- 相關(guān)推薦
高三數(shù)學(xué)復(fù)習(xí)資料
高三數(shù)學(xué)復(fù)習(xí)資料1
考綱要求
1.會從實際情境中抽象出二元一次不等式組.
2.了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
3.會從實際情境中抽象出一些簡單的'二元線性規(guī)劃問題,并能加以解決.
考綱研讀
二元一次不等式表示相應(yīng)直線 Ax+By+C=0 某一側(cè)所有點組成的平面區(qū)域,可結(jié)合交集的概念去理解不等式組表示的平面區(qū)域.對于線性規(guī)劃問題,能通過平移直線求目標(biāo)函數(shù)的最值.對于實際問題,能轉(zhuǎn)化成兩個相關(guān)變量有關(guān)的不等式(組),再利用線性規(guī)劃知識求解.
高三數(shù)學(xué)復(fù)習(xí)資料2
簡單地說C是組合,也可以理解為沒有順序要求的情況;A是排列,需要有不同的順序。
比如你寫的C(4,1)就是指在4個里面選1個。沒有順序(1個本來就沒有順序,但2個以上也同樣不用考慮順序問題。)
你寫的A(5,3)就是在5個里面選3個,但這3個不同的順序算作不同的情況。
現(xiàn)舉例說明A(5,3)和C(5,3)的區(qū)別。
如:12345這5個數(shù),選其中的三個數(shù),共有C(5,3)=10種選法。列舉為(123)、(124)、(125)、(134)、(135)、(145)、(234)、(235)、(245)、(345)共10種。
同樣這5個數(shù),如果組成沒有復(fù)數(shù)字的三位數(shù),就是A(5,3)=60種。123、132、213、231、312、321也就是原來的`一種組合現(xiàn)在變成了6種情況了。
公式更簡單。C(4,1)=4/1=4
C(5,3)=(5*4*3)/(3*2*1)
C(7,2)=(7*6)/(2*1)
也就是分子是下標(biāo)依次遞減相乘,乘的個數(shù)正好是上標(biāo)的個數(shù)。
分母就是上標(biāo)的階乘。
A(5,3)=5*4*3
A(8,6)=8*7*6*5*4*3
A(4,2)=4*3
也就是只有組合時分子的情況,沒有分母。
高三數(shù)學(xué)復(fù)習(xí)資料3
函數(shù)思想是指運用運動變化的觀點,分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,通過建立函數(shù)關(guān)系(或構(gòu)造函數(shù))運用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題;方程思想,是從問題的數(shù)量關(guān)系入手,運用數(shù)學(xué)語言將問題轉(zhuǎn)化為方程(方程組)或不等式模型(方程、不等式等)去解決問題。利用轉(zhuǎn)化思想我們還可進(jìn)行函數(shù)與方程間的相互轉(zhuǎn)化。
數(shù)形結(jié)合思想
中學(xué)數(shù)學(xué)研究的對象可分為兩大部分,一部分是數(shù),一部分是形,但數(shù)與形是有聯(lián)系的,這個聯(lián)系稱之為數(shù)形結(jié)合或形數(shù)結(jié)合。它既是尋找問題解決切入點的“法寶”,又是優(yōu)化解題途徑的“良方”,因此我們在解答數(shù)學(xué)題時,能畫圖的盡量畫出圖形,以利于正確地理解題意、快速地解決問題。
特殊與一般的思想
用這種思想解選擇題有時特別有效,這是因為一個命題在普遍意義上成立時,在其特殊情況下也必然成立,根據(jù)這一點,我們可以直接確定選擇題中的正確選項。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣精彩。
極限思想解題步驟
極限思想解決問題的一般步驟為:(1)對于所求的未知量,先設(shè)法構(gòu)思一個與它有關(guān)的變量;(2)確認(rèn)這變量通過無限過程的結(jié)果就是所求的未知量;(3)構(gòu)造函數(shù)(數(shù)列)并利用極限計算法則得出結(jié)果或利用圖形的極限位置直接計算結(jié)果。
分類討論思想
我們常常會遇到這樣一種情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進(jìn)行下去,這是因為被研究的對象包含了多種情況,這就需要對各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數(shù)學(xué)概念本身具有多種情形,數(shù)學(xué)運算法則、某些定理、公式的`限制,圖形位置的不確定性,變化等均可能引起分類討論。在分類討論解題時,要做到標(biāo)準(zhǔn)統(tǒng)一,不重不漏。
擁有一個整體的高考文科數(shù)學(xué)解題思路,會對文科生答數(shù)學(xué)題有很大的幫助,可以更好的立于高考學(xué)生的第三輪復(fù)試,提高文科數(shù)學(xué)成績。
高三數(shù)學(xué)復(fù)習(xí)資料4
。1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.
