亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

考研備考 百文網(wǎng)手機站

考研數(shù)學(xué)沖刺矩陣相似對角化要點及技巧

時間:2021-06-10 15:10:25 考研備考 我要投稿

考研數(shù)學(xué)沖刺矩陣相似對角化要點及技巧

  在考研數(shù)學(xué)中,矩陣相似對角化是每年考察的重點和難點,對于各位考研人來說尤其要注意把握。小編為大家精心準(zhǔn)備了考研數(shù)學(xué)沖刺矩陣相似對角化復(fù)習(xí)要點和秘訣,歡迎大家前來閱讀。

考研數(shù)學(xué)沖刺矩陣相似對角化要點及技巧

  考研數(shù)學(xué)沖刺矩陣相似對角化重點和方法

  ★一般方陣的相似對角化理論

  這里要求掌握一般矩陣相似對角化的條件,會判斷給定的矩陣是否可以相似對角化,另外還要會矩陣相似對角化的計算問題,會求可逆陣以及對角陣。事實上,矩陣相似對角化之后還有一些應(yīng)用,主要體現(xiàn)在矩陣行列式的計算或者求矩陣的方冪上,這些應(yīng)用在歷年真題中都有不同的體現(xiàn)。

  1、判斷方陣是否可相似對角化的條件:

  (1)充要條件:An可相似對角化的充要條件是:An有n個線性無關(guān)的特征向量;

  (2)充要條件的另一種形式:An可相似對角化的充要條件是:An的k重特征值滿足n-r(λE-A)=k

  (3)充分條件:如果An的n個特征值兩兩不同,那么An一定可以相似對角化;

  (4)充分條件:如果An是實對稱矩陣,那么An一定可以相似對角化。

  【注】分析方陣是否可以相似對角化,關(guān)鍵是看線性無關(guān)的特征向量的個數(shù),而求特征向量之前,必須先求出特征值。

  2、求方陣的特征值:

  (1)具體矩陣的特征值:

  這里的難點在于特征行列式的計算:方法是先利用行列式的性質(zhì)在行列式中制造出兩個0,然后利用行列式的展開定理計算;

  (2)抽象矩陣的特征值:

  抽象矩陣的特征值,往往要根據(jù)題中條件構(gòu)造特征值的定義式來求,靈活性較大。

  ★實對稱矩陣的相似對角化理論

  其實質(zhì)還是矩陣的相似對角化問題,與一般方陣不同的是求得的可逆陣為正交陣。這里要求大家除了掌握實對稱矩陣的正交相似對角化外,還要掌握實對稱矩陣的特征值與特征向量的性質(zhì),在考試的時候會經(jīng)常用到這些考點的。

  這塊的知識出題比較靈活,可直接出題,即給定一個實對稱矩陣A,讓求正交陣使得該矩陣正交相似于對角陣;也可以根據(jù)矩陣A的特征值、特征向量來確定矩陣A中的參數(shù)或者確定矩陣A;另外由于實對稱矩陣不同特征值的特征向量是相互正交的,這樣還可以由已知特征值的特征向量確定出對應(yīng)的特征向量,從而確定出矩陣A。

  最重要的是,掌握了實對稱矩陣的正交相似對角化就相當(dāng)于解決了實二次型的標(biāo)準(zhǔn)化問題。

  1、掌握實對稱矩陣的特征值和特征向量的性質(zhì)

  (1)不同特征值的特征向量一定正交

  (2)k重特征值一定滿足滿足n-r(λE-A)=k

  【注】由性質(zhì)(2)可知,實對稱矩陣一定可以相似對角化;且有(1)可知,實對稱矩陣一定可以正交相似對角化。

  2、會求把對稱矩陣正交相似化的正交矩陣

  【注】熟練掌握施密特正交化的公式;特別注意的是:只需要對同一個特征值求出的基礎(chǔ)解系進(jìn)行正交化,不同特征值對應(yīng)的特征向量一定正交(當(dāng)然除非你計算出錯了會發(fā)現(xiàn)不正交)。

