亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

初三

最全初三數(shù)學(xué)知識點(diǎn)歸納

時間:2022-02-15 11:34:39 初三 我要投稿

最全初三數(shù)學(xué)知識點(diǎn)歸納

  在日復(fù)一日的學(xué)習(xí)中,是不是聽到知識點(diǎn),就立刻清醒了?知識點(diǎn)是知識中的最小單位,最具體的內(nèi)容,有時候也叫“考點(diǎn)”。為了幫助大家掌握重要知識點(diǎn),下面是小編收集整理的最全初三數(shù)學(xué)知識點(diǎn)歸納,希望能夠幫助到大家。

最全初三數(shù)學(xué)知識點(diǎn)歸納

  最全初三數(shù)學(xué)知識點(diǎn)歸納 篇1

  鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個角中,有公共頂點(diǎn)且有一條公共邊的兩個角是鄰補(bǔ)角。

  對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。

  垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。

  平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。

  同位角、內(nèi)錯角、同旁內(nèi)角:

  同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對角叫做同位角。

  內(nèi)錯角:∠2與∠6像這樣的一對角叫做內(nèi)錯角。

  同旁內(nèi)角:∠2與∠5像這樣的一對角叫做同旁內(nèi)角。

  命題:判斷一件事情的語句叫命題。

  平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。

  對應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動后得到的,這樣的兩個點(diǎn)叫做對應(yīng)點(diǎn)。

  最全初三數(shù)學(xué)知識點(diǎn)歸納 篇2

  1垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的2條弧。

  逆定理:平分弦不是直徑的直徑垂直于弦,并且平分弦所對的2條弧。

  2有關(guān)圓周角和圓心角的性質(zhì)和定理

 、僭谕瑘A或等圓中,如果兩個圓心角,兩個圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那么他們所對應(yīng)的其余各組量都分別相等。

 、谝粭l弧所對的圓周角等于它所對的圓心角的一半。

  直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

  圓心角計算公式:θ=L/2πr×360°=180°L/πr=L/r弧度

  即圓心角的度數(shù)等于它所對的弧的度數(shù);圓周角的度數(shù)等于它所對的弧的度數(shù)的一半。

  ③如果一條弧的長是另一條弧的2倍,那么其所對的圓周角和圓心角是另一條弧的2倍。

  3有關(guān)外接圓和內(nèi)切圓的性質(zhì)和定理

 、僖粋三角形有唯一確定的外接圓和內(nèi)?a href=// target=_blank>性病M飩釉蒼殘氖僑?切胃鞅嘰怪逼椒窒叩慕壞悖?餃?切穩(wěn)?齠サ憔嗬胂嗟?

 、趦(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形三邊距離相等。

 、跼=2S△÷LR:內(nèi)切圓半徑,S:三角形面積,L:三角形周長

 、軆上嗲袌A的連心線過切點(diǎn)連心線:兩個圓心相連的直線

 、輬AO中的弦PQ的中點(diǎn)M,過點(diǎn)M任作兩弦AB,CD,弦AD與BC分別交PQ于X,Y,則M為XY之中點(diǎn)。

  4如果兩圓相交,那么連接兩圓圓心的線段直線也可垂直平分公共弦。

  5弦切角的度數(shù)等于它所夾的弧的度數(shù)的一半。

  6圓內(nèi)角的度數(shù)等于這個角所對的弧的度數(shù)之和的一半。

  7圓外角的度數(shù)等于這個角所截兩段弧的度數(shù)之差的一半。

  8周長相等,圓面積比長方形、正方形、三角形的面積大。

  圓的知識要領(lǐng)不僅?脊,又是也會直接出一些關(guān)于定理的試題。

  最全初三數(shù)學(xué)知識點(diǎn)歸納 篇3

  三角形全等

  全等的條件

  1.兩個三角形對應(yīng)的兩邊及其夾角相等,兩個三角形全等,簡稱“邊角邊”或“SAS”。

  2.兩個三角形對應(yīng)的兩角及其夾邊相等,兩個三角形全等,簡稱“角邊角”或“ASA”。

  3.兩個三角形對應(yīng)的兩角及其一角的對邊相等,兩個三角形全等,簡稱“角角邊”或“AAS”。

  4.兩個三角形對應(yīng)的`三條邊相等,兩個三角形全等,簡稱“邊邊邊”或“SSS"。

  5.兩個直角三角形對應(yīng)的一條斜邊和一條直角邊相等,兩個直角三角形全等,簡稱“直角邊、斜邊”或“HL”。

  注意,證明三角形全等沒有“SSA”或“邊邊角”的方法,即兩邊與其中一邊的對角相等無法證明這兩個三角形全等,但從意義上來說,直角三角形的“HL”證明等同“SSA”。