當(dāng)時,;當(dāng)時,;當(dāng)時,不存在.
、谶^兩點的直線的斜率公式:
注意下面四點:(1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
。2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;
。4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到.
。3)直線方程
、冱c斜式:直線斜率k,且過點
注意:當(dāng)直線的斜率為0°時,k=0,直線的方程是y=y1.
當(dāng)直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標(biāo)都等于x1,所以它的方程是x=x1.
、谛苯厥剑,直線斜率為k,直線在y軸上的截距為b
、蹆牲c式:()直線兩點,④截矩式:
其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為.
⑤一般式:(A,B不全為0)
注意:各式的適用范圍特殊的方程如:
平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));
。5)直線系方程:即具有某一共同性質(zhì)的直線
。ㄒ唬┢叫兄本系
平行于已知直線(是不全為0的常數(shù))的'直線系:(C為常數(shù))
。ǘ┐怪敝本系
垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))
(三)過定點的直線系
。á。┬甭蕿閗的直線系:,直線過定點;
(ⅱ)過兩條直線,的交點的直線系方程為
。閰(shù)),其中直線不在直線系中.
。6)兩直線平行與垂直
注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.
高三數(shù)學(xué)復(fù)習(xí)資料匯總2
1.進(jìn)行集合的交、并、補(bǔ)運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解.
2.在應(yīng)用條件時,易A忽略是空集的情況
3.你會用補(bǔ)集的思想解決有關(guān)問題嗎?
4.簡單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?
5.你知道“否命題”與“命題的否定形式”的區(qū)別.
6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則.
7.判斷函數(shù)奇偶性時,易忽略檢驗函數(shù)定義域是否關(guān)于原點對稱.
8.求一個函數(shù)的解析式和一個函數(shù)的反函數(shù)時,易忽略標(biāo)注該函數(shù)的定義域.
9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)
10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負(fù))和導(dǎo)數(shù)法
11.求函數(shù)單調(diào)性時,易錯誤地在多個單調(diào)區(qū)間之間添加符號“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示.
12.求函數(shù)的值域必須先求函數(shù)的定義域。
13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問題).這幾種基本應(yīng)用你掌握了嗎?
14.解對數(shù)函數(shù)問題時,你注意到真數(shù)與底數(shù)的限制條件了嗎?
。ㄕ鏀(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論
15.三個二次(哪三個二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?
16.用換元法解題時易忽略換元前后的等價性,易忽略參數(shù)的范圍。
17.“實系數(shù)一元二次方程有實數(shù)解”轉(zhuǎn)化時,你是否注意到:當(dāng)時,“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項系數(shù)可能為的零的情形?
18.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”.
19.絕對值不等式的解法及其幾何意義是什么?
20.解分式不等式應(yīng)注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?
21.解含參數(shù)不等式的通法是“定義域為前提,函數(shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.
22.在求不等式的解集、定義域及值域時,其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示.
23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a<0.
24.解決一些等比數(shù)列的前項和問題,你注意到要對公比及兩種情況進(jìn)行討論了嗎?
