亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

數(shù)學 百文網手機站

八年級上冊數(shù)學第一章知識點

時間:2021-08-27 20:50:44 數(shù)學 我要投稿

八年級上冊數(shù)學第一章知識點

  在日復一日的學習中,是不是經常追著老師要知識點?知識點是指某個模塊知識的重點、核心內容、關鍵部分。想要一份整理好的知識點嗎?以下是小編整理的八年級上冊數(shù)學第一章知識點,歡迎大家分享。

八年級上冊數(shù)學第一章知識點

  因式分解

  1.因式分解:把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉化.

  2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”.

  3.公因式的確定:系數(shù)的公約數(shù)?相同因式的最低次冪.

  注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.

  4.因式分解的公式:

  (1)平方差公式:a2-b2=(a+ b)(a- b);

  (2)完全平方公式:a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.

  5.因式分解的注意事項:

  (1)選擇因式分解方法的一般次序是:一提取、二公式、三分組、四十字;

  (2)使用因式分解公式時要特別注意公式中的字母都具有整體性;

  (3)因式分解的最后結果要求分解到每一個因式都不能分解為止;

  (4)因式分解的最后結果要求每一個因式的首項符號為正;

  (5)因式分解的最后結果要求加以整理;

  (6)因式分解的最后結果要求相同因式寫成乘方的形式.

  6.因式分解的解題技巧:

  (1)換位整理,加括號或去括號整理;

  (2)提負號;

  (3)全變號;

  (4)換元;

  (5)配方;

  (6)把相同的式子看作整體;

  (7)靈活分組;

  (8)提取分數(shù)系數(shù);

  (9)展開部分括號或全部括號;

  (10)拆項或補項.

  7.完全平方式:能化為(m+n)2的多項式叫完全平方式;對于二次三項式x2+px+q,有“ x2+px+q是完全平方式? ”.

  分式

  1.分式:一般地,用A、B表示兩個整式,A÷B就可以表示為的形式,如果B中含有字母,式子叫做分式.

  2.有理式:整式與分式統(tǒng)稱有理式;即.

  3.對于分式的兩個重要判斷:(1)若分式的分母為零,則分式無意義,反之有意義;(2)若分式的分子為零,而分母不為零,則分式的值為零;注意:若分式的分子為零,而分母也為零,則分式無意義.

  4.分式的基本性質與應用:

  (1)若分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變;

  (2)注意:在分式中,分子、分母、分式本身的符號,改變其中任何兩個,分式的值不變;

  (3)繁分式化簡時,采用分子分母同乘小分母的最小公倍數(shù)的.方法,比較簡單.

  5.分式的約分:把一個分式的分子與分母的公因式約去,叫做分式的約分;注意:分式約分前經常需要先因式分解.

  6.最簡分式:一個分式的分子與分母沒有公因式,這個分式叫做最簡分式;注意:分式計算的最后結果要求化為最簡分式.

  7.分式的乘除法法則:.

  8.分式的乘方:.

  9.負整指數(shù)計算法則:

  (1)公式:a0=1(a≠0), a-n= (a≠0);

  (2)正整指數(shù)的運算法則都可用于負整指數(shù)計算;

  (3)公式:,;

  (4)公式:(-1)-2=1,(-1)-3=-1.

  10.分式的通分:根據(jù)分式的基本性質,把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先確定最簡公分母.

  11.最簡公分母的確定:系數(shù)的最小公倍數(shù)?相同因式的次冪.

  12.同分母與異分母的分式加減法法則:.

  13.含有字母系數(shù)的一元一次方程:在方程ax+b=0(a≠0)中,x是未知數(shù),a和b是用字母表示的已知數(shù),對x來說,字母a是x的系數(shù),叫做字母系數(shù),字母b是常數(shù)項,我們稱它為含有字母系數(shù)的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知數(shù),用x、y、z等表示未知數(shù).

  14.公式變形:把一個公式從一種形式變換成另一種形式,叫做公式變形;注意:公式變形的本質就是解含有字母系數(shù)的方程.特別要注意:字母方程兩邊同時乘以含字母的代數(shù)式時,一般需要先確認這個代數(shù)式的值不為0.

  15.分式方程:分母里含有未知數(shù)的方程叫做分式方程;注意:以前學過的,分母里不含未知數(shù)的方程是整式方程.

  16.分式方程的增根:在解分式方程時,為了去分母,方程的兩邊同乘以了含有未知數(shù)的代數(shù)式,所以可能產生增根,故分式方程必須驗增根;注意:在解方程時,方程的兩邊一般不要同時除以含未知數(shù)的代數(shù)式,因為可能丟根.

  17.分式方程驗增根的方法:把分式方程求出的根代入最簡公分母(或分式方程的每個分母),若值為零,求出的根是增根,這時原方程無解;若值不為零,求出的根是原方程的解;注意:由此可判斷,使分母的值為零的未知數(shù)的值可能是原方程的增根.

  18.分式方程的應用:列分式方程解應用題與列整式方程解應用題的方法一樣,但需要增加“驗增根”的程序.

【八年級上冊數(shù)學第一章知識點】相關文章:

八年級上冊北師大數(shù)學第一章知識點11-25

初三數(shù)學上冊第一章知識點歸納11-26

數(shù)學八年級上冊知識點12-07

八年級地理上冊第一章知識點09-02

八年級物理上冊第一章知識點歸納03-08

初一上冊數(shù)學第一章正數(shù)和負數(shù)知識點10-16

必修四數(shù)學第一章知識點11-16

數(shù)學上冊知識點08-02

數(shù)學八年級上冊知識點15篇01-23