亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

數(shù)學 百文網(wǎng)手機站

八年級數(shù)學上冊知識點

時間:2022-01-20 18:09:37 數(shù)學 我要投稿

北師大版八年級數(shù)學上冊知識點

  在我們平凡無奇的學生時代,說到知識點,大家是不是都習慣性的重視?知識點有時候特指教科書上或考試的知識。你知道哪些知識點是真正對我們有幫助的嗎?以下是小編為大家收集的北師大版八年級數(shù)學上冊知識點,供大家參考借鑒,希望可以幫助到有需要的朋友。

北師大版八年級數(shù)學上冊知識點

  八年級數(shù)學上冊知識點 篇1

  一、四邊形的相關(guān)概念

  1、四邊形

  在同一平面內(nèi),由不在同一直線上的四條線段首尾順次相接組成的圖形叫做四邊形。

  2、四邊形具有不穩(wěn)定性

  3、四邊形的內(nèi)角和定理及外角和定理

  四邊形的內(nèi)角和定理:四邊形的內(nèi)角和等于360°。 四邊形的外角和定理:四邊形的外角和等于360°。

  推論:多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n2)180°;

  多邊形的外角和定理:任意多邊形的外角和等于360°。

  6、設(shè)多邊形的邊數(shù)為n,則多邊形的對角線共有條。從n邊形的一個頂點出發(fā)能引(n-3)

  2條對角線,將n邊形分成(n-2)個三角形。

  二、平行四邊形

  1、平行四邊形的定義

  兩組對邊分別平行的四邊形叫做平行四邊形。

  2、平行四邊形的性質(zhì)

  (1)平行四邊形的對邊平行且相等。

  (2)平行四邊形相鄰的角互補,對角相等

  (3)平行四邊形的對角線互相平分。

  (4)平行四邊形是中心對稱圖形,對稱中心是對角線的交點。

  常用點:(1)若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段的中點是對角線的交點,并且這條直線二等分此平行四邊形的面積。

  (2)推論:夾在兩條平行線間的平行線段相等。

  3、平行四邊形的判定

  (1)定義:兩組對邊分別平行的四邊形是平行四邊形

  (2)定理1:兩組對角分別相等的四邊形是平行四邊形

  (3)定理2:兩組對邊分別相等的四邊形是平行四邊形

  (4)定理3:對角線互相平分的四邊形是平行四邊形

  (5)定理4:一組對邊平行且相等的四邊形是平行四邊形

  4、兩條平行線的距離

  兩條平行線中,一條直線上的任意一點到另一條直線的距離,叫做這兩條平行線的距離。 平行線間的距離處處相等。

  5、平行四邊形的面積 S平行四邊形=底邊長×高=ah

  八年級數(shù)學上冊知識點 篇2

  一、變量與函數(shù)

  1.變量:在一個變化過程中,數(shù)值發(fā)生變化的量叫做變量。

  2.常量:數(shù)值始終不變的量叫做 常量。

  3.函數(shù):一般的,在一個變化過程中,如果有兩個變量x與y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應(yīng),那么我們就說y是x的函數(shù),x是自變量。Y的值叫函數(shù)值。

  4.函數(shù)解析式:表示x與y的函數(shù)關(guān)系的式子,叫函數(shù)解析式。自變量的取值不能使函數(shù)解析式的分母為0。

  5.函數(shù)的圖像:一般的,對于一個函數(shù),如果把自變量與函數(shù)的每對對應(yīng)值分別作為點的橫、縱坐標,那么在坐標平面內(nèi)由這些點組成的圖形,就是這個函數(shù)的圖象。

  6.描點法畫函數(shù)圖像的步驟:①列表、②描點、③連線。

  表示函數(shù)的方法:①列表法、②解析式法、③圖像法。

  二、一次函數(shù)

  1.正比例函數(shù):一般地,形如y=kx(k為常數(shù),且k≠0)的函數(shù)叫做正比例函數(shù).其中k叫做比例系數(shù)。

  2.正比例函數(shù)的圖象與性質(zhì):

  (1)圖象:正比例函數(shù)y= kx (k 是常數(shù),k≠0)) 的圖象是經(jīng)過原點的一條直線,我們稱它為直線y= kx 。

  (2)性質(zhì):當k>0時,直線y= kx經(jīng)過第三,一象限,從左向右上升,即隨著x的增大y也增大;當k<0時,直線y= kx經(jīng)過二,四象限,從左向右下降,即隨著 x的增大y反而減小。

