六年級數(shù)學(xué)圓的認(rèn)識知識點
在我們的學(xué)習(xí)時代,很多人都經(jīng)常追著老師們要知識點吧,知識點也可以通俗的理解為重要的內(nèi)容。你知道哪些知識點是真正對我們有幫助的嗎?下面是小編為大家整理的六年級數(shù)學(xué)圓的認(rèn)識知識點,歡迎閱讀,希望大家能夠喜歡。
六年級數(shù)學(xué)圓的認(rèn)識知識點
一、認(rèn)識圓形
1、圓的定義:圓是由曲線圍成的一種平面圖形。
2、圓心:將一張圓形紙片對折兩次,折痕相交于圓中心的一點,這一點叫做圓心。一般用字母O表示。它到圓上任意一點的距離都相等.
3、半徑:連接圓心到圓上任意一點的線段叫做半徑。一般用字母r表示。把圓規(guī)兩腳分開,兩腳之間的距離就是圓的半徑。
4、直徑:通過圓心并且兩端都在圓上的線段叫做直徑。一般用字母d表示。直徑是一個圓內(nèi)最長的線段。
5、圓心確定圓的位置,半徑確定圓的大小。
6、在同一個圓內(nèi)或等圓內(nèi),有無數(shù)條半徑,有無數(shù)條直徑。所有的半徑都相等,所有的直徑都相等。
7.在同圓或等圓內(nèi),直徑的長度是半徑的2倍,半徑的長度是直徑的1/2。用字母表示為:d=2r或r=d/2
8、軸對稱圖形:如果一個圖形沿著一條直線對折,兩側(cè)的圖形能夠完全重合,這個圖形是軸對稱圖形。折痕所在的這條直線叫做對稱軸。
9、長方形、正方形和圓都是對稱圖形,都有對稱軸。這些圖形都是軸對稱圖形。
10、只有1條對稱軸的圖形有: 角、等腰三角形、等腰梯形、扇形、半圓。只有2條對稱軸的圖形是: 長方形;只有3條對稱軸的圖形是: 等邊三角形;只有4條對稱軸的圖形是: 正方形;有無數(shù)條對稱軸的圖形是: 圓、圓環(huán)。
11、畫對稱軸要用鉛筆畫,同時要用尺子(三角板)畫出虛線,這條虛線兩端要超出圖形一點。
二、圓的周長
1、圓的周長:圍成圓的曲線的長度叫做圓的周長。用字母C表示。
2、圓周率實驗:(滾動法)在圓形紙片上做個記號,與直尺0刻度對齊,在直尺上滾動一周,得到圓的周長;蛘哂镁圍繞圓形紙片一周量出線的長度就是圓的周長(測繩法)。
發(fā)現(xiàn),圓周長與它直徑的比值(圓周長除以直徑)是一個固定數(shù)即3倍多一點,我們把它叫做圓周率用字母π表示。
3、圓周率:任意一個圓的周長與它的直徑的比值是一個固定的數(shù),我們把它叫做圓周率。用字母π(pai) 表示。世界上第一個把圓周率算出來的人是我國的數(shù)學(xué)家祖沖之。
(1)、一個圓的周長總是它直徑的3倍多一些,這個比值是一個固定的數(shù)。圓周率π是一個無限不循環(huán)小數(shù)。在計算時,一般取π ≈ 3.14。
(2)、在判斷時,圓周長與它直徑的比值是π倍,而不是3.14倍。
4、圓的周長公式: 圓的周長等于圓周率乘直徑用字母表示C= πd
(1)、已知圓的周長求直徑用圓的周長除以圓周率,用字母表示
d = C ÷π或圓的周長等于2乘圓周率乘半徑,用字母表示C=2πr
(2)、已知圓的周長求半徑用圓的周長除以圓周率的2倍,
用字母表示 r = C ÷ 2π(r = C / 2π)
5、在一個正方形里畫一個最大的圓,圓的直徑等于正方形的邊長。在一個長方形里畫一個最大的圓,圓的直徑等于長方形的寬。
6、區(qū)分周長的一半和半圓的周長:
(1)、周長的一半:等于圓的周長÷2
計算方法:2π r ÷ 2 即C半= π r
(2)半圓的周長:等于圓的周長的一半加直徑。 計算方法:半圓的周長=5.14 r (推導(dǎo)過程C半=2π r ÷ 2+d=πr+d=πr+2r =5.14 r)
三、圓的面積
1、圓的面積:圓所占平面的大小叫做圓的面積。 用字母S表示。
2、圓面積公式的推導(dǎo):(1)把一個圓等分(偶數(shù)份)成的扇形份數(shù)越多,拼成的圖像越接近長方形。 長方形的長相當(dāng)于圓的周長的一半,長方形的寬相當(dāng)于圓的半徑。
(2)拼出的圖形與圓的周長和半徑的關(guān)系。
圓的半徑 = 長方形的寬
圓的周長的`一半 = 長方形的長
3、圓面積的計算方法:因為:長方形面積 = 長 ×寬
所以:圓的面積 = 圓周長的一半 × 圓的半徑
即S圓 = C÷2× r=πr × r=πr
圓的面積公式:S圓 =πr → r = S 圓÷ π
4、環(huán)形的面積:一個環(huán)形,外圓的半徑用字母R表示,內(nèi)圓的半徑用字母r表示。(R=r+環(huán)的寬度.)
