數(shù)學(xué)九年級(jí)下冊(cè)二次函數(shù)知識(shí)點(diǎn)
在年少學(xué)習(xí)的日子里,大家最熟悉的就是知識(shí)點(diǎn)吧?知識(shí)點(diǎn)是知識(shí)中的最小單位,最具體的內(nèi)容,有時(shí)候也叫“考點(diǎn)”。哪些才是我們真正需要的知識(shí)點(diǎn)呢?下面是小編收集整理的數(shù)學(xué)九年級(jí)下冊(cè)二次函數(shù)知識(shí)點(diǎn),歡迎閱讀,希望大家能夠喜歡。
二次函數(shù)的定義
一般地,形如y=ax2+bx+c(a,b,c為常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù).如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函數(shù).
注意:(1)二次函數(shù)是關(guān)于自變量的二次式,二次項(xiàng)系數(shù)a必須是非零實(shí)數(shù),即a≠0,而b,c是任意實(shí)數(shù),二次函數(shù)的表達(dá)式是一個(gè)整式;
(2)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0),自變量x的取值范圍是全體實(shí)數(shù);
(3)當(dāng)b=c=0時(shí),二次函數(shù)y=ax2是最簡(jiǎn)單的二次函數(shù);
(4)一個(gè)函數(shù)是否是二次函數(shù),要化簡(jiǎn)整理后,對(duì)照定義才能下結(jié)論,例如y=x2-x(x-1)化簡(jiǎn)后變?yōu)閥=x,故它不是二次函數(shù).
二次函數(shù)y=ax2的圖象和性質(zhì)
(1)函數(shù)y=ax2的圖象是一條關(guān)于y軸對(duì)稱的曲線,這條曲線叫拋物線.實(shí)際上所有二次函數(shù)的圖象都是拋物線.
二次函數(shù)y=ax2的圖象是一條拋物線,它關(guān)于y軸對(duì)稱,它的頂點(diǎn)坐標(biāo)是(0,0).
、佼(dāng)a>0時(shí),拋物線y=ax2的開口向上,在對(duì)稱軸的左邊,曲線自左向右下降;在對(duì)稱軸的右邊,曲線自左向右上升,頂點(diǎn)是拋物線上位置最低的點(diǎn),也就是說(shuō),當(dāng)a>0時(shí),函數(shù)y=ax2具有這樣的性質(zhì):當(dāng)x<0時(shí),函數(shù)y隨x的增大而減小;當(dāng)x>0時(shí),函數(shù)y隨x的增大而增大;當(dāng)x=0時(shí),函數(shù)y=ax2取最小值,最小值y=0;
、诋(dāng)a<0時(shí),拋物線y=ax2的開口向下,在對(duì)稱軸的左邊,曲線自左向右上升;在對(duì)稱軸的右邊,曲線自左向右下降,頂點(diǎn)是拋物線上位置最高的點(diǎn).也就是說(shuō),當(dāng)a<0時(shí),函數(shù)y=ax2具有這樣的性質(zhì):當(dāng)x<0時(shí),函數(shù)y隨x的增大而增大;當(dāng)x>0時(shí),函數(shù)y隨x的增大而減小;當(dāng)x=0時(shí),函數(shù)y=ax2取最大值,最大值y=0;
③當(dāng)|a|越大時(shí),拋物線的開口越小,當(dāng)|a|越小時(shí),拋物線的開口越大.
(2)二次函數(shù)y=ax2的表達(dá)式的確定
因?yàn)槎魏瘮?shù)y=ax2中只含有一個(gè)需待定的系數(shù)a,所以只需給出x與y的一對(duì)對(duì)應(yīng)值即可求出a的值.
拋物線與x軸交點(diǎn)個(gè)數(shù)
Δ= b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。
Δ= b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。
Δ= b^2-4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn)。
當(dāng)h>0時(shí),y=a(_-h)^2的圖象可由拋物線y=a_^2向右平行移動(dòng)h個(gè)單位得到,
當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.
當(dāng)h>0,k>0時(shí),將拋物線y=a_^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(_-h)^2+k的圖象;
當(dāng)h>0,k<0時(shí),將拋物線y=a_^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(_-h)^2+k的圖象;
當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(_-h)^2+k的圖象;
當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(_-h)^2+k的圖象;
因此,研究拋物線y=a_^2+b_+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(_-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=a_^2+b_+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對(duì)稱軸是直線_=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=a_^2+b_+c(a≠0),若a>0,當(dāng)_≤-b/2a時(shí),y隨_的增大而減小;當(dāng)_≥-b/2a時(shí),y隨_的增大而增大.若a<0,當(dāng)_≤-b/2a時(shí),y隨_的`增大而增大;當(dāng)_≥-b/2a時(shí),y隨_的增大而減小.
4.拋物線y=a_^2+b_+c的圖象與坐標(biāo)軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);
(2)當(dāng)△=b^2-4ac>0,圖象與_軸交于兩點(diǎn)A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0
(a≠0)的兩根.這兩點(diǎn)間的距離AB=|_?-_?|
當(dāng)△=0.圖象與_軸只有一個(gè)交點(diǎn);
當(dāng)△<0.圖象與_軸沒(méi)有交點(diǎn).當(dāng)a>0時(shí),圖象落在_軸的上方,_為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在_軸的下方,_為任何實(shí)數(shù)時(shí),都有y<0.
5.拋物線y=a_^2+b_+c的最值:如果a>0(a<0),則當(dāng)_=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.
頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知_、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:
y=a_^2+b_+c(a≠0).
(2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(_-h)^2+k(a≠0).
(3)當(dāng)題給條件為已知圖象與_軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(_-_?)(_-_?)(a≠0).
7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).
【數(shù)學(xué)九年級(jí)下冊(cè)二次函數(shù)知識(shí)點(diǎn)】相關(guān)文章:
二次函數(shù)的數(shù)學(xué)知識(shí)點(diǎn)07-22
數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)總結(jié)11-30
高考數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn):二次函數(shù)03-06
初中數(shù)學(xué)知識(shí)點(diǎn):二次函數(shù)03-05
二次函數(shù)的初三數(shù)學(xué)知識(shí)點(diǎn)歸納05-20
高一數(shù)學(xué):二次函數(shù)知識(shí)點(diǎn)歸納01-19
高一數(shù)學(xué)知識(shí)點(diǎn)二次函數(shù)07-22