  3、實對稱矩陣的特殊考點:

  實對稱矩陣一定可以相似對角化,利用這個性質(zhì)可以得到很多結(jié)論,比如:

  (1)實對稱矩陣的秩等于非零特征值的個數(shù)

  這個結(jié)論只對實對稱矩陣成立,不要錯誤地使用。

  (2)兩個實對稱矩陣,如果特征值相同,一定相似

  同樣地,對于一般矩陣,這個結(jié)論也是不成立的。

  4、實對稱矩陣在二次型中的應(yīng)用

  使用正交變換把二次型化為標(biāo)準(zhǔn)型使用的方法本質(zhì)上就是實對稱矩陣的正交相似對角化。

  考研數(shù)學(xué)綜合題解題切入點

  一、做典型題,培養(yǎng)解題思路

  典型題可以理解為基礎(chǔ)題以和常考題型。做這種題時考生要積極主動思考,不能只是為了做題而做題。要在做題的基礎(chǔ)上更深入地理解、掌握知識,所學(xué)的知識才能變成自己的知識,這樣才能使自己具有獨立的解題能力。

  例如線性代數(shù)的計算量比較大,但純計算的題目比較少,一般都是證明中帶有計算,抽象中夾帶計算。這就要求考生在做題時要注意證明題的邏輯嚴(yán)緊性,掌握知識點在證明結(jié)論時的基本使用方法,雖然線性代數(shù)的考試可以考的很靈活,但這些基本知識點的使用方法卻比較固定,只要熟練掌握各種拼接方式即可。

  盡管試題千變?nèi)f化,但其知識結(jié)構(gòu)基本相同,題型相對固定,這就需要考生在研究真題和做模擬題時提煉題型。提練題型的目的,是為了提高解題的針對性,形成思維定勢,進(jìn)而提高考生解題的速度和準(zhǔn)確性。

  二、找切入點,理清知識脈絡(luò)

  考生們在解綜合題時,最關(guān)鍵的一步是找到解題的切入點。所以大家需要對解題思路很熟悉,能夠看出題目與復(fù)習(xí)過的知識點、題型之間存在的聯(lián)系。在考研復(fù)習(xí)中要對所學(xué)知識進(jìn)行重組,理清知識脈絡(luò),應(yīng)用起來更加得心應(yīng)手。

  解應(yīng)用題的一般步驟都是認(rèn)真理解題意,建立相關(guān)的數(shù)學(xué)模型,將其化為某數(shù)學(xué)問題求解。建立數(shù)學(xué)模型時,一般要用到幾何知識、物理力學(xué)知識和經(jīng)濟(jì)學(xué)術(shù)語等。

  三、選常規(guī)題,珍惜復(fù)習(xí)時間

  對于比較偏門和奇怪的試題,建議大家不要花太多的時間。同學(xué)們在復(fù)習(xí)中做好分析好考研數(shù)學(xué)的常規(guī)題目便已足夠。研究生考試不是數(shù)學(xué)競賽,出現(xiàn)偏門和怪題的情況微乎其微,因此完全沒必要浪費時間。

  考研復(fù)習(xí)中,遇到比較難的題目,自己獨立解決確實能提高能力。但復(fù)習(xí)時間畢竟有限,在確定思考不出結(jié)果時,要及時尋求幫助。一定要避免一時性起,盯住一個題目做大半天的沖動。

  考研數(shù)學(xué)易錯點分析

  高等數(shù)學(xué)

