亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

初二

初二數(shù)學知識點歸納

時間:2022-01-25 19:00:24 初二 我要投稿

初二數(shù)學知識點歸納

  在我們平凡的學生生涯里,相信大家一定都接觸過知識點吧!知識點就是“讓別人看完能理解”或者“通過練習我能掌握”的內(nèi)容。還在苦惱沒有知識點總結嗎?下面是小編精心整理的初二數(shù)學知識點歸納,供大家參考借鑒,希望可以幫助到有需要的朋友。

初二數(shù)學知識點歸納

  初二數(shù)學知識點歸納 篇1

  因式分解定義

  把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  因式分解要素

 、俳Y果必須是整式

 、诮Y果必須是積的形式

  ③結果是等式

 、芤蚴椒纸馀c整式乘法的關系:m(a+b+c)

  公因式:

  一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  公因式確定方法

  ①系數(shù)是整數(shù)時取各項最大公約數(shù)。

 、谙嗤帜溉∽畹痛蝺

 、巯禂(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

  提取公因式步驟:

 、俅_定公因式。

 、诖_定商式

 、酃蚴脚c商式寫成積的形式。

  分解因式注意;

 、俨粶蕘G字母

 、诓粶蕘G常數(shù)項注意查項數(shù)

 、垭p重括號化成單括號

 、芙Y果按數(shù)單字母單項式多項式順序排列

  ⑤相同因式寫成冪的形式

 、奘醉椮撎柗爬ㄌ柾

  ⑦括號內(nèi)同類項合并。

  通過上面對因式分解內(nèi)容知識的講解學習,相信同學們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學們的學習很好的幫助。

  初二數(shù)學知識點歸納 篇2

  一、知識框架

  二、知識概念

  1.全等三角形:兩個三角形的`形狀、大小、都一樣時,其中一個可以經(jīng)過平移、旋轉(zhuǎn)、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。

  2、全等三角形的性質(zhì):全等三角形的對應角相等、對應邊相等。

  3.三角形全等的判定公理及推論有:

  (1)“邊角邊”簡稱“SAS”

 。2)“角邊角”簡稱“ASA”

 。3)“邊邊邊”簡稱“SSS”

 。4)“角角邊”簡稱“AAS”

  (5)斜邊和直角邊相等的兩直角三角形(HL)。

  4.角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點在叫的平分線上。

  5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:

 、、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系);

 、凇⒒仡櫲切闻卸ǎ闱逦覀冞需要什么;

  ③、正確地書寫證明格式順序和對應關系從已知推導出要證明的問題。

  在學習三角形的全等時,教師應該從實際生活中的圖形出發(fā),引出全等圖形進而引出全等三角形。通過直觀的理解和比較發(fā)現(xiàn)全等三角形的奧妙之處。在經(jīng)歷三角形的角平分線、中線等探索中激發(fā)學生的集合思維,啟發(fā)他們的靈感,使學生體會到集合的真正魅力。

  初二數(shù)學知識點歸納 篇3

  一、逆定理的內(nèi)容:

  如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形,其中c為斜邊。

  說明:

 。1)勾股定理的逆定理是判定一個三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能形狀,在運用這一定理時,可用兩小邊的平方和與較長邊的平方作比較,若它們相等時,以a,b,c為三邊的三角形是直角三角形;

  (2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認為是唯一的,如若三角形三邊長a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時的斜邊是b。

  二、利用勾股定理的逆定理判斷一個三角形是否為直角三角形的一般步驟:

 。1)確定最大邊;

 。2)算出最大邊的平方與另兩邊的平方和;

 。3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。

  三、勾股數(shù)

  能夠構成直角三角形的三邊長的三個正整數(shù)稱為勾股數(shù)。

  四、一個重要結論:

  由直角三角形三邊為邊長所構成的三個正方形滿足“兩個較小面積和等于較大面積”。

  五、勾股定理及其逆定理的應用

  解決圓柱側(cè)面兩點間的距離問題、航海問題,折疊問題、梯子下滑問題等,常直接間接運用勾股定理及其逆定理的應用。

  有了上文梳理的勾股定理的逆定理知識點整理,相信大家對考試充滿了信心,同時預祝大家考試取得好成績。

【初二數(shù)學知識點歸納】相關文章:

中考數(shù)學知識點歸納10-30

中考數(shù)學整式知識點歸納10-22

數(shù)學初一知識點歸納10-09

小升初數(shù)學知識點歸納12-09

高考數(shù)學的知識點歸納11-15

數(shù)學必修二知識點歸納10-31

數(shù)學知識點歸納總結08-04

高考數(shù)學知識點歸納01-27

數(shù)學高考精選知識點歸納11-08

高考數(shù)學幾何知識點歸納09-10