  最全初三數(shù)學(xué)知識點(diǎn)歸納 篇4

  一、反比例函數(shù)

  1、形如y=k/x(k≠0)或y=kx^—1的函數(shù)叫做反比例函數(shù),k叫做反比例系數(shù)。它的圖像是雙曲線。^—1表示負(fù)一次。

  2、在函數(shù)y=k/x(k≠0),當(dāng)k>0時,表達(dá)式中的想x、y符號相同,點(diǎn)(x,y)在第一、三象限,所以函數(shù)y=k/x(k≠0)的圖像位于第一、三象限;當(dāng)k<0時,表達(dá)式中的想x、y符號相反,點(diǎn)(x,y)在第二、四象限,所以函數(shù)y=k/x(k≠0)的圖像位于第二、四象限。

  3、在y=k/x(k≠0)中,當(dāng)k>0時,在第一象限內(nèi),y隨著x的增大而減;若y的值隨著x的值的增大而增大,則k的取值范圍是k<0。

  4、設(shè)P(a,b)是反比例函數(shù)y=k/x(k≠0)上任意一點(diǎn),則ab的值等于k。經(jīng)過反比例函數(shù)上的任意一點(diǎn)P,分別向x軸、y軸作垂線段,則所成的矩形面積為k;過P點(diǎn)向x軸或y軸作垂線段,連接OP,則所成的三角形面積為k/2。

  二、二次函數(shù)

  1、形如y=ax^2+bx+c(a≠0,a、b、c為常數(shù))。的函數(shù)叫做二次函數(shù),它的圖像是一條拋物線。

  2、二次函數(shù)y=ax^2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(—b/2a,4ac—b^2/4a),對稱軸是直線x=—b/2a。

  3、對于二次函數(shù)y=ax^2+bx+c(a≠0),當(dāng)a>0時,二次函數(shù)圖像向上開口;當(dāng)a<0時,拋物線向下開口。圖像與y軸的交點(diǎn)的坐標(biāo)是(0,c)。

  4、一元一次方程ax^2+bx+c=0(a≠0)的解,可以看成函數(shù)y=ax^2+bx+c(a≠0)的圖像與x軸交點(diǎn)的橫坐標(biāo)。

  當(dāng)b^2—4ac>0時,函數(shù)圖像與x軸有兩個交點(diǎn)。

  當(dāng)b^2—4ac=0時,函數(shù)圖像與x軸有一個交點(diǎn)。

  當(dāng)b^2—4ac<0時,函數(shù)圖像與x軸沒有交點(diǎn)。

  5、當(dāng)a>0,且x=—b/2a時,函數(shù)y=ax^2+bx+c(a≠0)取得最小值,這個值等于4ac—b^2/4a;當(dāng)a<0,且x=—b/2a時,函數(shù)y=ax^2+bx+c(a≠0)取得值,這個值等于4ac—b^2/4a。

  6、拋物線y=ax^2+c(a≠0)的對稱軸是y軸。

  7、對于二次函數(shù)y=ax^2+bx+c(a≠0),若a,b同號,對稱軸在y軸右側(cè)a,b異號,對稱軸在y軸左側(cè)。

  8、拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤—b/2a時,y隨x的增大而減小;當(dāng)x≥—b/2a時,y隨x的增大而增大。若a<0,當(dāng)x≤—b/2a時,y隨x的增大而增大;當(dāng)x≥—b/2a時,y隨x的增大而減小。

  9、對于拋物線y=a(x—m)^2+k,左右平移時,只與m有關(guān),往左是加,往右是減;上下平移時,只與k有關(guān),往上是加,往下是減。

  三、相似三角形

  1、如果兩個數(shù)的比值與另兩個數(shù)的比值相等,就說這四個數(shù)成比例。

  2、如果a/b=c/d,那么ad=bc;如果ad=bc,且bd≠0,那么a/b=c/d;如果a/b=c/d,那么(a+b)/b=(c+d)/d。誰都不能為0。為0無意義。