  3.一次函數(shù):一般地,形如y=kx+b(k,b為常數(shù),且k≠0)的函數(shù)叫做一次函數(shù)。當b =0 時,y=kx+b 即為 y=kx,所以正比例函數(shù),是一次函數(shù)的特例。

  4.函數(shù)的圖象與性質(zhì):(1)一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象是一條直線,我們稱它為直線 y=kx+b。 相當于由直線y=kx平移|b|個單位長度而得。

  (2)性質(zhì):當k>0時,直線y= kx+b從左向右上升,即隨著x的增大y也增大;當k<0時,直線y= kx+b從左向右下降,即隨著 x的增大y反而減小。

  5.求函數(shù)解析式的方法: 待定系數(shù)法(先設(shè)出函數(shù)解析式,再根據(jù)條件確定解析式中未知的系數(shù),從而具體寫出這個式子的方法。)

  八年級數(shù)學上冊知識點 篇3

  一、矩形

  1、矩形的定義

  有一個角是直角的平行四邊形叫做矩形。

  2、矩形的性質(zhì)

  (1)矩形的對邊平行且相等

  (2)矩形的四個角都是直角

  (3)矩形的對角線相等且互相平分

  (4)矩形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(對稱中心到矩形四個頂點的距離相等);對稱軸有兩條,是對邊中點連線所在的直線。

  3、矩形的判定

  (1)定義:有一個角是直角的平行四邊形是矩形

  (2)定理1:有三個角是直角的四邊形是矩形

  (3)定理2:對角線相等的平行四邊形是矩形

  4、矩形的面積 S矩形=長×寬=ab

  二、菱形

  1、菱形的定義

  有一組鄰邊相等的平行四邊形叫做菱形

  2、菱形的性質(zhì)

  (1)菱形的四條邊相等,對邊平行 (2)菱形的相鄰的角互補,對角相等

  (3)菱形的對角線互相垂直平分,并且每一條對角線平分一組對角

  (4)菱形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(對稱中心到菱形四條邊的距離相等);對稱軸有兩條,是對角線所在的直線。

  3、菱形的判定

  (1)定義:有一組鄰邊相等的平行四邊形是菱形

  (2)定理1:四邊都相等的四邊形是菱形

  (3)定理2:對角線互相垂直的平行四邊形是菱形

  4、菱形的面積

  S菱形=底邊長×高=兩條對角線乘積的一半

  八年級數(shù)學上冊知識點 篇4

  一、軸對稱圖形

  1、把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關(guān)于這條直線(成軸)對稱。

  2、把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那么就說這兩個圖關(guān)于這條直線對稱。這條直線叫做對稱軸。折疊后重合的點是對應(yīng)點,叫做對稱點。

  3、軸對稱圖形和軸對稱的區(qū)別與聯(lián)系。

  4、軸對稱的性質(zhì)。

 、訇P(guān)于某直線對稱的兩個圖形是全等形。

 、谌绻麅蓚圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點所連線段的垂直平分線。

 、圯S對稱圖形的對稱軸,是任何一對對應(yīng)點所連線段的`垂直平分線。

 、苋绻麅蓚圖形的對應(yīng)點連線被同條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。

  二、線段的垂直平分線

  1、經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。

  2、線段垂直平分線上的點與這條線段的兩個端點的距離相等。

  3、與一條線段兩個端點距離相等的點,在線段的`垂直平分線上。

  三、用坐標表示軸對稱小結(jié):

  在平面直角坐標系中,關(guān)于x軸對稱的點橫坐標相等,縱坐標互為相反數(shù)。關(guān)于y軸對稱的點橫坐標互為相反數(shù),縱坐標相等。

  2、三角形三條邊的垂直平分線相交于一點,這個點到三角形三個頂點的距離相等。

  四、(等腰三角形)知識點回顧

  1、等腰三角形的性質(zhì)。

 、、等腰三角形的兩個底角相等。(等邊對等角)

 、凇⒌妊切蔚捻斀瞧椒志、底邊上的中線、底邊上的高互相重合。(三線合一)

  2、等腰三角形的判定:

  如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)

  五、(等邊三角形)知識點回顧

  1、等邊三角形的性質(zhì):

  等邊三角形的三個角都相等,并且每一個角都等于600。

  2、等邊三角形的判定:

