高二數(shù)學易錯知識點歸納五篇
在年少學習的日子里,是不是聽到知識點,就立刻清醒了?知識點就是學習的重點。想要一份整理好的知識點嗎?下面是小編收集整理的高二數(shù)學易錯知識點歸納五篇,僅供參考,大家一起來看看吧。
高二數(shù)學易錯知識點歸納五篇1
1.不等式證明的依據(jù)
(2)不等式的性質(略)
(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
②a2+b2≥2ab(a、b∈R,當且僅當a=b時取“=”號)
2.不等式的證明方法
(1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.
用比較法證明不等式的步驟是:作差——變形——判斷符號.
(2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質和已證明過的不等式,推導出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.
(3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時,從而斷定原不等式成立,這種證明不等式的方法叫做分析法.
證明不等式除以上三種基本方法外,還有反證法、數(shù)學歸納法等.
高二數(shù)學易錯知識點歸納五篇2
導數(shù)是微積分中的重要基礎概念。當函數(shù)y=f(x)的自變量x在一點x0上產生一個增量Δx時,函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導數(shù),記作f'(x0)或df(x0)/dx。
導數(shù)是函數(shù)的局部性質。一個函數(shù)在某一點的導數(shù)描述了這個函數(shù)在這一點附近的變化率。如果函數(shù)的自變量和取值都是實數(shù)的話,函數(shù)在某一點的導數(shù)就是該函數(shù)所代表的曲線在這一點上的切線斜率。導數(shù)的本質是通過極限的概念對函數(shù)進行局部的線性逼近。例如在運動學中,物體的位移對于時間的導數(shù)就是物體的瞬時速度。
不是所有的函數(shù)都有導數(shù),一個函數(shù)也不一定在所有的點上都有導數(shù)。若某函數(shù)在某一點導數(shù)存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導。
對于可導的函數(shù)f(x),x?f'(x)也是一個函數(shù),稱作f(x)的導函數(shù)。尋找已知的函數(shù)在某點的導數(shù)或其導函數(shù)的過程稱為求導。實質上,求導就是一個求極限的過程,導數(shù)的四則運算法則也來源于極限的四則運算法則。反之,已知導函數(shù)也可以倒過來求原來的函數(shù),即不定積分。微積分基本定理說明了求原函數(shù)與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。
高二數(shù)學易錯知識點歸納五篇3
第一章:集合和函數(shù)的基本概念,錯誤基本都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個不小心就是五分沒了。次一級的知識點就是集合的韋恩圖,會畫圖,集合的“并、補、交、非”也就解決了,還有函數(shù)的定義域和函數(shù)的單調性、增減性的概念,這些都是函數(shù)的基礎而且不難理解。在第一輪復習中一定要反復去記這些概念,的方法是寫在筆記本上,每天至少看上一遍。
第二章:基本初等函數(shù):指數(shù)、對數(shù)、冪函數(shù)三大函數(shù)的運算性質及圖像。函數(shù)的幾大要素和相關考點基本都在函數(shù)圖像上有所體現(xiàn),單調性、增減性、極值、零點等等。關于這三大函數(shù)的運算公式,多記多用,多做一點練習基本就沒多大問題。函數(shù)圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數(shù)圖像,定義域、值域、零點等等。對于冪函數(shù)還要搞清楚當指數(shù)冪大于一和小于一時圖像的不同及函數(shù)值的大小關系,這也是常考常錯點。另外指數(shù)函數(shù)和對數(shù)函數(shù)的對立關系及其相互之間要怎樣轉化問題也要了解清楚。
第三章:函數(shù)的應用。主要就是函數(shù)與方程的結合。其實就是的實根,即函數(shù)的零點,也就是函數(shù)圖像與X軸的交點。這三者之間的轉化關系是這一章的重點,要學會在這三者之間的靈活轉化,以求能最簡單的解決問題。關于證明零點的方法,直接計算加得必有零點,連續(xù)函數(shù)在x軸上方下方有定義則有零點等等,這是這一章的難點,這幾種證明方法都要記得,多練習強化。這二次函數(shù)的零點的Δ判別法,這個倒不算難。
高二數(shù)學易錯知識點歸納五篇4
導數(shù):導數(shù)的意義-導數(shù)公式-導數(shù)應用(極值最值問題、曲線切線問題)
1、導數(shù)的定義:在點處的導數(shù)記作.