25.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應(yīng)有)需要驗證,有些題目通項是分段函數(shù)。
26.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項和與所有項的和的不同嗎?什么樣的無窮等比數(shù)列的所有項的和必定存在?
27.數(shù)列單調(diào)性問題能否等同于對應(yīng)函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)
28.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過程中,先假設(shè)時成立,再結(jié)合一些數(shù)學(xué)方法用來證明時也成立。
29.正角、負(fù)角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標(biāo)軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?
30.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?
31.在解三角問題時,你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?
32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角.異角化同角,異名化同名,高次化低次)
33.反正弦、反余弦、反正切函數(shù)的取值范圍分別是
34.你還記得某些特殊角的三角函數(shù)值嗎?
35.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì).你會寫三角函數(shù)的單調(diào)區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?
36.函數(shù)的圖象的平移,方程的平移以及點的平移公式易混:
(1)函數(shù)的圖象的平移為“左+右-,上+下-”;如函數(shù)的圖象左移2個單位且下移3個單位得到的圖象的解析式為y=2(x+2)+4-3,即y=2x+5.
。2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個個單位且下移3個單位得到的圖象的解析式為2(x+2)-(y+3)+4=0,即y=2x+5.
(3)點的平移公式:點P(x,y)按向量平移到點P(x,y),則x=x+hy=y+k.
37.在三角函數(shù)中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數(shù)值,再判定角的范圍)
38.形如的周期都是,但的周期為。
39.正弦定理時易忘比值還等于2R。
高三數(shù)學(xué)復(fù)習(xí)資料5
不等式的意義
考綱要求
1.理解絕對值的幾何意義,并能利用含絕對值不等式的幾何意義證明以下不等式
(1)|a+b|≤|a|+|b|;
(2)|a-b|≤|a-c||+|c-b|
(3)會利用絕對值的`幾何意義求解以下類型的不等式:
|ax+b|≤c,|ax+b|≥c;|x-c|+|x-b|≤a
2.了解柯西不等式的不同形式,理解他們的幾何意義,并會證明
(1)柯西不等式向量形式:|α||β|≥|α·β|
(2) x1-x2 2+ y1-y2 2+ x2-x3 2+ y2-y3 2≥ x1-x3 2+ y1-y3 2(通常稱作平面三角不等式)
3.會用上述不等式證明一些簡單問題.能夠利用平均值不等式、柯西不等式求一些特定函數(shù)的極值.
4.了解證明不等式的基本方法:比較法、綜合法、分析法、反證法、縮放法.
不等式的應(yīng)用
考綱要求
1.會用基本不等式解決簡單的最大(小)值問題.
2.會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.
考綱研讀
近幾年的高考試題增強(qiáng)了對密切聯(lián)系生產(chǎn)和生活實際的應(yīng)用性問題的考查力度.主要有兩種方式:
(1)線性規(guī)劃問題:求給定可行域的`面積;求給定可行域的最優(yōu)解;求目標(biāo)函數(shù)中參數(shù)的范圍.
(2)基本不等式的應(yīng)用:一是側(cè)重“正”、“定”、“等”條件的滿足條件;二是用于求函數(shù)或數(shù)列的最值.
【高三數(shù)學(xué)復(fù)習(xí)資料】相關(guān)文章:
數(shù)學(xué)整理復(fù)習(xí)資料02-23
數(shù)學(xué)整理復(fù)習(xí)資料7篇02-24
數(shù)學(xué)整理復(fù)習(xí)資料(7篇)02-25
成人高考數(shù)學(xué)復(fù)習(xí)資料大全01-27
數(shù)學(xué)復(fù)習(xí)資料之小數(shù)的意義和性質(zhì)02-09
小學(xué)數(shù)學(xué)知識點分?jǐn)?shù)的復(fù)習(xí)資料07-13
英語復(fù)習(xí)資料精選01-28