  1.函數(shù)在一點處極限存在,連續(xù),可導(dǎo),可微之間關(guān)系。對于一元函數(shù)函數(shù)連續(xù)是函數(shù)極限存在的充分條件。若函數(shù)在某點連續(xù),則該函數(shù)在該點必有極限。若函數(shù)在某點不連續(xù),則該函數(shù)在該點不一定無極限。若函數(shù)在某點可導(dǎo),則函數(shù)在該點一定連續(xù)。但是如果函數(shù)不可導(dǎo),不能推出函數(shù)在該點一定不連續(xù),可導(dǎo)與可微等價。而對于二元函數(shù),只能又可微推連續(xù)和可導(dǎo)(偏導(dǎo)都存在),其余都不成立。

  2.基本初等函數(shù)與初等函數(shù)的連續(xù)性:基本初等函數(shù)在其定義域內(nèi)是連續(xù)的,而初等函數(shù)在其定義區(qū)間上是連續(xù)的。

  3.極值點,拐點。駐點與極值點的關(guān)系:在一元函數(shù)中,駐點可能是極值點,也可能不是極值點,而函數(shù)的極值點必是函數(shù)的駐點或?qū)?shù)不存在的點。注意極值點和拐點的定義一充、二充、和必要條件。

  4.夾逼定理和用定積分定義求極限。這兩種方法都可以用來求和式極限,注意方法的選擇。還有夾逼定理的應(yīng)用,特別是無窮小量與有界量之積仍是無窮小量。

  5.可導(dǎo)是對定義域內(nèi)的點而言的,處處可導(dǎo)則存在導(dǎo)函數(shù),只要一個函數(shù)在定義域內(nèi)某一點不可導(dǎo),那么就不存在導(dǎo)函數(shù),即使該函數(shù)在其它各處均可導(dǎo)。

  6.泰勒中值定理的應(yīng)用,可用于計算極限以及證明。

  7.比較積分的'大小。定積分比較定理的應(yīng)用(常用畫圖法),多重積分的比較,特別注意第二類曲線積分,曲面積分不可直接比較大小。

  8.抽象型的多元函數(shù)求導(dǎo),反函數(shù)求導(dǎo)(高階),參數(shù)方程的二階導(dǎo),以及與變限積分函數(shù)結(jié)合的求導(dǎo)

  9.廣義積分和級數(shù)的斂散性的判斷。

  10.介值定理和零點定理的應(yīng)用。關(guān)鍵在于觀察和變換所要證明等式的形式,構(gòu)造輔助函數(shù)。

  11.保號性。極限的性質(zhì)中最重要的就是保號性,注意保號性的兩種形式以及成立的條件。

  12.第二類曲線積分和第二類曲面積分。在求解的過程中一般會使用格林公式和高斯公式,大部分同學(xué)都會把精力關(guān)注在是否閉合,偏導(dǎo)是否連續(xù)上,而忘記了第三個條件——方向,要引起注意。

  線性代數(shù)

  1、行列式的計算。行列式直接考察的概率不高,但行列式是線代的工具,判定系數(shù)矩陣為方陣的線性方程組解的情況及特征值的計算都會用到行列式的計算,故要引起重視。

  2、矩陣的變換。矩陣是線代的研究對象,線性方程組、特征值與特征向量、相似對角化,二次型,其實都是在研究矩陣。一定要注意在化階梯型時只能對矩陣做行變換,不可做列變換變換。

  3、向量和秩。向量和秩比較抽象,也是線代學(xué)習(xí)的重點和難點,研究線性方程組解的情況其實就是在研究系數(shù)矩陣的秩,也是在研究把系數(shù)矩陣按列分塊得到的向量組的秩。

  4、線性方程組的解。線性方程組是每年的必看知識點,要熟練掌握線性方程組解的結(jié)構(gòu)問題,核心是理解基礎(chǔ)解系,要能夠掌握具體方程組的數(shù)列方法,更要能熟練解決抽象型方程組,一般會轉(zhuǎn)化為系數(shù)矩陣的秩或者基礎(chǔ)解,然后解決問題。

