初二數(shù)學(xué)算術(shù)平方根知識(shí)點(diǎn)
算術(shù)平方根的雙重非負(fù)性
1.√a中a≧0
2.√a≧0
算術(shù)平方根產(chǎn)生 根號(hào)(即算術(shù)平方根)的產(chǎn)生源于正方形的對(duì)角線長(zhǎng)度“根號(hào)二”,這個(gè) “根號(hào)二”的發(fā)現(xiàn) 一度引起了畢達(dá)哥拉斯學(xué)派的恐慌。因?yàn)榘串?dāng)時(shí)的權(quán)威解釋(也就是畢達(dá)哥拉斯學(xué)派的學(xué)說(shuō)),世界的一切事物都可以用有理數(shù)代表。
對(duì)于這個(gè)無(wú)理數(shù)“根號(hào)二”,最終人們選取了用根號(hào)來(lái)表示
算術(shù)平方根舉例
9的平方根為±3 ;9的算術(shù)平方根為3,正數(shù)的平方根都是前面加±,算術(shù)平方根全部都是正數(shù)。
算術(shù)平方根辨析
算術(shù)平方根和平方根是大家學(xué)習(xí)實(shí)數(shù)接觸最多的概念,兩者密不可分?蓪(duì)于初學(xué)者來(lái)說(shuō)是對(duì)“孿生殺手”,很容易在解題過(guò)程中產(chǎn)生錯(cuò)誤。算術(shù)平方根和平方根到底有哪些區(qū)別與聯(lián)系呢?
一、 兩者區(qū)別
1、定義不同:⑴一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根(arithmetic square root)。⑵一般地,如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)叫做a的平方根或二次方根(square root)。這就是說(shuō),如果x2=a,那么x叫做a的平方根。
2、表示方法不同:⑴a的.算術(shù)平方根記為√a ,讀作“根號(hào)a”,a叫做被開方數(shù)(radicand)。⑵a的平方根記為±√a,讀作“正負(fù)根號(hào)a”,其中a叫做被開方數(shù)。
3、個(gè)數(shù)不同:從形式上看,二者的符號(hào)主體相似,但是一個(gè)數(shù)的平方根要在其算術(shù)平方根的前面寫上“±”。這也正好說(shuō)明了一個(gè)正數(shù)和零的算術(shù)平方根有且只有一個(gè),而一個(gè)正數(shù)卻有兩個(gè)互為相反數(shù)的平方根。零只有一個(gè)平方根
二、 兩者聯(lián)系
1、前提條件相同:算術(shù)平方根和平方根存在的前提條件都是“只有非負(fù)數(shù)才有算術(shù)平方根和平方根”。
2、存在包容關(guān)系:平方根包含了算術(shù)平方根,因?yàn)橐粋(gè)正數(shù)的算術(shù)平方根只是其兩個(gè)平方根中的一個(gè)。
3、0的算術(shù)平方根和平方根相同,都是0。
【初二數(shù)學(xué)算術(shù)平方根知識(shí)點(diǎn)】相關(guān)文章:
算術(shù)平方根的數(shù)學(xué)知識(shí)點(diǎn)01-26
關(guān)于初二上冊(cè)數(shù)學(xué)算術(shù)平方根知識(shí)點(diǎn)總結(jié)06-27
初二數(shù)學(xué)平方根知識(shí)點(diǎn)01-25
初二數(shù)學(xué)平方根的知識(shí)點(diǎn)07-24
初二數(shù)學(xué)平方根知識(shí)點(diǎn)的歸納01-25
初二上冊(cè)數(shù)學(xué)《平方根》知識(shí)點(diǎn)01-25
初二數(shù)學(xué)第一單元平方根的知識(shí)點(diǎn)07-11