  3、一般的,如果三個數(shù)a,b,c滿足比例式a:b=b:c,則b就叫做a,c的比例中項。(如果是線段的話,只能取正的,如果是數(shù),正負(fù)都可以)

  4、黃金分割:把一條線段分割為兩部分,使其中一部分與全長之比等于另一部分與這部分之比。其比值是(√5—1)/2,取其前三位數(shù)字的近似值是0.618。

  5、證明三角形相似的方法:

 。1)平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似。照我們老師的方法來說就是A字型和8字型。

  (2)如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似。

 。3)如果兩個三角形的兩組對應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么這兩個三角形相似。

 。4)如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似。

  (5)對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似。

  最全初三數(shù)學(xué)知識點(diǎn)歸納 篇5

  一、二次根式

  1、二次根式:一般地,式子叫做二次根式。

  注意:

 。1)若這個條件不成立,則不是二次根式。

 。2)是一個重要的非負(fù)數(shù),即;≥0。

  2、積的算術(shù)平方根:積的算術(shù)平方根等于積中各因式的算術(shù)平方根的積。

  3、二次根式比較大小的方法:

 。1)利用近似值比大小。

 。2)把二次根式的系數(shù)移入二次根號內(nèi),然后比大小。

 。3)分別平方,然后比大小。

  4、商的算術(shù)平方根:商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根。

  5、二次根式的除法法則:

 。1)分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎健?/p>

  6、最簡二次根式:

  (1)滿足下列兩個條件的二次根式,叫做最簡二次根式。

 、俦婚_方數(shù)的因數(shù)是整數(shù),因式是整式。

 、诒婚_方數(shù)中不含能開的盡的因數(shù)或因式。

 。2)最簡二次根式中,被開方數(shù)不能含有小數(shù)、分?jǐn)?shù),字母因式次數(shù)低于2,且不含分母。

 。3)化簡二次根式時,往往需要把被開方數(shù)先分解因數(shù)或分解因式。

 。4)二次根式計算的最后結(jié)果必須化為最簡二次根式。

  7、同類二次根式:幾個二次根式化成最簡二次根式后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式。

  8、二次根式的混合運(yùn)算:

  (1)二次根式的混合運(yùn)算包括加、減、乘、除、乘方、開方六種代數(shù)運(yùn)算,以前學(xué)過的,在有理數(shù)范圍內(nèi)的一切公式和運(yùn)算律在二次根式的混合運(yùn)算中都適用。

 。2)二次根式的運(yùn)算一般要先把二次根式進(jìn)行適當(dāng)化簡,例如:化為同類二次根式才能合并;除法運(yùn)算有時轉(zhuǎn)化為分母有理化或約分更為簡便;使用乘法公式等。

  二、一元二次方程

  1、一元二次方程的一般形式:a≠0時,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關(guān)問題時,多數(shù)習(xí)題要先化為一般形式,目的是確定一般形式中的a、 b、 c;其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的代數(shù)式。

  2、一元二次方程的解法:一元二次方程的四種解法要求靈活運(yùn)用,其中直接開平方法雖然簡單,但是適用范圍較。还椒m然適用范圍大,但計算較繁,易發(fā)生計算錯誤;因式分解法適用范圍較大,且計算簡便,是首選方法;配方法使用較少。

  3、一元二次方程根的判別式:當(dāng)ax2+bx+c=0(a≠0)時,Δ=b2—4ac叫一元二次方程根的判別式。請注意以下等價命題:

  Δ>0 <=>有兩個不等的實(shí)根;Δ=0 <=>有兩個相等的實(shí)根;Δ<0 <=>無實(shí)根。

  4、平均增長率問題——應(yīng)用題的類型題之一(設(shè)增長率為x):

 。1)第一年為a,第二年為a(1+x),第三年為a(1+x)2。

 。2)常利用以下相等關(guān)系列方程:第三年=第三年或第一年+第二年+第三年=總和。

  最全初三數(shù)學(xué)知識點(diǎn)歸納 篇6

  1.軸對稱:

  把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱,兩個圖形中的對應(yīng)點(diǎn)叫做對稱點(diǎn),對應(yīng)線段叫做對稱線段。

  2.軸對稱圖形:

  如果一個圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線就是它的對稱軸。

  注意:對稱軸是直線而不是線段

  3.軸對稱的性質(zhì):

  (1)關(guān)于某條直線對稱的兩個圖形是全等形;

  (2)如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線;

  (3)兩個圖形關(guān)于某條直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上;

  (4)如果兩個圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。

  4.線段垂直平分線:

  (1)定義:垂直平分一條線段的直線是這條線的垂直平分線。

  (2)性質(zhì):①線段垂直平分線上的點(diǎn)到這條線段兩個端點(diǎn)的距離相等;

 、诘揭粭l線段兩個端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。

  注意:根據(jù)線段垂直平分線的這一特性可以推出:三角形三邊的垂直平分線交于一點(diǎn),并且這一點(diǎn)到三個頂點(diǎn)的距離相等。

  5.角的平分線:

  (1)定義:把一個角分成兩個相等的角的射線叫做角的平分線.

  (2)性質(zhì):①在角的平分線上的點(diǎn)到這個角的兩邊的距離相等.

 、诘揭粋角的兩邊距離相等的點(diǎn),在這個角的平分線上.

  注意:根據(jù)角平分線的性質(zhì),三角形的三個內(nèi)角的平分線交于一點(diǎn),并且這一點(diǎn)到三條邊的距離相等.

  6.等腰三角形的性質(zhì)與判定:

  性質(zhì):

  (1)對稱性:等腰三角形是軸對稱圖形,等腰三角形底邊上的中線所在的直線是它的對稱軸,或底邊上的高所在的直線是它的對稱軸,或頂角的平分線所在的直線是它的對稱軸;

  (2)三線合一:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合;

  (3)等邊對等角:等腰三角形的兩個底角相等。

  說明:等腰三角形的性質(zhì)除三線合一外,三角形中的主要線段之間也存在著特殊的性質(zhì),如:①等腰三角形兩底角的平分線相等;②等腰三角形兩腰上的中線相等;

 、鄣妊切蝺裳系母呦嗟;④等腰三角形底邊上的中點(diǎn)到兩腰的距離相等。

  判定定理:如果一個三角形的兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。

  7.等邊三角形的性質(zhì)與判定:

  性質(zhì):(1)等邊三角形的三個角都相等,并且每個角都等于60

  (2)等邊三角形具有等腰三角形的所有性質(zhì),并且在每條邊上都有三線合一。因此等邊三角形是軸對稱圖形,它有三條對稱軸,而等腰三角形(非等邊三角形)只有一條對稱軸。

  判定定理:有一個角是60的等腰三角形是等邊三角形。

  說明:等邊三角形是一種特殊的三角形,容易知道等邊三角形的三條高(或三條中線、三條角平分線)都相等。

  最全初三數(shù)學(xué)知識點(diǎn)歸納 篇7

  一、求復(fù)雜事件的概率:

  1.有些隨機(jī)事件不可能用樹狀圖和列表法求其發(fā)生的概率,只能用試驗、統(tǒng)計的方法估計其發(fā)生的概率。

  2.對于作何一個隨機(jī)事件都有一個固定的概率客觀存在。

  3.對隨機(jī)事件做大量試驗時,根據(jù)重復(fù)試驗的特征,我們確定概率時應(yīng)當(dāng)注意幾點(diǎn):

  (1)盡量經(jīng)歷反復(fù)實(shí)驗的過程,不能想當(dāng)然的作出判斷;(2)做實(shí)驗時應(yīng)當(dāng)在相同條件下進(jìn)行;(3)實(shí)驗的次數(shù)要足夠多,不能太少;(4)把每一次實(shí)驗的結(jié)果準(zhǔn)確,實(shí)時的做好記錄;(5)分階段分別從第一次起計算,事件發(fā)生的頻率,并把這些頻率用折線統(tǒng)計圖直觀的表示出來;(6)觀察分析統(tǒng)計圖,找出頻率變化的逐漸穩(wěn)定值,并用這個穩(wěn)定值 估計事件發(fā)生的概率,這種估計概率的方法的優(yōu)點(diǎn)是直觀,缺點(diǎn)是估計值必須在實(shí)驗后才能得到,無法事件預(yù)測。