  5、特征值與特征向量。特征值與特征向量起到承前啟后的作用,一特征值對應(yīng)的特征向量其實就是其對應(yīng)矩陣作為系數(shù)矩陣的齊次線性方程組的基礎(chǔ)解系,其重要應(yīng)用就是相似對角化及正交相似對角化,是后面二次型的基礎(chǔ)。

  6、相似對角化,包括相似對角化及正交相似對角化。要會判斷是否可以相似對角化,及正交相似對角化時,怎么施密特正交化和單位化。

  7、二次型。二次型是線代的一個綜合型章節(jié),會用到前面的很多知識。要熟練掌握用正交變換化二次型為標(biāo)準(zhǔn)形,二次型正定的判定,及慣性指數(shù)。

  8、矩陣等價及向量組等價的充要條件,矩陣等價,相似,合同的條件。

  概率論與數(shù)理統(tǒng)計

  1、非等可能 與 等可能。若一次隨機實驗中可能出現(xiàn)的結(jié)果有N個,且所有結(jié)果出現(xiàn)的可能性都相等,則每一個基本事件的概率都是1/N;若其中某個事件A包含的結(jié)果有M個,則事件A的概率為M/N。

  2、互斥與對立 對立一定互斥,但互斥不一定對立。若A,B互斥,則P(A+B)=P(A)+P(B),若A,B對立,則滿足(1)A∩B=空集;(2)P(A+B)=1。

  3、互斥與獨立。若A,B互斥,則P(A+B)=P(A)+P(B),若A,B獨立,則P(AB)=P(A)P(B);概率為0或者1的事件與任何事件都獨立

  4、排列與組合。排列與順序有關(guān),組合與順序無關(guān),同類相乘有序,不同類相乘無序。

  5、不可能事件與概率為零的隨機事件。 不可能事件的概率一定為零,但概率為零的隨機事件不一定是不可能事件,如連續(xù)型隨機變量在任何一點的概率都為0。

  6、必然事件與概率為1的事件。必然事件的概率一定為1,但概率為1的隨機事件不一定是必然事件。對于一般情形,由P(A)=P(B)同樣不能推得隨機事件A等于隨機事件B。

  7、條件概率。P(A|B)表示事件B發(fā)生條件下事件A發(fā)生的概率。若“B是A的子集”,則P(A|B)=1,但P(B|A)=P(B)是不對的,只有當(dāng)P(A)=1時才成立。在求二維連續(xù)型隨機變量的條件概率密度函數(shù)時,一定是在邊緣概率密度函數(shù)大于零時,才可使用“條件=聯(lián)合/邊緣”;反過來用此公式求聯(lián)合概率密度函數(shù)時,也要保證邊緣概率密度函數(shù)大于零。

  8、隨機變量概率密度函數(shù)。對于一維連續(xù)型隨機變量,用分布函數(shù)法,先討論概率為0和1的區(qū)間,然后反解,再討論,最后求導(dǎo)。對于二維隨機變量,若是連續(xù)型和離散型,用全概率公式,若是連續(xù)型和連續(xù)型同樣用分布函數(shù)法,若隨機變量是Z=X+Y型,用卷積公式。


【考研數(shù)學(xué)沖刺矩陣相似對角化要點及技巧】相關(guān)文章:

考研數(shù)學(xué)矩陣相似對角化要點及技巧12-20

考研數(shù)學(xué)沖刺階段的復(fù)習(xí)要點及技巧12-04

考研數(shù)學(xué)最后沖刺的復(fù)習(xí)要點12-18

考研數(shù)學(xué)沖刺階段的復(fù)習(xí)要點12-04

考研數(shù)學(xué)最后沖刺階段的復(fù)習(xí)要點11-24

考研數(shù)學(xué)沖刺定積分復(fù)習(xí)的要點11-24

考研數(shù)學(xué)沖刺階段的答題技巧12-20

考研數(shù)學(xué)最后沖刺的復(fù)習(xí)技巧12-16

考研數(shù)學(xué)沖刺考場答題的技巧12-15