 、偃齻角都相等的三角形是等邊三角形。

 、谟幸粋角是600的等腰三角形是等邊三角形。

  3、在直角三角形中,如果一個銳角等于300,那么它所對的直角邊等于斜邊的一半。

  1、等腰三角形的性質(zhì)

 。1)等腰三角形的性質(zhì)定理及推論:

  定理:等腰三角形的兩個底角相等(簡稱:等邊對等角)

  推論1:等腰三角形頂角平分線平分底邊并且垂直于底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。

  推論2:等邊三角形的各個角都相等,并且每個角都等于60°。

 。2)等腰三角形的其他性質(zhì):

 、俚妊苯侨切蔚膬蓚底角相等且等于45°

 、诘妊切蔚牡捉侵荒転殇J角,不能為鈍角(或直角),但頂角可為鈍角(或直角)。

 、鄣妊切蔚娜呹P(guān)系:設(shè)腰長為a,底邊長為b,則

 、艿妊切蔚娜顷P(guān)系:設(shè)頂角為頂角為∠A,底角為∠B、∠C,則∠A=180°—2∠B,∠B=∠C=

  2、等腰三角形的判定

  等腰三角形的判定定理及推論:

  定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。這個判定定理常用于證明同一個三角形中的邊相等。

  推論1:三個角都相等的三角形是等邊三角形。

  推論2:有一個角是60°的等腰三角形是等邊三角形。

  推論3:在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半。

  等腰三角形的性質(zhì)與判定

  等腰三角形性質(zhì)

  等腰三角形判定

  中線

  1、等腰三角形底邊上的中線垂直底邊,平分頂角;

  2、等腰三角形兩腰上的中線相等,并且它們的交點與底邊兩端點距離相等。

  1、兩邊上中線相等的三角形是等腰三角形;

  2、如果一個三角形的一邊中線垂直這條邊(平分這個邊的對角),那么這個三角形是等腰三角形。

  角平分線

  1、等腰三角形頂角平分線垂直平分底邊;

  2、等腰三角形兩底角平分線相等,并且它們的交點到底邊兩端點的距離相等。

  1、如果三角形的頂角平分線垂直于這個角的對邊(平分對邊),那么這個三角形是等腰三角形;

  2、三角形中兩個角的平分線相等,那么這個三角形是等腰三角形。

  高線

  1、等腰三角形底邊上的高平分頂角、平分底邊;

  2、等腰三角形兩腰上的高相等,并且它們的交點和底邊兩端點距離相等。

  1、如果一個三角形一邊上的高平分這條邊(平分這條邊的對角),那么這個三角形是等腰三角形;

  2、有兩條高相等的三角形是等腰三角形。

  角

  等邊對等角

  等角對等邊

  邊

  底的一半<腰長<周長的一半

  兩邊相等的三角形是等腰三角形

  4、三角形中的中位線

  連接三角形兩邊中點的線段叫做三角形的中位線。

 。1)三角形共有三條中位線,并且它們又重新構(gòu)成一個新的三角形。

  (2)要會區(qū)別三角形中線與中位線。

  三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。

  三角形中位線定理的作用:

  位置關(guān)系:可以證明兩條直線平行。

  數(shù)量關(guān)系:可以證明線段的倍分關(guān)系。

  常用結(jié)論:任一個三角形都有三條中位線,由此有:

  結(jié)論1:三條中位線組成一個三角形,其周長為原三角形周長的一半。

  結(jié)論2:三條中位線將原三角形分割成四個全等的三角形。

  結(jié)論3:三條中位線將原三角形劃分出三個面積相等的平行四邊形。

  結(jié)論4:三角形一條中線和與它相交的中位線互相平分。

  結(jié)論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等。

【北師大版八年級數(shù)學上冊知識點】相關(guān)文章:

八年級數(shù)學上冊試題07-28

2018廣東高考數(shù)學必修一知識點08-15

2018廣東高考數(shù)學課本必考知識點總結(jié)08-15

2017廣東高考數(shù)學考試易混淆知識點10-12

2018廣東高考數(shù)學考試必考知識點復習試題09-05

六年級上冊數(shù)學07-29

2018廣東高考數(shù)學一輪復習易錯知識點08-15

八年級上冊語文教學工作總結(jié)01-20

五年級數(shù)學上冊期末試卷07-22

八年級數(shù)學教學個人工作總結(jié)12-08