S環(huán) = πR -πr 或環(huán)形的面積公式:S環(huán) = π(R -r )(建議用這個公式)。
5、一個圓,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數(shù)。而面積擴大或縮小的倍數(shù)是這倍數(shù)的平方倍。
例如:在同一個圓里,半徑擴大3倍,那么直徑和周長就都擴大3倍,而面積擴大3的平方倍得到9倍。
6、兩個圓: 半徑比 = 直徑比 = 周長比;而面積比等于這比的平方。
例如:兩個圓的半徑比是2∶3,那么這兩個圓的直徑比和周長比都是2∶3,而面積比是4∶9
7、任意一個正方形與它內(nèi)切圓的面積之比都是一個固定值,即:4∶π
8、當(dāng)長方形,正方形,圓的周長相等時,圓面積最大,正方形居中,長方形面積最小。反之,面積相同時,長方形的周長最長,正方形居中,圓的周長最短。
9、常用各π值結(jié)果:π = 3.14;2π = 6.28 ;5π=15.7
10、外方內(nèi)圓(內(nèi)切圓)公式S=0.86r 推導(dǎo)過程:S=S正-S圓=d -πr =2r×2r-πr =4r -πr =r ×(4-π)=0.86r
11、外圓內(nèi)方(外切圓)公式S=1.14r 推導(dǎo)過程:S=S圓-S正=πr -dr/2×2=2r×r/2×r=πr -2r =r ×(π-2)=1.14r (把正方形看成兩個面積相等的三角形,三角形的底就是直徑,高是半徑)
12、一條弧和經(jīng)過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。頂點在圓心的角叫做圓心角。扇形的面積與圓心角大小和半徑長短有關(guān)。
13、S扇=S圓×n/360;S扇環(huán)=S環(huán)×n/360
14、扇形也是軸對稱圖形,有一條對稱軸。
15、常見半徑與直徑的周長和面積的結(jié)果。
半徑 半徑的平方 直徑 周長 面積
1 1 2 6.28 3.14
2 4 4 12.56 12.56
3 9 6 18.84 28.26
4 16 8 25.12 50.24
5 25 10 31.4 78.5
6 36 12 37.68 113.04
7 49 14 43.96 153.86
8 64 16 50.24 200.96
9 81 18 56.52 254.34
10 100 20 62.8 314
1.5 2.25 3 9.42 7.065
2.5 6.25 5 15.7 19.625
3.5 12.25 7 21.98 38.465
4.5 20.35 9 28.26 63.585
5.5 30.25 11 34.54 94.985
7.5 56.25 15 47.1 176.625
六年級數(shù)學(xué)圓的認(rèn)識知識點
一、圓的特征
1、圓是平面內(nèi)封閉曲線圍成的平面圖形。
2、圓的特征:外形美觀,易滾動。
3、圓心O:圓中心的點叫做圓心.圓心一般用字母O表示。
圓多次對折之后,折痕的相交于圓的中心即圓心。圓心確定圓的位置。
半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數(shù)條半徑,且所有的半徑都相等。半徑確定圓的大小。
直徑d:通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數(shù)條直徑,且所有的直徑都相等。直徑是圓內(nèi)最長的線段。
同圓或等圓內(nèi)直徑是半徑的2倍:d=2r或r=d÷2
4、等圓:半徑相等的圓叫做同心圓,等圓通過平移可以完全重合。同心圓:圓心重合、半徑不等的兩個圓叫做同心圓。
5、圓是軸對稱圖形:如果一個圖形沿著一條直線對折,兩側(cè)的圖形能夠完全重合,這個圖形是軸對稱圖形。折痕所在的直線叫做對稱軸。
有一條對稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角。
有二條對稱軸的圖形:長方形
有三條對稱軸的圖形:等邊三角形
有四條對稱軸的圖形:正方形
有無條對稱軸的圖形:圓,圓環(huán)
6、畫圓
(1)圓規(guī)兩腳間的距離是圓的半徑。(2)畫圓步驟:定半徑、定圓心、旋轉(zhuǎn)一周。
二、圓的周長:
圍成圓的曲線的長度叫做圓的周長,周長用字母C表示。
1、圓的周長總是直徑的三倍多一些。
2、圓周率:圓的周長與直徑的比值是一個固定值,叫做圓周率,用字母π表示。
即:圓周率π =周長÷直徑≈3.14。
所以,圓的周長(c)=直徑(d)×圓周率(π)—周長公式:c=πd, c=2πr。
圓周率π是一個無限不循環(huán)小數(shù),3.14是近似值。
3、周長的變化的規(guī)律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數(shù)與半徑、直徑擴大的倍數(shù)相同。
4、半圓周長=圓周長一半+直徑= πr+d
三、圓的面積s
1、圓面積公式的推導(dǎo)
如圖把一個圓沿直徑等分成若干份,剪開拼成長方形,份數(shù)越多拼成的圖像越接近長方形。
圓的半徑=長方形的寬