2.導數(shù)的幾何物理意義:曲線在點處切線的斜率
①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。
3.常見函數(shù)的導數(shù)公式:①;②;③;
、;⑥;⑦;⑧。
4.導數(shù)的四則運算法則:
5.導數(shù)的應用:
(1)利用導數(shù)判斷函數(shù)的'單調性:設函數(shù)在某個區(qū)間內可導,如果,那么為增函數(shù);如果,那么為減函數(shù);
注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。
(2)求極值的步驟:
①求導數(shù);
、谇蠓匠痰母;
、哿斜:檢驗在方程根的左右的符號,如果左正右負,那么函數(shù)在這個根處取得極大值;如果左負右正,那么函數(shù)在這個根處取得極小值;
(3)求可導函數(shù)值與最小值的步驟:
、∏蟮母;ⅱ把根與區(qū)間端點函數(shù)值比較,的為值,最小的是最小值。
高二數(shù)學易錯知識點歸納五篇5
1.在中學我們只研直圓柱、直圓錐和直圓臺。所以對圓柱、圓錐、圓臺的旋轉定義、實際上是直圓柱、直圓錐、直圓臺的定義。
這樣定義直觀形象,便于理解,而且對它們的性質也易推導。
對于球的定義中,要注意區(qū)分球和球面的概念,球是實心的。
等邊圓柱和等邊圓錐是特殊圓柱和圓錐,它是由其軸截面來定義的,在實踐中運用較廣,要注意與一般圓柱、圓錐的區(qū)分。
2.圓柱、圓錐、圓和球的性質
(1)圓柱的性質,要強調兩點:一是連心線垂直圓柱的底面;二是三個截面的性質——平行于底面的截面是與底面全等的圓;軸截面是一個以上、下底面圓的直徑和母線所組成的矩形;平行于軸線的截面是一個以上、下底的圓的弦和母線組成的矩形。
(2)圓錐的性質,要強調三點
①平行于底面的截面圓的性質:
截面圓面積和底面圓面積的比等于從頂點到截面和從頂點到底面距離的平方比。
②過圓錐的頂點,且與其底面相交的截面是一個由兩條母線和底面圓的弦組成的等腰三角形,其面積為:
易知,截面三角形的頂角不大于軸截面的頂角(如圖10-20),事實上,由BC≥AB,VC=VB=VA可得∠AVB≤BVC.
由于截面三角形的頂角不大于軸截面的頂角。
所以,當軸截面的頂角θ≤90°,有0°<α≤θ≤90°,即有
當軸截面的頂角θ>90°時,軸截面的面積卻不是的,這是因為,若90°≤α<θ<180°時,1≥sinα>sinθ>0.
、蹐A錐的母線l,高h和底面圓的半徑組成一個直徑三角形,圓錐的有關計算問題,一般都要歸結為解這個直角三角形,特別是關系式
l2=h2+R2
(3)圓臺的性質,都是從“圓臺為截頭圓錐”這個事實推得的,高考,但仍要強調下面幾點:
、賵A臺的母線共點,所以任兩條母線確定的截面為一等腰梯形,但是,與上、下底面都相交的截面不一定是梯形,更不一定是等腰梯形。
②平行于底面的截面若將圓臺的高分成距上、下兩底為兩段的截面面積為S,則其中S1和S2分別為上、下底面面積。
的截面性質的推廣。
、蹐A臺的母線l,高h和上、下兩底圓的半徑r、R,組成一個直角梯形,且有l(wèi)2=h2+(R-r)2
圓臺的有關計算問題,常歸結為解這個直角梯形。
(4)球的性質,著重掌握其截面的性質。
、儆萌我馄矫娼厍蛩玫慕孛媸且粋圓面,球心和截面圓圓心的連線與這個截面垂直。
、谌绻肦和r分別表示球的半徑和截面圓的半徑,d表示球心到截面的距離,則R2=r2+d2
即,球的半徑,截面圓的半徑,和球心到截面的距離組成一個直角三角形,有關球的計算問題,常歸結為解這個直角三角形。
【高二數(shù)學易錯知識點歸納五篇】相關文章:
高考易錯知識點歸納09-29
最新中考政治易錯知識點歸納10-23
高考數(shù)學易忘易錯易混知識點匯總09-18
高考數(shù)學易錯的知識點09-27
數(shù)學高考易錯知識點匯總09-26
高考數(shù)學易錯知識點匯總09-26
高考數(shù)學幾何易錯知識點09-05