高二數(shù)學(xué)必考知識(shí)點(diǎn)歸納整理5篇
上學(xué)的時(shí)候,是不是聽到知識(shí)點(diǎn),就立刻清醒了?知識(shí)點(diǎn)就是學(xué)習(xí)的重點(diǎn)。哪些知識(shí)點(diǎn)能夠真正幫助到我們呢?下面是小編幫大家整理的高二數(shù)學(xué)必考知識(shí)點(diǎn)歸納整理5篇,歡迎閱讀,希望大家能夠喜歡。
高二數(shù)學(xué)必考知識(shí)點(diǎn)歸納整理5篇1
一、數(shù)列定義:
如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。
等差數(shù)列的通項(xiàng)公式為:an=a1+(n-1)d(1)
前n項(xiàng)和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
以上n均屬于正整數(shù)。
二、解釋說(shuō)明:
從(1)式可以看出,an是n的一次函數(shù)(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項(xiàng)為0。
在等差數(shù)列中,等差中項(xiàng):一般設(shè)為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項(xiàng),且為數(shù)列的平均數(shù)。
且任意兩項(xiàng)am,an的關(guān)系為:an=am+(n-m)d
它可以看作等差數(shù)列廣義的通項(xiàng)公式。
三、推論公式:
從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N,且m+n=p+q,則有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數(shù)列,等等。
四、基本公式:
和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1
首項(xiàng)=2和÷項(xiàng)數(shù)-末項(xiàng)
末項(xiàng)=2和÷項(xiàng)數(shù)-首項(xiàng)
末項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)-1)×公差
高二數(shù)學(xué)必考知識(shí)點(diǎn)歸納整理5篇2
一、隨機(jī)事件
主要掌握好(三四五)
(1)事件的三種運(yùn)算:并(和)、交(積)、差;注意差A(yù)-B可以表示成A與B的逆的積。
(2)四種運(yùn)算律:交換律、結(jié)合律、分配律、德莫根律。
(3)事件的五種關(guān)系:包含、相等、互斥(互不相容)、對(duì)立、相互獨(dú)立。
二、概率定義
(1)統(tǒng)計(jì)定義:頻率穩(wěn)定在一個(gè)數(shù)附近,這個(gè)數(shù)稱為事件的概率;(2)古典定義:要求樣本空間只有有限個(gè)基本事件,每個(gè)基本事件出現(xiàn)的可能性相等,則事件A所含基本事件個(gè)數(shù)與樣本空間所含基本事件個(gè)數(shù)的.比稱為事件的古典概率;
(3)幾何概率:樣本空間中的元素有無(wú)窮多個(gè),每個(gè)元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個(gè)幾何圖形,事件A看成這個(gè)圖形的子集,它的概率通過(guò)子集圖形的大小與樣本空間圖形的大小的比來(lái)計(jì)算;
(4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。
三、概率性質(zhì)與公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨(dú)立,則P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
如果一個(gè)事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.
(5)二項(xiàng)概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當(dāng)一個(gè)問題可以看成n重貝努力試驗(yàn)(三個(gè)條件:n次重復(fù),每次只有A與A的逆可能發(fā)生,各次試驗(yàn)結(jié)果相互獨(dú)立)時(shí),要考慮二項(xiàng)概率公式.
高二數(shù)學(xué)必考知識(shí)點(diǎn)歸納整理5篇3
一、圓的定義
平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。
二、圓的方程
(x-a)^2+(y-b)^2=r^2
(1)標(biāo)準(zhǔn)方程,圓心(a,b),半徑為r;
(2)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。
三、直線與圓的位置關(guān)系
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設(shè)直線,圓,圓心到l的距離為,則有;;
(2)過(guò)圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過(guò)圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
高二數(shù)學(xué)必考知識(shí)點(diǎn)歸納整理5篇4
一、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、
俯視圖(從上向下)
注:正視圖反映了物體的高度和長(zhǎng)度;俯視圖反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體的高度和寬度。
二、空間幾何體的直觀圖——斜二測(cè)畫法
斜二測(cè)畫法特點(diǎn):①原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;
、谠瓉(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。
三、柱體、錐體、臺(tái)體的表面積與體積
(1)幾何體的表面積為幾何體各個(gè)面的面積的和。
(2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高,為斜高,l為母線)
(3)柱體、錐體、臺(tái)體的體積公式
(4)球體的表面積和體積公式:V=;S=
高二數(shù)學(xué)必考知識(shí)點(diǎn)歸納整理5篇5
一、分層抽樣
先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟,然后再在各個(gè)類型或?qū)哟沃胁捎煤?jiǎn)單隨機(jī)抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來(lái)構(gòu)成總體的樣本。
兩種方法
1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。
2.分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個(gè)個(gè)同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。
二、分層標(biāo)準(zhǔn)
(1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。
(2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。
(3)以那些有明顯分層區(qū)分的變量作為分層變量。
三、分層的比例問題
(1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來(lái)抽取子樣本的方法。
(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會(huì)非常少,此時(shí)采用該方法,主要是便于對(duì)不同層次的子總體進(jìn)行專門研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對(duì)各層的數(shù)據(jù)資料進(jìn)行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實(shí)際的比例結(jié)構(gòu)。
【高二數(shù)學(xué)必考知識(shí)點(diǎn)歸納整理5篇】相關(guān)文章:
高二數(shù)學(xué)必考知識(shí)點(diǎn)精選歸納【五篇】08-04
高二數(shù)學(xué)必考知識(shí)點(diǎn)10-26
高二數(shù)學(xué)知識(shí)點(diǎn)歸納整理分享五篇12-07
高二數(shù)學(xué)知識(shí)點(diǎn)歸納整理最新精選5篇12-13
高考數(shù)學(xué)導(dǎo)數(shù)的應(yīng)用必考知識(shí)點(diǎn)整理01-27
高二數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)歸納12-07