圓的周長的一半=長方形的長
長方形面積=長×寬
所以,圓的面積=圓的周長的一半(πr)×圓的半徑(r)。
S圓=πr×r=πr2
2、幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積則最大,而長方形的面積則最小。
周長相同時,圓面積最大,利用這一特點,籃子、盤子做成圓形。
3、圓面積的變化的規(guī)律:半徑擴大多少倍,直徑、周長也同時擴大多少倍,圓面積擴大的倍數(shù)是半徑、直徑擴大的倍數(shù)的平方倍。
4、環(huán)形面積=大圓–小圓=πR2-πr2
扇形面積=πr2×n÷360(n表示扇形圓心角的度數(shù))
5、跑道:每條跑道的周長等于兩半圓跑道合成的圓的周長加上兩條直跑道的和。因為兩條直跑道長度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是:2×π×跑道寬度。
一個圓的半徑增加a厘米,周長就增加2πa厘米。
一個圓的直徑增加b厘米,周長就增加πb厘米。
6、任意一個正方形的內(nèi)切圓即最大圓的直徑是正方形的邊長,它們的面積比是4∶π。
7、常用數(shù)據(jù)
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
小學(xué)數(shù)學(xué)比和比例知識點
1、比的基本性質(zhì):比的前項和后項都乘以或除以一個不為零的數(shù)。比值不變。
比的性質(zhì)用于化簡比。
比表示兩個數(shù)相除;只有兩個項:比的前項和后項。
2、比和比例的區(qū)別
(1)意義、項數(shù)、各部分名稱不同。比表示兩個數(shù)相除;只有兩個項:比的前項和后項。如:a:b這是比。比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內(nèi)項。a:b=3:4這是比例。
(2)比的基本性質(zhì)和比例的基本性質(zhì)意義不同、應(yīng)用不同。
比的性質(zhì):比的前項和后項都乘或除以一個不為零的數(shù)。比值不變。
比例的性質(zhì):在比例里,兩個外項的乘積等于兩個內(nèi)項的乘積相等。比例的性質(zhì)用于解比例。聯(lián)系:比例是由兩個相等的比組成。
數(shù)學(xué)分?jǐn)?shù)的基本性質(zhì)
分?jǐn)?shù)的分子和分母都乘或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。
聯(lián)系分?jǐn)?shù)與除法的關(guān)系以及“商不變”的規(guī)律,來理解分?jǐn)?shù)的基本性質(zhì)。
分子相當(dāng)于被除數(shù),分母相當(dāng)于除數(shù),被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(0除外),商不變。因此分?jǐn)?shù)的分子和分母都乘或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小也是不變的。
運用分?jǐn)?shù)的基本性質(zhì),把一個分?jǐn)?shù)化成指定分母(或分子)而大小不變的分?jǐn)?shù)。
六年級數(shù)學(xué)圓的認(rèn)識知識點
1、圓心:圓中心一點叫做圓心。用字母“O”來表示。
半徑:連接圓心和圓上任意一點的線段叫做半徑,用字母“r”來表示。
直徑:通過圓心并且兩端都在圓上的線段叫做直徑,用字母“d”表示。
2.圓心確定圓的位置,半徑確定圓的大小。
3.在同一個圓內(nèi),所有的半徑都相等,所有的直徑都相等。在同一個圓內(nèi),有無數(shù)條半徑,有無數(shù)條直徑。在同一個圓內(nèi),直徑的長度是半徑的2倍,半徑的長度是直徑的一半。用字母表示為:d=2rr=2(1)d
4.圓的周長:圍成圓的曲線的長度叫做圓的周長。
5.圓的周長總是直徑的3倍多一些,這個比值是一個固定的數(shù)。我們把圓的周長和直徑的比值叫做圓周率,用字母π表示。圓周率是一個無限不循環(huán)小數(shù)。在計算時,取π≈3.14。世界上第一個把圓周率算出來的人是我國的數(shù)學(xué)家祖沖之。
6.圓的周長公式:C=πd或C=2πr
7、圓的面積:圓所占平面的大小叫圓的面積。
8.把一個圓割成一個近似的長方形,割拼成的長方形的長相當(dāng)于圓周長的一半,寬相當(dāng)于圓的半徑,因為長方形面積=長×寬,所以圓的面積=πr×r=πr2
9.圓的面積公式:S=πr2 或者S=π(d÷2)2或者S=π(C÷π÷2)2
10.在一個正方形里畫一個最大的圓,圓的直徑等于正方形的邊長。圓的面積和正方形面積的比是π:4。在一個圓里畫一個最大正方形的,圓的直徑的長度等于正方形的對角線的長度,正方形的面積=對角線×對角線÷2=直徑×直徑÷2。
11.在一個長方形里畫一個最大的圓,圓的直徑等于長方形的短邊。
12.一個環(huán)形,外圓的半徑是R,內(nèi)圓的半徑是r,它的面積是S=πR2-πr2 或 S=π(R2-r2)。(其中R=r+環(huán)的寬度.)
