)學必修二知識點匯總01-26

高一數(shù)學必修1各章知識點02-22

高一數(shù)學必修4知識點總結12-01