  二、判斷游戲公平:

  游戲?qū)﹄p方公平是指雙方獲勝的可能性相同。

  三、概率綜合運(yùn)用:

  概率可以和很多知識綜合命題,主要涉及平面圖形、統(tǒng)計圖、平均數(shù)、中位數(shù)、眾數(shù)、函數(shù)等。

  最全初三數(shù)學(xué)知識點(diǎn)歸納 篇8

  1.數(shù)的分類及概念 數(shù)系表:

  說明:分類的原則:1)相稱(不重、不漏) 2)有標(biāo)準(zhǔn)

  2.非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x0)

  性質(zhì):若干個非負(fù)數(shù)的和為0,則每個非負(fù)數(shù)均為0。

  3.倒數(shù): ①定義及表示法

  ②性質(zhì):A.a1/a(a1);B.1/a中,aC.0

  4.相反數(shù): ①定義及表示法

 、谛再|(zhì):A.a0時,aB.a與-a在數(shù)軸上的位置;C.和為0,商為-1。

  5.數(shù)軸:①定義(三要素)

 、谧饔茫篈.直觀地比較實(shí)數(shù)的大小;B.明確體現(xiàn)絕對值意義;C.建立點(diǎn)與實(shí)數(shù)的一一對應(yīng)關(guān)系。

  6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)自然數(shù))

  定義及表示:

  奇數(shù):2n-1

  偶數(shù):2n(n為自然數(shù))

  7.絕對值:①定義(兩種):

  代數(shù)定義:

  幾何定義:數(shù)a的絕對值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對應(yīng)的點(diǎn)到原點(diǎn)的距離。

 、讴│0,符號││是非負(fù)數(shù)的標(biāo)志;③數(shù)a的絕對值只有一個;④處理任何類型的題目,只要其中有││出現(xiàn),其關(guān)鍵一步是去掉││符號。

  最全初三數(shù)學(xué)知識點(diǎn)歸納 篇9

  1、概念:

  把一個圖形繞著某一點(diǎn)O轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),點(diǎn)O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。

  旋轉(zhuǎn)三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方面、旋轉(zhuǎn)角

  2、旋轉(zhuǎn)的性質(zhì):

  (1)旋轉(zhuǎn)前后的兩個圖形是全等形;

  (2)兩個對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等

  (3)兩個對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角

  3、中心對稱:

  把一個圖形繞著某一個點(diǎn)旋轉(zhuǎn)180,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點(diǎn)對稱或中心對稱,這個點(diǎn)叫做對稱中心。

  這兩個圖形中的對應(yīng)點(diǎn)叫做關(guān)于中心的對稱點(diǎn)。

  4、中心對稱的性質(zhì):

  (1)關(guān)于中心對稱的兩個圖形,對稱點(diǎn)所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。

  (2)關(guān)于中心對稱的兩個圖形是全等圖形。

  5、中心對稱圖形:

  把一個圖形繞著某一個點(diǎn)旋轉(zhuǎn)180,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點(diǎn)就是它的對稱中心。

  6、坐標(biāo)系中的中心對稱

  兩個點(diǎn)關(guān)于原點(diǎn)對稱時,它們的坐標(biāo)符號相反,即點(diǎn)P(x,y)關(guān)于原點(diǎn)O的對稱點(diǎn)P(-x,-y)。

【最全初三數(shù)學(xué)知識點(diǎn)歸納】相關(guān)文章:

初三數(shù)學(xué)旋轉(zhuǎn)知識點(diǎn)歸納10-04

初三數(shù)學(xué)幾何知識點(diǎn)歸納07-25

初三數(shù)學(xué)知識點(diǎn)復(fù)習(xí)歸納01-19

初三數(shù)學(xué)下冊期末知識點(diǎn)歸納10-22

初三數(shù)學(xué)《隨機(jī)事件》知識點(diǎn)歸納10-16

初三數(shù)學(xué)軸對稱知識點(diǎn)歸納10-15

初三數(shù)學(xué)知識點(diǎn)歸納實(shí)數(shù)09-29

初三數(shù)學(xué)知識點(diǎn)歸納總結(jié)08-24

初三數(shù)學(xué)知識點(diǎn)歸納總結(jié)11-26