13.環(huán)形的周長=外圓周長+內(nèi)圓周長
14.半圓的周長等于圓的周長的一半加直徑。半圓周長公式:C=πd÷2+d 或C=πr+2r
15.半圓面積=圓面積÷2 公式為:S=πr2÷2
16.在同一個圓里,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數(shù)。而面積擴大或縮小以上倍數(shù)的平方倍。
例如:在同一個圓里,半徑擴大4倍,那么直徑和周長就都擴大4倍,而面積擴大16倍。
17.兩個圓的半徑比等于直徑比等于周長比,而面積比等于以上比的平方。
例如:兩個圓的半徑比是2:3,那么這兩個圓的直徑比和周長比都是2:3,而面積比是4:9。
18.當(dāng)一個圓的半徑增加a厘米時,它的周長就增加2πa厘米;當(dāng)一個圓的直徑增加a厘米時,它的周長就增加πa厘米。
19.在同一圓中,圓心角占圓周角的幾分之幾,它所在扇形面積就占圓面積的幾分之幾;所對的弧就占圓周長的幾分之幾.
20.當(dāng)長方形,正方形,圓的周長相等時,圓的面積最大,長方形的面積最小;
當(dāng)長方形,正方形,圓的面積相等時,長方形的周長最大,圓的周長最小。
22.軸對稱圖形:如果一個圖形沿著一條直線對折,兩側(cè)的圖形能夠完全重合,這個圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。
23.有1一條對稱軸的圖形有:角、等腰三角形、等腰梯形、扇形、半圓。
有2條對稱軸的圖形是:長方形
有3條對稱軸的圖形是:等邊三角形
有4條對稱軸的圖形是:正方形
有無數(shù)條對稱軸的圖形是:圓、圓環(huán)。
24.直徑所在的直線是圓的對稱軸。
六年級數(shù)學(xué)圓的認(rèn)識知識點
一、填空。
1.圓中心的一點叫做(),用字母()表示,它到圓上任意一點的距離都()。
2.()叫做半徑,用字母()表示。
3.()叫做直徑,用字母()表示。
4.在一個圓里,有()條半徑、有()條直徑。
5.()確定圓的位置,()確定圓的大小。
6.在一個直徑是8分米的圓里,半徑是()厘米。
7.畫圓時,圓規(guī)兩腳間的距離是圓的()。
8.在同一圓內(nèi),所有的()都相等,所有的()也相等。()的長度等于()長度的2倍。
二、判斷。
1.直徑都是半徑的2倍。()
2.同一個圓中,半徑都相等。()
3.在連接圓上任意兩點的線段中,直徑最長。()
4.畫一個直徑是4厘米的圓,圓規(guī)兩腳應(yīng)叉開4厘米。()
三、選擇題。
1.圓是平面上的()。
、僦本圖形②曲線圖形③無法確定
2.圓中兩端都在圓上的線段。()
、僖欢ㄊ菆A的半徑②一定是圓的直徑③無法確定
3.圓的直徑有()條。
、1②2③無數(shù)
四、按要求畫圓。
1.半徑是2厘米。2.直徑是3厘米。
【六年級數(shù)學(xué)圓的認(rèn)識知識點】相關(guān)文章:
六年級數(shù)學(xué)關(guān)于圓的認(rèn)識知識點02-29
數(shù)學(xué)圓知識點歸納01-20
中考數(shù)學(xué)圓知識點10-07
高考數(shù)學(xué)圓的知識點07-31
圓的認(rèn)識數(shù)學(xué)聽課記錄01-18